Проскок электрона егэ химия

Атомно-молекулярное учение

Мы приступаем к изучению химии — мира молекул и атомов. В этой статье мы рассмотрим базисные понятия и разберемся с электронными
формулами элементов.

Атом (греч. а — отриц. частица + tomos — отдел, греч. atomos — неделимый) — электронейтральная частица вещества микроскопических
размеров и массы, состоящая из положительно заряженного ядра (протонов) и отрицательно заряженных электронов (электронные орбитали).

Описываемая модель атома называется «планетарной» и была предложена в 1913 году великими физиками: Нильсом Бором и Эрнестом Резерфордом

Планетарная модель атома

Протон (греч. protos — первый) — положительно заряженная (+1) элементарная частица, вместе с нейтронами образует ядра атомов
элементов. Нейтрон (лат. neuter — ни тот, ни другой) — нейтральная (0) элементарная частица, присутствующая в ядрах всех
химических элементов, кроме водорода.

Электрон (греч. elektron — янтарь) — стабильная элементарная частица с отрицательным электрическим зарядом (-1), заряд атома —
порядковый номер в таблице Менделеева — равен числу электронов (и, соответственно, протонов).

Запомните, что в невозбужденном состоянии атом содержит одинаковое число электронов и протонов. Так у кальция (порядковый номер 20)
в ядре находится 20 протонов, а вокруг ядра на электронных орбиталях 20 электронов.

Электроны и протоны

Я еще раз подчеркну эту важную деталь. На данном этапе будет отлично, если вы запомните простое правило:
порядковый номер элемента = числу электронов. Это наиболее важно для практического применения и изучения следующей темы.

Электронная конфигурация атома

Электроны атома находятся в непрерывном движении вокруг ядра. Энергия электронов отличается друг от друга, в соответствии с этим
электроны занимают различные энергетические уровни.

Энергетические уровни подразделяются на несколько подуровней:

  • Первый уровень
  • Состоит из s-подуровня: одной «1s» ячейки, в которой помещаются 2 электрона (заполненный электронами — 1s2)

  • Второй уровень
  • Состоит из s-подуровня: одной «s» ячейки (2s2) и p-подуровня: трех «p» ячеек (2p6), на которых
    помещается 6 электронов

  • Третий уровень
  • Состоит из s-подуровня: одной «s» ячейки (3s2), p-подуровня: трех «p» ячеек (3p6) и d-подуровня:
    пяти «d» ячеек (3d10), в которых помещается 10 электронов

  • Четвертый уровень
  • Состоит из s-подуровня: одной «s» ячейки (4s2), p-подуровня: трех «p» ячеек (4p6), d-подуровня:
    пяти «d» ячеек (4d10) и f-подуровня: семи «f» ячеек (4f14), на которых помещается 14
    электронов

Энергетические уровни

Зная теорию об энергетических уровнях и порядковый номер элемента из таблицы Менделеева, вы должны расположить определенное число
электронов, начиная от уровня с наименьшей энергией и заканчивая к уровнем с наибольшей. Чуть ниже вы увидите несколько примеров, а
также узнаете об исключении, которое только подтверждает данные правила.

Подуровни: «s», «p» и «d», которые мы только что обсудили, имеют в определенную конфигурацию в пространстве. По этим подуровням, или
атомным орбиталям, движутся электроны, создавая определенный «рисунок».

S-орбиталь похожа на сферу, p-орбиталь напоминает песочные часы, d-орбиталь — клеверный лист.

Атомные орбитали

Правила заполнения электронных орбиталей и примеры

Существует ряд правил, которые применяют при составлении электронных конфигураций атомов:

  • Сперва следует заполнить орбитали с наименьшей энергией, и только после переходить к энергетически более высоким
  • На орбитали (в одной «ячейке») не может располагаться более двух электронов
  • Орбитали заполняются электронами так: сначала в каждую ячейку помещают по одному электрону, после чего орбитали дополняются
    еще одним электроном с противоположным направлением
  • Порядок заполнения орбиталей: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s
  • Должно быть, вы обратили внимание на некоторое несоответствие: после 3p подуровня следует переход к 4s, хотя логично было
    бы заполнить до конца 4s подуровень. Однако природа распорядилась иначе.

    Запомните, что, только заполнив 4s подуровень двумя электронами, можно переходить к 3d подуровню.

Без практики теория мертва, так что приступает к тренировке. Нам нужно составить электронную конфигурацию атомов углерода и
серы. Для начала определим их порядковый номер, который подскажет нам число их электронов. У углерода — 6, у серы — 16.

Теперь мы располагаем указанное количество электронов на энергетических уровнях, руководствуясь правилами заполнения.

Электронные конфигурации углерода и серы

Обращаю ваше особе внимание: на 2p-подуровне углерода мы расположили 2 электрона в разные ячейки, следуя одному из правил.
А на 3p-подуровне у серы электронов оказалось много, поэтому сначала мы расположили 3 электрона по отдельным ячейкам, а оставшимся
одним электроном дополнили первую ячейку.

Таким образом, электронные конфигурации наших элементов:

  • Углерод — 1s22s22p2
  • Серы — 1s22s22p63s23p4
Внешний уровень и валентные электроны

Количество электронов на внешнем (валентном) уровне — это число электронов на наивысшем энергетическом уровне, которого достигает элемент. Такие электроны называются валентными: они могут быть спаренными или неспаренными. Иногда
для наглядного представления конфигурацию внешнего уровня записывают отдельно:

  • Углерод — 2s22p2 (4 валентных электрона)
  • Сера -3s23p4 (6 валентных электронов)

Неспаренные валентные электроны способны к образованию химической связи. Их число соответствует количеству связей, которые данный атом может образовать с другими атомами. Таким образом неспаренные валентные электроны тесно связаны с валентностью — способностью атомов образовывать определенное число химических связей.

Валентные электроны углерода и серы

  • Углерод — 2s22p2 (2 неспаренных валентных электрона)
  • Сера -3s23p4 (2 неспаренных валентных электрона)
Тренировка

Потренируйтесь и сами составьте электронную конфигурацию для магния и скандия. Определите число электронов на внешнем (валентном) уровне и число неспаренных
электронов. Ниже будет дано наглядное объяснение этой задаче.

Электронные конфигурации магния и фтора и их валентные электроны

Запишем получившиеся электронные конфигурации магния и скандия:

  • Магний — 1s22s22p63s2
  • Скандий — 1s22s22p63s23p64s23d1

В целом несложная и интересная тема электронных конфигураций отягощена небольшим исключением — провалом электрона, которое только подтверждает общее
правило: любая система стремится занять наименее энергозатратное состояние.

Провал электрона

Провалом электрона называют переход электрона с внешнего, более высокого энергетического уровня, на предвнешний, энергетически более
низкий. Это связано с большей энергетической устойчивостью получающихся при этом электронных конфигураций.

Подобное явление характерно лишь для некоторых элементов: медь, хром, серебро, золото, молибден. Для примера выберем хром, и рассмотрим
две электронных конфигурации: первую «неправильную» (сделаем вид, будто мы не знаем про провал электрона) и вторую правильную, написанную
с учетом провала электрона.

Провал электрона

Теперь вы понимаете, что кроется под явлением провала электрона. Запишите электронные конфигурации хрома и меди самостоятельно еще раз и
сверьте с представленными ниже.

Провал электрона у хрома и меди

Основное и возбужденное состояние атома

Основное и возбужденное состояние атома отражаются на электронных конфигурациях. Возбужденное состояние связано с движением электронов
относительно атомных ядер. Говоря проще: при возбуждении пары электронов распариваются и занимают новые ячейки.

Возбужденное состояние является для атома нестабильным, поэтому долгое время в нем он пребывать не может. У некоторых атомов: азота,
кислорода , фтора — возбужденное состояние невозможно, так как отсутствуют свободные орбитали («ячейки») — электронам некуда перескакивать, к тому
же d-орбиталь у них отсутствует (они во втором периоде).

У серы возможно возбужденное состояние, так как она имеет свободную d-орбиталь, куда могут перескочить электроны. Четвертый энергетический
уровень отсутствует, поэтому, минуя 4s-подуровень, заполняем распаренными электронами 3d-подуровень.

Основное и возбужденное состояние атома

По мере изучения основ общей химии мы еще не раз вернемся к этой теме, однако хорошо, если вы уже сейчас запомните, что возбужденное состояние
связано с распаривание электронных пар.

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

На этой странице вы узнаете 

  • Чем атом похож на Солнечную систему? 
  • Один водород, но три лучше: что такое изотопы?
  • Как умеет скакать электрон?

Атом можно представить как конструктор «Лего», который можно собрать из более простых “элементарных” частиц. У каждого атома число “деталек” может быть различным. Об этом и о других особенностях строения атома поговорим в статье.

Строение атома

Великие ученые и философы древности упорно бились над вопросом, из чего же состоят вещества, которые их окружают. Впервые идею о том, что все тела живой и неживой природы состоят из мельчайших частиц — атомов — высказал древнегреческий ученый Демокрит целых 2500 лет назад! 

Что же из себя представляет атом?

Атом — это мельчайшая химически неделимая частица вещества.

Атомы могут соединяться друг с другом с помощью химических связей в различной последовательности, образуя более сложные частицы — молекулы. Можно провести аналогию: 

  • атом — отдельный человек, 
  • молекулы — группы людей, объединенные общим признаком (семья, одноклассники, коллеги, любители кошек, любители собак).

Молекула — это мельчайшие частицы, которые состоят из атомов. Они являются химически делимыми.

Долгое время считалось, что атом нельзя разделить далее на составляющие. Но с развитием науки учёные-физики выяснили, что атом состоит из более мелких, или элементарных частиц  — протонов (p), нейтронов (n) и электронов (ē). 

В центре атома располагается ядро, которое состоит из протонов и нейтронов (их общее название нуклоны), а вокруг ядра вращаются электроны.

Чем атом похож на Солнечную систему?
Можно представить атом как Солнечную систему, где вокруг ядра (Солнца) по орбитам вращаются электроны (планеты). Это так называемая планетарная модель атома. В реальности атом намного сложнее, но для запоминания нам удобнее пользоваться этими представлениями.

Тогда более точно определение атома будет звучать так:

Атом — электронейтральная химически неделимая частица, которая состоит из положительно заряженного ядра и вращающихся вокруг него отрицательно заряженных электронов.

Каждая из элементарных частиц в атоме имеет свой заряд и массу:

Характеристика элементарных частиц

Из таблички видно, что вся масса атома сосредоточена в протонах и нейтронах, то есть в ядре. При этом само ядро положительно заряжено, а вокруг ядра вращаются отрицательно заряженные электроны. 

В разновидностях одного и того же химического элемента может быть различное число элементарных частиц. Давай рассмотрим это на примере атома водорода. 

Первый случай: ядро атома водорода состоит из одного протона (масса ядра = 1 а.е.м.). Такой атом называется протием, именно он указан в периодической системе Д.И. Менделеева.  

Добавим к этому ядру один нейтрон, тогда масса ядра будет равна 2 а.е.м.. Мы получили вторую разновидность атома водорода — дейтерий

Если добавить второй нейтрон к такому ядру, то мы получим тритий. Так вот, разновидности одного и того же химического элемента, которые различаются числом нейтронов в ядре, называются изотопами.

Один водород, но три лучше: что такое изотопы?

Изотопы — атомы одного химического элемента с разным числом нейтронов: равные заряды ядра, равное число e и p, но разное число n! 

Как определить количество элементарных частиц 

Сейчас мы научимся определять количество протонов, нейтронов и электронов в атоме любого химического элемента. В этом нам поможет периодическая система Д.И. Менделеева

Давай рассмотрим ячейку в периодической системе с углеродом:

В верхней части ячейки располагается порядковый номер элемента (это целое число), под ним располагается относительная атомная масса. Она является нецелым числом, поэтому её легко определять. Относительная атомная масса, округленная до целого числа, называется массовым числом.

Эти характеристики связаны с количеством элементарных частиц в атоме следующим образом:

Порядковый номер элемента = число протонов в ядре = заряд ядра атома = число электронов в атоме

(№ элемента = p = Z = ē)

Число нейтронов = массовое число – порядковый номер

(n = Ar — № элемента)

Давай рассмотрим основные определения и положения, связанные с характеристикой элемента и числовыми операциями:

  • Орбиты, на которых располагаются электроны, называются электронными слоями (или энергетическими уровнями). Нумерация слоев начинается с ближайшего к ядру электронного слоя.
  • На каждом электронном слое может находиться не более 2N2 электронов (где N — номер слоя).
  • Число занятых электронами слоев в атоме элемента совпадает с номером периода, в котором он находится.
  • Последний энергетический уровень называют внешним (максимальное число ē на внешнем уровне = 8). Обычно на нем находятся валентные электроны, то есть электроны на внешней (валентной) оболочке атома.
  • Число валентных электронов, как правило, совпадает с номером группы, в котором находится элемент.

 На примере атома углерода определим количество элементарных частиц в его атоме.

Порядковый номер углерода равен 6, значит, заряд его атома + 6, число протонов и число электронов совпадает и тоже равно 6. 

Относительная атомная масса равна 12,01, а число нейтронов равно 12 – 6 = 6. 

Углерод находится во втором периоде, IV группе. Это показывает нам, что занято лишь 2 электронных слоя, при этом на внешнем электронном уровне располагаются 4 электрона.   

“Грустный” и “веселый” атом

При заполнении электронами ячеек мы описываем так называемое основное состояние. Это такое состояние атома, при котором энергия системы минимальна. Его состояние можно определить как “веселое”: в атоме всё спокойно и в порядке.

Но может быть и другая ситуация, когда на электроны оказывается какое-то воздействие. Тогда происходит процесс, похожий на развод пары в человеческом мире. В результате воздействия те электроны, которые находились на орбитали вдвоем и были спаренными, могут друг с другом “поссориться” и “разъехаться” по разным орбиталям. 

Тогда атом можно определить как “грустный”: электроны ссорятся, атома грустит. В химии это состояние и называется возбужденным. Такой “развод” возможен только в пределах одного энергетического уровня.  

Атомные подуровни заполняются электронами в порядке увеличения их энергии. Этот порядок выглядит следующим образом: 

1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s → … 

Проскок электрона

Как умеет скакать электрон?

Иногда при заполнении энергетических подуровней мы нарушаем порядок заполнения подуровней. В первую очередь, это связано с заполнением s- и d-подуровней . Электрон перемещается с внешнего s- на предвнешний d-подуровень. Так образуется более устойчивая заполненная или полузаполненная конфигурация.
Такое явление называется проскоком электрона: электрон как бы нарушает общую очередь элементов в оболочке и обходит их. 

Это явление характерно для элементов IB и VIB групп, например, Cr, Cu, Ag.

Например, у меди электронная оболочка должна выглядеть как ..3d94s2. Но так как для заполнения d-подуровня не хватает одного электрона, то более выгодной становится ситуация, когда с s-подуровня электрон “перепрыгивает” на внутренний d-подуровень. В результате, конфигурация меди выглядит как 3d104s11

Итог: иметь конфигурации nd5 и nd10 более энергетически выгодно, чем nd4 и nd9. Поэтому у таких элементов, как Cu, Cr, Ag, Au, Nb, Mo, Ru, Pt, Pd происходит проскок (провал) электрона: электрон с верхнего “этажа” как будто проваливается на нижний.

Классификация химических элементов: s-,p-,d-,f-элементы

В зависимости от положения “последнего электрона” бывают s-, p-, d-, f-элементы

  • s-элементы: IA и IIA группы;
  • p-элементы: IIIA-VIIIA группы;
  • d-элементы: элементы побочных подгрупп;
  • f-элементы: вынесены в отдельную группу лантаноидов и актиноидов. 

У s- и p-элементов валентные электроны находятся на внешнем уровне.

У d-элементов  — на внешнем s- и на предвнешнем d-подуровнях. 

Далее приведены электронные формулы атомов элементов первых четырех периодов. Благодаря этой шпаргалке всегда можно сверить свой вариант электронной конфигурации и проверить себя.

Продолжение темы читайте в статье «Строение атома и электронные конфигурации 2.0».

Фактчек

  • Атом — электронейтральная частица, состоящая из ядра и вращающихся вокруг него электронов.
  • Электроны располагаются на электронных подуровнях, причем их число определяется порядковым номером элемента.
  • Существует группа атомов одного и того же химического элемента, у которых имеется разное число нейтронов. Такие элементы называют изотопами.
  • Электроны располагаются по ячейкам так, чтобы энергия системы была минимальна.
  • Иногда для достижения минимума энергии некоторые правила нарушаются — таковым является проскок электрона.

Проверь себя 

Задание 1.

Ядро атома состоит из: 

  1. Протонов и нейтронов
  2. Протонов и электронов
  3. Нейтронов и электронов
  4. Протонов, нейтронов и электронов 

Задание 2.

У изотопов различается число: 

  1. Протонов
  2. Нейтронов
  3. Электронов
  4. Нейтронов и электронов

Задание 3. 

Проскок электрона характерен для элемента: 

  1. Натрия
  2. Алюминия
  3. Ксенона
  4. Меди

Задание 4.

На третьем электронном слое может находиться максимально:

  1. 8 электронов
  2. 18 электронов
  3. 2 электрона
  4. 32 электрона

Ответы: 1. —  1; 2. — 2; 3. — 4; 4. — 2.

Темы кодификатора ЕГЭ: Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы. Электронная конфигурация атомов и ионов. Основное и возбужденное состояние атомов.

Тренировочные тесты в формате ЕГЭ по теме «Строение атома» (задание 1 ЕГЭ по химии) ( с ответами)

Одну из первых моделей строения атома — «пудинговую модель» — разработал Д.Д. Томсон в 1904 году. Томсон открыл существование электронов, за что и получил Нобелевскую премию. Однако наука на тот момент не могла объяснить существование этих самых электронов в пространстве. Томсон предположил, что атом состоит из отрицательных электронов, помещенных в равномерно заряженный положительно «суп», который компенсирует заряд электронов (еще одна аналогия — изюм в пудинге). Модель, конечно, оригинальная, но неверная. Зато модель Томсона стала отличным стартом для дальнейших работ в этой области.

И дальнейшая работа оказалась эффективной. Ученик Томсона, Эрнест Резерфорд, на основании опытов по рассеянию альфа-частиц на золотой фольге предложил новую, планетарную модель строения атома.

Согласно модели Резерфорда, атом состоит из массивного, положительно заряженного ядра и частиц с небольшой массой — электронов, которые, как планеты вокруг Солнца, летают вокруг ядра, и на него не падают.

Модель Резерфорда оказалась следующим шагом в изучении строения атома. Однако современная наука использует более совершенную модель, предложенную Нильсом Бором в 1913 году. На ней мы и остановимся подробнее.

Атом — это мельчайшая, электронейтральная, химически неделимая частица вещества, состоящая из положительно заряженного ядра и отрицательно заряженной электронной оболочки.

При этом электроны двигаются не по определенной орбите, как предполагал Резерфорд, а довольно хаотично. Совокупность электронов, которые двигаются вокруг ядра, называется электронной оболочкой.

Атомное ядро, как доказал Резерфорд — массивное и положительно заряженное, расположено в центральной части атома. Структура ядра довольно сложна, и изучается в ядерной физике. Основные частицы, из которых оно состоит — протоны и нейтроны. Они связаны ядерными силами (сильное взаимодействие).

Рассмотрим основные характеристики протонов, нейтронов и электронов:

Протон Нейтрон Электрон
Масса 1,00728 а.е.м. 1,00867 а.е.м. 1/1960 а.е.м.
Заряд + 1 элементарный заряд 0 — 1 элементарный заряд

1 а.е.м. (атомная единица массы) = 1,66054·10-27 кг

1 элементарный заряд = 1,60219·10-19 Кл

И — самое главное. Периодическая система химических элементов, структурированная Дмитрием Ивановичем Менделеевым, подчиняется простой и понятной логике: номер атома — это число протонов в ядре этого атома. Причем ни о каких протонах Дмитрий Иванович в XIX веке не слышал. Тем гениальнее его открытие и способности, и научное чутье, которое позволило перешагнуть на полтора столетия вперёд  в науке.

Следовательно, заряд ядра Z равен числу протонов, т.е. номеру атома в Периодической системе химических элементов. 

Атом — это электронейтральная частица, следовательно, число протонов равно числу электронов: Ne = Np = Z.

Масса атома (массовое число A) примерно равна суммарной массе крупных частиц, которые входят в состав атома — протонов и нейтронов. Поскольку масса протона и нейтрона примерно равна 1 атомной единице массы, можно использовать формулу:

M = Np + Nn

Массовое число указано в Периодической системе химических элементов в ячейке каждого элемента.

Обратите внимание! При решении задач ЕГЭ массовое число всех атомов, кроме хлора, округляется до целого по правилам математики. Массовое число атома хлора в ЕГЭ принято считать равным 35,5.

Таким образом, рассчитать число нейтронов в атоме можно, вычтя из массового числа номер атома: Nn = M – Z.

В Периодической системе собраны химические элементы — атомы с одинаковым зарядом ядра. Однако, может ли меняться у этих атомов число остальных частиц? Вполне. Например, атомы с разным числом нейтронов называют изотопами данного химического элемента. У одного и того же элемента может быть несколько изотопов.

Попробуйте ответить на вопросы. Ответы на них — в конце статьи:

  1. У изотопов одного элемента массовое число одинаковое или разное?
  2. У изотопов одно элемента число протонов одинаковое или разное?

Химические свойства атомов определяются строением электронной оболочки и зарядом ядра. Таким образом, химические свойства изотопов одного элемента практически не отличаются.

Поскольку атомы одного элемента могут существовать в форме разных изотопов, в названии часто указывается массовое число, например, хлор-35, и принята такая форма записи атомов:

Еще немного вопросов:

3. Определите количество нейтронов, протонов и электронов в изотопе брома-81.

4. Определите число нейтронов в изотопе хлора-37.

Строение  электронной оболочки

Согласно квантовой модели строение атома Нильса Бора, электроны в атоме могут двигаться только по определенным (стационарным) орбитам, удаленным от ядра на определенное расстояние и характеризующиеся определенной энергией. Другое название стационарны орбит — электронные слои или энергетические уровни.

Электронные уровни можно обозначать цифрами — 1, 2, 3, …, n. Номер слоя увеличивается мере удаления его от ядра. Номер уровня соответствует главному квантовому числу n.

В одном слое электроны могут двигаться по разным траекториям. Траекторию орбиты характеризует электронный подуровень. Тип подуровня характеризует орбитальное квантовое число l = 0,1, 2, 3 …, либо соответствующие буквы — s, p, d, g и др.

В рамках одного подуровня (электронных орбиталей одного типа) возможны варианты расположения орбиталей в пространстве. Чем сложнее геометрия орбиталей данного подуровня, тем больше вариантов их расположения в пространстве. Общее число орбиталей подуровня данного типа l можно определить по формуле: 2l+1. На каждой орбитали может находиться не более двух электронов.

Тип орбитали s p d f g
Значение орбитального квантового числа l 0 1 2 3 4
Число атомных орбиталей данного типа 2l+1 1 3 5 7 9
Максимальное количество электронов на орбиталях данного типа 2 6 10 14 18

Получаем сводную таблицу:

Номер уровня, n

Подуровень Число

АО

Максимальное количество электронов
1 1s 1   2
2 2s 1     2
2p 3   6

3

3s 1   2
3p 3   6
3d 5  10

4

4s 1    2
4p 3     6
4d 5 10
4f 7

 14

Заполнение электронами энергетических орбиталей происходит согласно некоторым основным правилам. Давайте остановимся на них подробно.

Принцип Паули (запрет Паули): на одной атомной орбитали могут находиться не более двух электронов с противоположными спинами (спин — это квантовомеханическая характеристика движения электрона).

Правило Хунда. На атомных орбиталях с одинаковой энергией электроны располагаются по одному с параллельными спинами. Т.е. орбитали одного подуровня заполняются так: сначала на каждую орбиталь распределяется по одному электрону. Только когда во всех орбиталях данного подуровня распределено по одному электрону, занимаем орбитали вторыми электронами, с противоположными спинами.

Таким образом, сумма спиновых квантовых чисел таких электронов на одном энергетическом подуровне (оболочке) будет максимальной.

Например, заполнение 2р-орбитали тремя электронами будет происходить так: , а не так: 

Принцип минимума энергии. Электроны заполняют сначала орбитали с наименьшей энергией. Энергия атомной орбитали эквивалентна сумме главного и орбитального квантовых чисел: n + l. Если сумма одинаковая, то заполняется первой та орбиталь, у которой меньше главное квантовое число n.

АО 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g
n 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5
l 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4
n + l 1 2 3 3 4 5 4 5 6 7 5 6 7 8 9

Таким образом, энергетический ряд орбиталей выглядит так:

1s < 2s < 2 p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f~5d < 6p < 7s <5f~6

Электронную структуру атома можно представлять в разных формах — энергетическая диаграмма, электронная формула и др. Разберем основные.

Энергетическая диаграмма атома — это схематическое изображение орбиталей с учетом их энергии. Диаграмма показывает расположение электронов на энергетических уровнях и подуровнях. Заполнение орбиталей происходит согласно квантовым принципам.

Например, энергетическая диаграмма для атома углерода:

Электронная формула — это запись распределения электронов по орбиталям атома или иона. Сначала указывается номер уровня, затем тип орбитали. Верхний индекс справа от буквы показывает число электронов на орбитали. Орбитали указываются в порядке заполнения. Запись 1s2 означает, что на 1 уровне s-подуровне расположено 2 электрона.

Например, электронная формула углерода выглядит так: 1s22s22p2.

Для краткости записи, вместо энергетических орбиталей, полностью заполненных электронами, иногда используют символ ближайшего благородного газа (элемента VIIIА группы), имеющего соответствующую  электронную конфигурацию.

Например, электронную формулу азота можно записать так: 1s22s22p3 или так: [He]2s22p3.

1s2 = [He]

1s22s22p6 = [Ne]

1s22s22p63s23p= [Ar] и так далее.

Электронные формулы элементов первых четырех периодов

Рассмотрим заполнение электронами оболочки элементов первых четырех периодов. У водорода заполняется самый первый энергетический уровень, s-подуровень, на нем расположен 1 электрон:

+1H 1s1      1s 

У гелия 1s-орбиталь полностью заполнена:

+2He 1s2      1s  

Поскольку первый энергетический уровень вмещает максимально 2 электрона, у лития начинается заполнение второго энергетического уровня, начиная с орбитали с минимальной энергией — 2s. При этом сначала заполняется первый энергетический уровень:

+3Li 1s22s1      1s     2s 

У бериллия 2s-подуровень заполнен:

+4Be 1s22s2      1s    2s 

Далее, у бора заполняется p-подуровень второго уровня:

+5B 1s22s22p1      1s    2s     2p 

У следующего элемента, углерода, очередной электрон, согласно правилу Хунда, заполняет вакантную орбиталь, а не заполняет частично занятую:

+6C 1s22s22p2      1s    2s     2p 

Попробуйте составить электронную и электронно-графическую формулы для следующих элементов, а затем можете проверить себя  по ответам конце статьи:

5. Азот

6. Кислород

7. Фтор

У неона завершено заполнение второго энергетического уровня: 

+10Ne 1s22s22p6      1s    2s     2p 

У натрия начинается заполнение третьего энергетического уровня:

+11Na 1s22s22p63s1      1s    2s     2p      3s 

От натрия до аргона заполнение 3-го уровня происходит в том же порядке, что и заполнение 2-го энергетического уровня. Предлагаю составить электронные формулы элементов от магния до аргона самостоятельно, проверить по ответам.

8. Магний

9. Алюминий

10. Кремний

11. Фосфор

12. Сера

13. Хлор

14. Аргон

А вот начиная с 19-го элемента, калия, иногда начинается путаница — заполняется не 3d-орбиталь, а 4s. Ранее мы упоминали в этой статье, что заполнение энергетических уровней и подуровней электронами происходит по энергетическому ряду орбиталей, а не по порядку. Рекомендую повторить его еще раз. Таким образом, формула калия:

+19K 1s22s22p63s23p64s11s 2s 2p3s 3p4s

Для записи дальнейших электронных формул в статье будем использовать сокращенную форму:

 +19K   [Ar]4s1    [Ar] 4s 

У кальция 4s-подуровень заполнен:

+20Ca   [Ar]4s2    [Ar] 4s

У элемента 21, скандия, согласно энергетическому ряду орбиталей, начинается заполнение 3d-подуровня:

+21Sc   [Ar]3d14s2    [Ar] 4s    3d 

Дальнейшее заполнение 3d-подуровня происходит согласно квантовым правилам, от титана до ванадия:

+22Ti   [Ar]3d24s2    [Ar] 4s    3d

+23V   [Ar]3d34s2      [Ar] 4s    3d 

Однако, у следующего элемента порядок заполнения орбиталей нарушается. Электронная конфигурация хрома такая:

+24Cr   [Ar]3d54s1      [Ar] 4s  3d 

В чём же дело? А дело в том, что при «традиционном» порядке заполнения орбиталей (соответственно, неверном в данном случае — 3d44s2) ровно одна ячейка в d-подуровне оставалась бы незаполненной. Оказалось, что такое заполнение энергетически менее выгодно. А более выгодно, когда d-орбиталь заполнена полностью, хотя бы единичными электронами. Этот лишний электрон переходит с 4s-подуровня. И небольшие затраты энергии на перескок электрона с 4s-подуровня с лихвой покрывает энергетический эффект от заполнения всех 3d-орбиталей. Этот эффект так и называется — «провал» или «проскок» электрона. И наблюдается он, когда d-орбиталь недозаполнена на 1 электрон (по одному электрону в ячейке или по два).

У следующих элементов «традиционный» порядок заполнения орбиталей снова возвращается. Конфигурация марганца:

+25Mn   [Ar]3d54s2

Аналогично у кобальта и никеля. А вот у меди мы снова наблюдаем провал (проскок) электрона — электрон опять проскакивает с 4s-подуровня на 3d-подуровень:

+29Cu   [Ar]3d104s1

На цинке завершается заполнение 3d-подуровня:

+30Zn   [Ar]3d104s2

У следующих элементов, от галлия до криптона, происходит заполнение 4p-подуровня по квантовым правилам. Например, электронная формула галлия:

+31Ga   [Ar]3d104s24p1

Формулы остальных элементов мы приводить не будем, можете составить их самостоятельно.

Некоторые важные понятия:

Внешний энергетический уровень — это энергетический уровень в атоме с максимальным номером, на котором есть электроны.

Например, у меди   ([Ar]3d104s1) внешний энергетический уровень — четвёртый.

Валентные электроны — электроны в атоме, которые могут участвовать в образовании химической связи. Например, у хрома (+24Cr   [Ar]3d54s1) валентными являются не только электроны внешнего энергетического уровня (4s1), но и неспаренные электроны на 3d-подуровне, т.к. они могут образовывать химические связи.

Основное и возбужденное состояние атома

Электронные формулы, которые мы составляли до этого, соответствуют основному энергетическому состоянию атома. Это наиболее выгодное энергетически состояние атома.

Однако, чтобы образовывать химические связи, атому в большинстве ситуаций необходимо наличие неспаренных (одиночных) электронов.  А химические связи энергетически очень для атома выгодны. Следовательно, чем больше в атоме неспаренных электронов  — тем больше связей он может образовать, и, как следствие, перейдёт в более выгодное энергетическое состояние.

Поэтому при наличии свободных энергетических орбиталей на данном уровне спаренные пары  электронов могут распариваться, и один из электронов спаренной пары может переходить на вакантную орбиталь. Таким образом число неспаренных электронов увеличивается, и атом может образовать больше химических связей, что очень выгодно с точки зрения энергии. Такое состояние атома называют возбуждённым и обозначают звёздочкой.

Например, в основном состоянии бор имеет следующую конфигурацию энергетического уровня:

+5B 1s22s22p1      1s    2s     2p 

На втором уровне (внешнем) одна спаренная электронная пара, один одиночный электрон и пара свободных (вакантных) орбиталей. Следовательно, есть возможность для перехода электрона из пары на вакантную орбиталь, получаем возбуждённое состояние атома бора (обозначается звёздочкой):

+5B* 1s22s12p2      1s    2s     2p

Попробуйте самостоятельно составить электронную формулу, соответствующую возбуждённому состоянию атомов. Не забываем проверять себя по ответам!

15. Углерода

16. Бериллия

17. Кислорода

Электронные формулы ионов

Атомы могут отдавать и принимать электроны. Отдавая или принимая электроны, они превращаются в ионы.

Ионы — это заряженные частицы. Избыточный заряд обозначается индексом в правом верхнем углу.

Если атом отдаёт электроны, то общий заряд образовавшейся частицы будет положительный (вспомним, что число протонов в атоме равно числу электронов, а при отдаче электронов число протонов будет больше числа электронов). Положительно заряженные ионы — это катионы. Например: катион натрия образуется так:

+11Na 1s22s22p63s1      -1е = +11Na+ 1s22s22p63s0

Если атом принимает электроны, то приобретает отрицательный заряд. Отрицательно заряженные частицы — это анионыНапример, анион хлора образуется так:

+17Cl 1s22s22p63s23p5   +1e = +17Cl 1s22s22p63s23p6

Таким образом, электронные формулы ионов можно получить добавив или отняв электроны у атома. Обратите внимание, при образовании катионов электроны уходят с внешнего энергетического уровня. При образовании анионов электроны приходят на внешний энергетический уровень.

Попробуйте составить самостоятельно электронный формулы ионов. Не забывайте проверять себя по ключам!

18. Ион Са2+

19. Ион S2-

20. Ион Ni2+

В некоторых случаях совершенно разные атомы образуют ионы с одинаковой электронной конфигурацией. Частицы с одинаковой электронной конфигурацией и одинаковым числом электронов называют изоэлектронными частицами.

Например, ионы Na+ и F.

Электронная формула катиона натрия: Na+   1s22s22p6, всего 10 электронов.

Электронная формула аниона фтора: F   1s22s22p6, всего 10 электронов.

Таким образом, ионы Na+ и F — изоэлектронные. Также они изоэлектронны атому неона.

Тренажер по теме «Строение атома» — 10 вопросов, при каждом прохождении новые.

280

Создан на
03 января, 2022 От Admin

Тренировочный тест «Строение атома»

Тренировочный тест по теме «Строение атома»

1 / 10

1) P   2) S   3) Ba   4) Ti   5) F

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют сходную конфигурацию внешнего энергетического уровня.

2 / 10

1) Fe   2) B   3) Li   4) C   5) He

Определите элементы, атомы которых в основном состоянии имеют электронную формулу внешнего энергетического уровня ns2.

3 / 10

1) Li   2) P   3) B   4) Cu   5) N

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют электронную формулу внешнего энергетического уровня ns1.

4 / 10

1) B   2) Cr   3) Sn   4) C   5) N

Определите элементы, атомы которых в основном состоянии содержат на внешнем уровне один неспаренный электрон.

5 / 10

1) Be   2) O   3) Cl   4) Mn   5) N

Определите элементы, атомы которых в основном состоянии имеют одинаковое число электронов во внешнем слое.

6 / 10

1) Cr   2) P   3) Al   4) Mn   5) S

Определите, атомы каких из указанных в ряду элементов в основном состоянии содержат одинаковое число неспаренных d-электронов.

7 / 10

1) Si   2) Se   3) Mg   4) C   5) S

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют электронную конфигурацию внешнего энергетического уровня ns2np4.

8 / 10

1) Ar   2) Mg   3) Cu   4) Zn   5) P

Определите, атомы каких из указанных в ряду элементов в основном состоянии содержат максимальное число неспаренных электронов.

9 / 10

1) Sc   2) F   3) N   4) C   5) Ca

Определите элементы, атомы которых в основном состоянии содержат одинаковое число неспаренных электронов.

10 / 10

1) Mn   2) Fe   3) Al   4) Si   5) P

Определите элементы, атомы которых в основном состоянии не содержат неспаренных электронов на внешнем энергетическом уровне.

Ваша оценка

The average score is 33%

Ответы на вопросы:

1. У изотопов одного химического элемента массовое число всегда разное, т.к. массовое число складывается из числа протонов и нейтронов. А у изотопов различается число нейтронов.

2. У изотопов одного элемента число протонов всегда одинаковое, т.к. число протонов характеризует химический элемент.

3. Массовое число изотопа брома-81 равно 81. Атомный номер = заряд ядра брома = число протонов в ядре = 35. Вычитаем из массового числа число протонов, получаем 81-35=46 нейтронов.

4. Массовое число изотопа хлора равно 37. Атомный номер, заряд ядра и число протонов в ядре равно 17. Получаем число нейтронов = 37-17 =20.

5. Электронная формула азота:

+7N 1s22s22p3      1s    2s     2p 

6. Электронная формула кислорода:

+8О 1s22s22p1s  2s  2p 

7. Электронная формула фтора:

8. Электронная формула магния:

+12Mg 1s22s22p63s2      1s    2s     2p      3s

9. Электронная формула алюминия:

+13Al 1s22s22p63s23p1     1s    2s   2p    3s   3p 

10. Электронная формула кремния:

+14Si 1s22s22p63s23p2     1s    2s   2p    3s   3p

11. Электронная формула фосфора:

+15P 1s22s22p63s23p3     1s    2s   2p    3s   3p

12. Электронная формула серы:

+16S 1s22s22p63s23p4     1s    2s   2p    3s   3p

13. Электронная формула хлора:

14. Электронная формула аргона:

+18Ar 1s22s22p63s23p6     1s    2s   2p    3s   3p

15. Электронная формула углерода в возбуждённом состоянии:

+6C* 1s22s12p3   1s    2s     2p

16. Электронная формула бериллия в возбуждённом состоянии:

+4Be 1s22s12p1      1s    2s    2p 

17. Электронная формула кислорода в возбуждённом энергетическом состоянии соответствует формуле кислорода в основном энергетическом состоянии, т.к. нет условий для перехода электрона — отсутствуют вакантные энергетические орбитали.

18. Электронная формула иона кальция Са2++20Ca2+   1s22s22p63s23p6 

19. Электронная формула аниона серы S2-+16S2- 1s22s22p63s23p6

20. Электронная формула катиона никеля Ni2++28Ni2+  1s22s22p63s23p63d84s0. Обратите внимание! Атомы отдают электроны всегда сначала с внешнего энергетического уровня. Поэтому никель отдаёт электроны сначала с внешнего 4s-подуровня.

Тренировочные тесты в формате ЕГЭ по теме «Строение атома» (задание 1 ЕГЭ по химии) ( с ответами)

  • Курс

Меня зовут Быстрицкая Вера Васильевна.
Я репетитор по Химии

[[pictureof]]

Вам нужны консультации по Химии по Skype?
Если да, подайте заявку. Стоимость договорная.
Чтобы закрыть это окно, нажмите «Нет».

Атом (греч: atomos – неделимый) – химически неделимая нейтральная частица вещества, состоящая из положительно заряженного ядра и отрицательно заряженной электронной оболочки. 

Атомное ядро – состоит из нуклонов (лат. nucleus ядро ): протонов (греч. protos – первый) и нейтронов (греч. neitrum – ни то, ни другое). 

Электронная оболочка – совокупность движущихся вокруг ядра отрицательно заряженных электронов. 

Протон (p⁺) —  частица в составе ядра, имеет положительный заряд, относительную массу 1, 0073. 

Число протонов равно порядковому номеру и обозначается  Z – заряд ядра.

Нейтрон (n⁰) – частица в составе ядра. Не имеет заряда.  Относительная масса 1,0087. 

Число нейтронов обозначается буквой N. Может меняться  в атомах одного и того же элемента.

Электрон  (е) – частица в составе электронной оболочки. Имеет отрицательный заряд, равный по величине, но противоположный по знаку заряду протона. Масса электрона примерно в 2000 раз меньше массы протона и практически не влияет на массу атома.

Так как атом — электронейтральная частица, то число протонов  равно числу электронов
(число р⁺ = числу е): 

                                                N(e)  = N(p⁺)  =  Z

Массовое число А (относительная атомная масса)   складывается из числа протонов и нейтронов в ядре данного атома. 

Число нейтронов равно разности массового числа и  заряда ядра. 

                                                           А = N(p⁺) + N(nº)

                                                             N(nº) = A – Z 





Строение атома





Планетарная модель атома

Химический элемент – вид атомов с определѐнным  зарядом ядра (количеством протонов). 

Количество протонов неизменно, количество нейтронов может меняться.

Атомы с одинаковым зарядом ядра (количеством протонов), но разным числом нейтронов в ядре, т.е. разной  массой, называются изотопами (нуклидами). 

 Один и тот же элемент может существовать в виде двух или нескольких изотопов. Все изотопы одного и того же элемента химически неотличимы. 

Электронное строение атома

Электрон — уникальная элементарная частица: обладая свойствами, отличающими его от всех других частиц, он одновременно является и частицей, и волной, т.е. имеет двойственную природу.
 

С одной стороны, обладая малой массой, электрон проявляет свойства частицы. С другой стороны, электрон движется с такой высокой скоростью, что фактически «размазан» по атому, он находится не в одной конкретной точке, а образует «электронное облако».

Пространство вокруг ядра, в котором наиболее вероятно нахождение электрона называется электронной орбиталью.

 КВАНТОВЫЕ ЧИСЛА

Состояние  электрона в атоме описывается 4 квантовыми числами:

  • Главное квантовое число n;
  • Побочное (орбитальное) квантовое число l;
  • Магнитное квантовое число ml;
  • Спиновое квантовое число ms.
  • ГЛАВНОЕ КВАНТОВОЕ ЧИСЛО — n.

Главное квантовое число — n — определяет энергетический уровень электрона (равно номеру периода). 

Главное квантовое число принимает любые целочисленные значения, начиная с n=1 (n=1,2,3,…) и соответствует номеру периода.

  • ОРБИТАЛЬНОЕ КВАНТОВОЕ ЧИСЛО l

Определяет геометрическую форму атомной орбитали. Принимает любые целочисленные значения с  l = 0  (l = n -1) 

  • МАГНИТНОЕ КВАНТОВОЕ ЧИСЛО 

определяет ориентацию орбитали в пространстве (ml). Принимает любые целочисленные значения от -1 до +1, включая 0. 

( ml = 2l +1)

Для s-орбитали:

l=0, ml= 1(0) — одна равноценная ориентация в пространстве (одна орбиталь).

Для p-орбитали:

l=1, ml= 3 (-1,0,+1) — три равноценные ориентации в пространстве (три орбитали).

Для d-орбитали:

l=2, ml= 5 (-2,-1,0,1,2) — пять равноценных ориентаций в пространстве (пять орбиталей).

Для f-орбитали:

l=3, ml= 7 (-3,-2,-1,0,1,2,3) — семь равноценных ориентаций в пространстве (семь орбиталей).

  • СПИНОВОЕ КВАНТОВОЕ ЧИСЛО – ms

На каждой орбитали могут максимально размещаться два электрона,  обладающие равной энергией, но отличающиеся особым свойством, спином.

 Графически орбиталь принято изображать в виде квадрата,  а электроны — в виде стрелок, направленных вверх или вниз. 

Стрелки, направленные в противоположные стороны, означают электроны  с двумя противоположными спинами.

Следовательно, электроны в электронной оболочке занимают определенные 

 уровни (дом), 

 подуровни (этаж), 

 орбитали (квартира).

Подуровни  состоят из одной или нескольких одинаковых по энергии орбиталей. 

На каждой орбитали может быть не больше двух электронов. 

На

s-подуровне (одна орбиталь) могут находиться два электрона,

p-подуровне (три орбитали) — шесть электронов , 

d-подуровне (пять орбиталей) — десять электронов.

Элементы, у которых последним заполняется s-подуровень, называются   s –элементами, p-подуровень —  p –элементами,  d-подуровень  — d –элементами. 

ПРИНЦИПЫ ПОСТРОЕНИЯ ЭЛЕКТРОННОЙ КОНФИГУРАЦИИ ЭЛЕМЕНТА

Количество электронов в атоме элемента равно его порядковому номеру.

Количество энергетических уровней атома равно номеру периода, в котором расположен элемент.

Количество электронов на внешнем (валентном) уровне равно номеру группы, в которой расположен элемент.

При более подробном описании электронной конфигурации рассматривают не только количество электронов на данном энергетическом уровне, но и их распределение по подуровням.  Каждая незаполненная орбиталь обозначается пустым квадратиком. 

При заполнении орбиталей электронами используют следующие правила.

1. ПРИНЦИП МИНИМУМА ЭНЕРГИИ

Орбитали заполняются в порядке увеличения энергии, снизу вверх. Каждый электрон располагается так, чтобы его энергия была минимальной, т. е. среди свободных орбиталей он выбирает орбиталь с самой низкой энергией.

Порядок заполнения энергетических подуровней (см. рис.) можно запомнить в виде ряда:
 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d » 4f < 6p < 7s….

2. ПРИНЦИП ПАУЛИ

На каждой орбитали может находиться не более двух электронов.  Если два электрона находятся на одной орбитали, то они обладают противоположными спинами (стрелки направлены в разные стороны). Такие электроны называют спаренными. Если на орбитали находится только один электрон, то его называют неспаренным.

3. ПРАВИЛО ХУНДА (ГУНДА)

Атом в основном состоянии должен иметь максимально возможное число неспаренных электронов в пределах определенного подуровня.

4s-орбиталь обладает меньшей энергией, чем  3d-орбиталь, поэтому  в первую очередь электроны заполнят 4s-подуровень и лишь затем 3d-подуровень. 

Для удобства запоминания порядка заполнения энергетических подуровней лучше воспользоваться следующей схемой: в каждой отдельной строке написать возможные типы орбиталей для каждого уровня, провести стрелки под углом 450 и «расселять» электроны по подуровням, ориентируясь по стрелкам сверху вниз.

ЗАПИСЬ ЭЛЕКТРОННОЙ КОНФИГУРАЦИИ АТОМА

Подробные электронные конфигурации атомов изображают двумя способами:

  • графически, с помощью квадратиков со стрелками (часто называют энергетическими диаграммами);
  • в строчку, когда перечисляются все занятые энергетические подуровни с указанием общего числа электронов на каждом из них.

Последовательность заполнения орбиталей и максимальное число электронов на каждом подуровне:

ПРОСКОК» ИЛИ «ПРОВАЛ» ЭЛЕКТРОНА

У атомов  Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, Pt, Au  имеет место «провал» электрона с s-подуровня внешнего слоя на d-подуровень предыдущего слоя, что приводит к энергетически более устойчивому состоянию атома. 

ВОЗБУЖДЕННОЕ СОСТОЯНИЕ АТОМА

Все электронные конфигурации, о которых мы говорили выше, являются конфигурациями с наименьшей  энергией и соответствуют основному состоянию атома.

Получив энергию извне (облучение или нагревание системы), один либо несколько электронов могут переходить на более высокий энергетический подуровень.

Состояние атома, при котором электрон из электронной пары с предыдущего подуровня «распаривается» и переходит на следующий подуровень, называется возбужденным состоянием атома.

ВАЛЕНТНЫЕ ВОЗМОЖНОСТИ

Валентность  атома определяется числом неспаренных электронов. 

При наличии свободных орбиталей  электроны атома могут распариваться, перескакивать на на другой подуровень, т.е.  атом переходит в возбужденное состояние, поэтому валентность может быть постоянной и переменной.  При этом число неспаренных электронов, а, следовательно, число связей, образуемых атомом, увеличивается.

Высшая валентность всегда равна номеру группы. 

Для определения низшей переменной валентности (количества свободных электронов) , которой чаще всего обладают неметаллы, необходимо из 8 вычесть номер группы.

Валентность зависит:

1.  От  количества электронов  на внешнем уровне

2. От количества свободных неспаренных электронов

3. От наличия свободных орбиталей

Электронные формулы ионов 

Ионы – заряженные частицы, они получаются из атомов путем отдачи электронов (тогда образуются катионы) или принятия электронов (образуются анионы). 

Примеры: 

S2- (16+2=18е) 

P3+ (15-3=12е) 

Na+ (11-1=10е) 

Электронная формула иона получается путем добавления или вычитания электронов из электронной формулы атома ( до инертной оболочки – 8е). 





1(Б) Тесты ЕГЭ ФИПИ 2015 к теме «Строение атома»

Строение электронной оболочки

Строение атома:

  • Атом состоит из ядра и электронной оболочки;

  • Ядра атомов заряжены положительно, они состоят из протонов p+ и нейтронов n0 (вместе носят название нуклоны);

  • При образовании положительно заряженного иона количество электронов уменьшается (на величину заряда данного иона), а при образовании отрицательно заряженного иона количество электронов увеличивается (на величину заряда данного иона).

Атомы одного элемента, которые имеют разные массовые числа, называются изотопами (изотопы содержат одинаковое число протонов, но разное число нейтронов).

Электронная оболочка это совокупность всех электронов в данном атоме.

Орбиталь — часть атомного пространства, в которой вероятность нахождения электрона наибольшая (s-, p-, d-, и f-).

Орбитали различаются по форме и энергии. Каждая орбиталь обозначается цифрой и латинской буквой. Цифра указывает энергию (энергетический уровень, т. е на сколько далеко орбиталь находится от ядра), а буква ― форму орбитали.

При этом s-орбиталь имеет форму шара, p-орбиталь имеет форму гантели или объемной восьмерки, формы d- и f-орбиталей значительно сложнее.

Каждый элемент стоит в определенном периоде. Период представляет собой совокупность элементов, расположенных в порядке возрастания заряда ядер их атомов (от щелочных металлом, заканчивая инертным газом). Номер периода означает, сколько энергетических уровней имеется в атоме любого элемента данного периода.

Например, элемент хлор Cl находится в 3 периоде, то есть его электронная оболочка имеет три энергетических уровня.

Одинаковые по форме и энергии орбитали объединяются в подуровни. s — подуровень состоит из одной s — орбитали, p — подуровень — из трех р — орбиталей, d — подуровень из пяти d — орбиталей.

Энергетический уровень — совокупность орбиталей, которые имеют одинаковое значение главного квантового числа.

На каждой орбитали может находится не более двух электронов. Поэтому максимальное число электронов на s-подуровне ―2, на р ― 6, на d ― 10, на f – 14.

Электронная конфигурация криптона (последнего элемента 4 периода) записывается следующим образом: 1s22s22p63s23p64s23d104p6.

Подуровень, на котором заканчивается заполнение электронов, определяет принадлежность этого элемента к некоторому семейству. Так, если последним заполняется s-подуровень, то элемент относится к s -элементам, p-подуровень – p –элементы и т.д.

При заполнения электронных оболочек в первую очередь заполняются более низкие, ближайшие к ядру уровни и подуровни (от 1s-орбитали и далее) ― принцип минимума энергии. Порядок заполнения подуровней нужно запомнить!

Суммарная энергия всех электронов атома должна быть минимальной. Если это так, то такое состояние атома называется основным или невозбужденным. Это устойчивое состояние атома. Любое другое состояние атома называется возбужденным.

Для ЕГЭ тебе необходимо ещё знать элементы, у которых есть проскок электрона, к счастью, их только 5:

Элемент Атомная валентная зона
теоретическая Практическая
Cu 3d94s2 3d104s1
Ag 4d95s2 4d105s1
Au 5d96s2 5d106s1
Cr 3d44s2 3d54s1
Mo 4d45s2 4d55s1

Раз, два, три, четыре, пять —

Начинаю я считать:

Хром, медь, серебро.

Золото! А что ещё?

Не забудьте символ Мо,

И, пожалуй, это все!

Все эти элементы знамениты тем,

Что проскок электрона у них известен всем!

Неметаллы

Понятие «металл» нам привычно с детства. Металлическая посуда, металлические игрушки, железо, алюминий, медь – обо всём этом мы слышали ещё задолго до изучения химии. Каждый понимает, как выглядят металлы, в каком они агрегатном состоянии, какими свойствами обладают. Почему же с неметаллами так не работает? Почему мы о них узнаем только на уроках химии? Дело в том, что неметаллов просто напросто меньше, и к тому же они чаще всего присутствуют в виде соединений. 

Так что же мы знаем про неметаллы? 

1. К неметаллам можно отнести меньшую часть химических элементов таблицы Менделеева.

2. Количество электронов у атомов неметаллов на внешнем уровне – от трёх до семи. Значит, неметаллы могут как отдавать, так и принимать электроны, образуя устойчивые ионы ( с полностью пустым или завершенным внешним уровнем).

C⁰ – 4e → C⁺  (1s²2s⁰2p⁰)

C⁰ + 4e → C⁻ (1s²2p⁶)

3. Если элемент отдает электроны, он – восстановитель, а если принимает – окислитель. Значит неметаллы – и окислители, и восстановители

4. Чем ближе элемент ко Фтору (F), тем выше его неметаллические и окислительные свойства. Дело в том, что когда мы движемся ко Фтору (F) (вверх по таблице), уменьшается количество электронных слоев. А чем ближе электрон находится к ядру, тем сложнее элементу его отдать. Значит, неметаллы с большей вероятностью принимают электроны. Среди неметаллов хороший окислитель – Кислород (O₂), а хороший восстановитель – Углерод (C).

5. Чем ближе элемент ко Фтору (F), тем меньше радиус атома. С уменьшением количества электронных слоёв уменьшается радиус атома. Однако чем больше электронов у атома на внешнем уровне, тем меньше его радиус: Rат(P) > Rат(Cl).

6. Между атомами неметаллов реализуется ковалентная связь: полярная (H₂O), неполярная (H₂) или оба вида связи (H₂O₂).

7. Неметаллы образуют атомную и молекулярную кристаллические решетки.

8. Неметаллы могут находиться в трёх агрегатных состояниях: твёрдое (I₂, At₂, S, Se, Te, P, As, C, Si, B), жидкое (Br₂), газообразное (F₂, Cl₂, N₂, O₂, H₂, инертные газы).

2 — копия.png (101 KB)

Кого и где можно встретить?

Галогены – Фтор (F), Хлор (Cl), Бром (Br), Йод (I), Астат (At). Все галогены в природе встречаются только в виде соединений (галогенидов). Самыми распространенными среди них считаются Фтор (F) и Хлор (Cl). Астат (At) – самый редкий элемент в земной коре, который образуется в результате радиоактивного распада. Он нестабилен.

Халькогены. Кислород – самый распространенный элемент в земной коре. Его можно встретить в составе различных солей и оксидов, в основном силикатов. Более того кислород присутствует в большинстве органических соединений и во всех живых клетках. Сера присутствует в земной коре в виде самородков или же в составе минералов:  FeS₂ – пирит, ZnS — цинковая обманка, PbS — свинцовый блеск, HgS — киноварь, Cu₂S — халькозин, CuFeS₂ — халькопирит. Селен распространен в виде селенидов, чаще всего его встречают в сульфидных месторождениях. Это связано с близостью ионных радиусов атомов серы и селена. Теллур – один из самых редких элементов в земной коре. Также может встречаться в сульфидных месторождениях.

Пниктогены. Азот – самый распространенный элемент в атмосфере (N₂). В земной коре находится в виде селитр: аммонийная (NH₄NO₃), бариевая (Ba(NO₃)₂), калиевая (KNO₃), чилийская (NaNO₃). Фосфор быстро окисляется кислородом, поэтому распространен только в виде минералов: фосфорит (Ca₃(PO₄)₂), апатит (Ca₁₀(PO₄)₆(OH,F,Cl)₂). Мышьяк – редкий неметалл, который чаще всего встречается в виде минералов:  реальгар (AsS) и  аурипигмент (As₂S₃).

Углерод. В самородном состоянии образует алмаз и графит, а в виде соединений его можно встретить в CaCO₃ (мел, мрамор, известняк).

Кремний. Второй по распространенности в земной коре. В основном находится в виде оксида кремния (SiO₂) и силикатов (SiO₃²⁻).

Бор. В самородном состоянии не встречается, и чаще всего он находится в соединениях с кислородом.

Водород. Самый распространенный элемент во Вселенной, а на Земле – всего лишь 9-ый. Его можно встретить в органических соединениях и в молекуле воде.

Электроотрицательность.

Электроотрицательность (ЭО) – это способность атомов притягивать электроны. Это физическая величина, которую можно измерить, что и сделал Полинг в 50-х годах XX века. 

™†ав®≠™† 1_МЃ≠↶≠†п Ѓ°Ђ†бвм 1.png (1.26 MB)

Как видно из таблицы, самый электроотрицательный элемент – это Фтор (F). Значит он всегда принимает электроны, и никогда их не отдает. Фтор настолько крут, что даже может отнять электрон у Ксенона (Xe) – инертного газа – и образовать фторид (XeF₂). 

ЭО растет в периодах слева направо, а в группах – снизу вверх. ЭО неметаллов всегда больше ЭО металлов, что и подтверждает невозможность присоединения металлами электронов (они их всегда отдают).

Как пользоваться таблицей? 

Например, реагируют кислород и углерод с образованием углекислого газа. ЭО(O) = 3,5 > ЭО(C) = 2,5. Следовательно, кислород будет принимать электроны от углерода (O способен принять 2e, С способен отдать 4e).

C⁰ + O₂⁰ → C⁺⁴O⁻²

Второй пример: в реакцию вступает Магний (Mg) и Азот (N) с образованием нитрида магния. ЭО (Mg) = 1,2 < ЭО (N) = 3,0. Значит, в реакции именно Магний будет отдавать свои электроны (Mg способен отдать 2e), а Азот их принимать (N способен принять 3e). 

3Mg⁰ + N₂⁰ → Mg₃⁺²N₂⁻³

В случае металла и неметалла так будет всегда! Это классический пример реакции ОВР, в котором окислителем всегда будет неметалл, а восстановителем –  металл.

2 — копия 2.png (102 KB)

Рассмотрим задания, в которых нам пригодится данная теория. 

1. Расположить ряд элементов в порядке возрастания ЭО: фтор, селен, магний, кислород, франций, барий, галлий, кремний, водород.

Ответ: Fr, Ba, Mg, Ga, Si, H, Se, O, F.

Пояснение: электроотрицательность в таблице Менделеева увеличивается снизу вверх и слева направо.

2. Найди лишнее вещество. Объясни свой выбор.

SiH₄, CH₄, PH₃, NH₃, H₂S.

Ответ: SiH₄ – это единственное из представленных соединений, в котором у водорода степень окисления – 1. Дело в том, что ЭО(Si) < ЭО(H).

Таким образом, хоть неметаллов и меньше в таблице Менделеева, чем металлов, это не мешает им проявлять большое разнообразие свойств: быть окислителем и восстановителем, основанием и кислотой; находиться во всех агрегатных состояниях и образовывать огромное количество соединений.

Понравилась статья? Поделить с друзьями:
  • Просклонять по падежам слово экзамен
  • Просклонять по падежам слово сочинение
  • Просвятить незнающих егэ
  • Просвещенный абсолютизм это егэ
  • Просвещенный абсолютизм термин егэ