Простые параметры математика егэ


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Найдите все значения параметра k, при каждом из которых уравнение  дробь: числитель: 1 плюс левая круглая скобка 2 минус 2k правая круглая скобка синус t, знаменатель: косинус t минус синус t конец дроби = 2k имеет хотя бы одно решение на интервале  левая круглая скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая круглая скобка .


2

Найдите все значения k, при каждом из которых уравнение

 дробь: числитель: 6k минус левая круглая скобка 2 минус 3k правая круглая скобка косинус t, знаменатель: синус t минус косинус t конец дроби =2

имеет хотя бы одно решение на отрезке  левая квадратная скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая квадратная скобка .

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2017. Вариант 4. (Часть C).


3

Определите, при каких значениях параметра a уравнение

|x минус 2|=a логарифм по основанию 2 |x минус 2|

имеет ровно два решения.

Источник: РЕШУ ЕГЭ — Предэкзаменационная работа 2014 по математике.


4

Найдите все значения параметра a, при каждом из которых уравнение

|x минус a в квадрате плюс a плюс 2| плюс |x минус a в квадрате плюс 3a минус 1|=2a минус 3

имеет корни, но ни один из них не принадлежит интервалу (4; 19).


5

Найдите все значения параметра a, при каждом из которых уравнение

|x минус a в квадрате плюс 4a минус 2| плюс |x минус a в квадрате плюс 2a плюс 3|=2a минус 5

имеет хотя бы один корень на отрезке [5; 23].

Пройти тестирование по этим заданиям

Задачи с параметрами на ЕГЭ по математике

Анна Малкова

Задача с параметрами – одна из самых сложных в ЕГЭ по математике Профильного уровня. Это задание №17.

И знать здесь действительно нужно много.

Лучше всего начать с темы «Элементарные функции и их графики».

Повторить, что такое функция, что такое четные и нечетные функции, периодические, взаимно обратные.

Научиться строить графики всех элементарных функций (и отличать по внешнему виду логарифм от корня квадратного, а экспоненту – от параболы).

Освоить преобразования графиков функций и приемы построения графиков.

И после этого – учимся решать сами задачи №17 Профильного ЕГЭ.

Вот основные типы задач с параметрами:

Что такое параметр? Простые задачи с параметрами

Базовые элементы для решения задач с параметрами

Графический способ решения задач с параметрами

Квадратичные уравнения и неравенства с параметрами

Использование четности функций в задачах с параметрами

Условия касания в задачах с параметрами

Метод оценки в задачах с параметрами 

Вот пример решения и оформления задачи с параметром

Еще одна задача с параметром – повышенного уровня сложности. Автор задачи – Анна Малкова

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 1, задача 18

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 5, задача 18

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 11, задача 18

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 26, задача 18

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 36, задача 18

И несколько полезных советов тем, кто решает задачи с параметрами:

1. Есть два универсальных правила для решения задач с параметрами. Помогают всегда. Хорошо, в 99% случаев помогают. То есть почти всегда.

— Если в задаче с параметром можно сделать замену переменной – сделайте замену переменной.

— Если задачу с параметром можно решить нарисовать – рисуйте. То есть применяйте графический метод.

2. Новость для тех, кто решил заниматься только алгеброй и обойтись без геометрии (мы уже рассказывали о том, почему это невозможно). Многие задачи с параметрами быстрее и проще решаются именно геометрическим способом.

Эксперты ЕГЭ очень не любят слова «Из рисунка видно…» Ваш рисунок – только иллюстрация к решению. Вам нужно объяснить, на что смотреть, и обосновать свои выводы. Примеры оформления – здесь. Эксперты ЕГЭ также не любят слова «очевидно, что…» (когда ничего не очевидно) и «ёжику ясно…».

3. Сколько надо решить задач, чтобы освоить тему «Параметры на ЕГЭ по математике»? – Хотя бы 50, и самых разных. И в результате, посмотрев на задачу с параметром, вы уже поймете, что с ней делать.

4. Задачи с параметрами похожи на конструктор. Разобрав много таких задач, вы заметите, как решение «собирается» из знакомых элементов. Сможете разглядеть уравнение окружности или отрезка. Переформулировать условие, чтобы сделать его проще.

На нашем Онлайн-курсе теме «Параметры» посвящено не менее 12 двухчасовых занятий. Кстати, оценивается задача 17 Профильного ЕГЭ в 4 первичных балла, которые отлично пересчитываются в тестовые!

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задачи с параметрами на ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

23 апреля 2017

В закладки

Обсудить

Жалоба

Параметры. От простого к сложному. Практикум по решению задач

Решение задач с параметрами является одним из самых трудных разделов школьной математики и требует большого количества времени на их изучение.

Теоретическое изучение физических процессов, решение экономических задач часто приводит к различным уравнениям или неравенствам, содержащим параметры, и необходимой частью их решения является исследование характера процесса в зависимости от значений параметров. Таким образом, задачи с параметрами представляют собой небольшие исследовательские задачи.

Автор: Агашкова Надежда Анатольевна.

pr-sl-p.pdf


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Задачи с параметром


Задание
1

#1220

Уровень задания: Легче ЕГЭ

Решите уравнение (ax+3=0) при всех значениях параметра (a).

Уравнение можно переписать в виде (ax=-3). Рассмотрим два случая:

1) (a=0). В этом случае левая часть равна (0), а правая – нет, следовательно, уравнение не имеет корней.

2) (ane 0). Тогда (x=-dfrac{3}{a}).

Ответ:

(a=0 Rightarrow xin varnothing; \
ane 0 Rightarrow
x=-dfrac{3}{a})
.


Задание
2

#1221

Уровень задания: Легче ЕГЭ

Решите уравнение (ax+a^2=0) при всех значениях параметра (a).

Уравнение можно переписать в виде (ax=-a^2). Рассмотрим два случая:

1) (a=0). В этом случае левая и правая части равны (0), следовательно, уравнение верно при любых значениях переменной (x).

2) (ane 0). Тогда (x=-a).

Ответ:

(a=0 Rightarrow xin mathbb{R}; \
ane 0 Rightarrow x=-a)
.


Задание
3

#1222

Уровень задания: Легче ЕГЭ

Решите неравенство (2ax+5cosdfrac{pi}{3}geqslant 0) при всех значениях параметра (a).

Неравенство можно переписать в виде (axgeqslant -dfrac{5}{4}). Рассмотрим три случая:

1) (a=0). Тогда неравенство принимает вид (0geqslant
-dfrac{5}{4})
, что верно при любых значениях переменной (x).

2) (a>0). Тогда при делении на (a) обеих частей неравенства знак неравенства не изменится, следовательно, (xgeqslant
-dfrac{5}{4a})
.

3) (a<0). Тогда при делении на (a) обеих частей неравенства знак неравенства изменится, следовательно, (xleqslant -dfrac{5}{4a}).

Ответ:

(a=0 Rightarrow xin mathbb{R}; \
a>0 Rightarrow xgeqslant -dfrac{5}{4a}; \
a<0 Rightarrow xleqslant -dfrac{5}{4a})
.


Задание
4

#1223

Уровень задания: Легче ЕГЭ

Решите неравенство (a(x^2-6) geqslant (2-3a^2)x) при всех значениях параметра (a).

Преобразуем неравенство к виду: (ax^2+(3a^2-2)x-6a geqslant 0). Рассмотрим два случая:

1) (a=0). В этом случае неравенство становится линейным и принимает вид: (-2x geqslant 0 Rightarrow xleqslant 0).

2) (ane 0). Тогда неравенство является квадратичным. Найдем дискриминант:

(D=9a^4-12a^2+4+24a^2=(3a^2+2)^2).

Т.к. (a^2 geqslant 0 Rightarrow D>0) при любых значениях параметра.

Следовательно, уравнение (ax^2+(3a^2-2)x-6a = 0) всегда имеет два корня (x_1=-3a, x_2=dfrac{2}{a}). Таким образом, неравенство примет вид:

[(ax-2)(x+3a) geqslant 0]

Если (a>0), то (x_1<x_2) и ветви параболы (y=(ax-2)(x+3a)) направлены вверх, значит, решением являются (xin (-infty; -3a]cup
big[dfrac{2}{a}; +infty))
.

Если (a<0), то (x_1>x_2) и ветви параболы (y=(ax-2)(x+3a)) направлены вниз, значит, решением являются (xin big[dfrac{2}{a};
-3a])
.

Ответ:

(a=0 Rightarrow xleqslant 0; \
a>0 Rightarrow xin (-infty; -3a]cup big[dfrac{2}{a}; +infty);
\
a<0 Rightarrow xin big[dfrac{2}{a}; -3abig])
.


Задание
5

#1851

Уровень задания: Легче ЕГЭ

При каких (a) множество решений неравенства ((a^2-3a+2)x
-a+2geqslant 0)
содержит полуинтервал ([2;3)) ?

Преобразуем неравенство: ((a-1)(a-2)x geqslant a-2). Получили линейное неравенство. Рассмотрим случаи:

1) (a=2). Тогда неравенство примет вид (0 geqslant 0), что верно при любых значениях (x), следовательно, множество решений содержит полуинтервал ([2;3)).

2) (a=1). Тогда неравенство примет вид (0 geqslant -1), что верно при любых значениях (x), следовательно, множество решений содержит полуинтервал ([2;3)).

3) ((a-1)(a-2)>0 Leftrightarrow ain (-infty;1)cup (2;+infty)). Тогда:

(xgeqslant dfrac{1}{a-1}). Для того, чтобы множество решений содержало полуинтервал ([2;3)), необходимо, чтобы

(dfrac{1}{a-1} leqslant 2 Leftrightarrow dfrac{3-2a}{a-1}
leqslant 0
Rightarrow ain (-infty; 1)cup [1,5; +infty))
.

Учитывая условие (ain (-infty;1)cup (2;+infty)), получаем (ain
(-infty;1)cup (2;+infty))
.

4) ((a-1)(a-2)<0 Leftrightarrow ain (1;2)). Тогда:

(xleqslant dfrac{1}{a-1} Rightarrow dfrac{1}{a-1} geqslant 3).

Действуя аналогично случаю 3), получаем (ain (1;
dfrac{4}{3}big])
.

Ответ:

(ain (-infty;dfrac{4}{3}big]cup [2;+infty)).


Задание
6

#1361

Уровень задания: Легче ЕГЭ

Определить количество корней уравнения (ax^2+(3a+1)x+2=0) при всех значениях параметра (a).

Рассмотрим два случая:

1) (a=0). Тогда уравнение является линейным: (x+2=0 Rightarrow
x=-2)
. То есть уравнение имеет один корень.

2) (ane 0). Тогда уравнение является квадратным. Найдем дискриминант: (D=9a^2-2a+1).

Рассмотрим уравнение (9a^2-2a+1=0): (D’=4-36<0), следовательно, уравнение (9a^2-2a+1=0) не имеет корней. Значит, выражение ((9a^2-2a+1)) принимает значения строго одного знака: либо всегда положительно, либо отрицательно. В данном случае оно положительно при любых (a) (в этом можно убедиться, подставив вместо (a) любое число).

Таким образом, (D=9a^2-2a+1>0) при всех (ane 0). Значит, уравнение (ax^2+(3a+1)x+2=0) всегда имеет два корня: (x_{1,2}=dfrac{-3a-1pm
sqrt D}{2a})

Ответ:

(a=0Rightarrow) один корень

(ane 0 Rightarrow) два корня.


Задание
7

#1363

Уровень задания: Легче ЕГЭ

Решить уравнение (sqrt{x+2a}cdot (3-ax-x)=0) при всех значениях параметра (a).

Данное уравнение равносильно системе:

[begin{cases}
xgeqslant -2a\
left[ begin{gathered} begin{aligned}
&x=-2a \
&3-(a+1)x=0 qquad (*)
end{aligned} end{gathered} right.
end{cases}]

Рассмотрим два случая:

1) (a+1=0 Rightarrow a=-1). В этом случае уравнение ((*)) равносильно (3=0), то есть не имеет решений.

Тогда вся система равносильна (
begin{cases}
xgeqslant 2\
x=2
end{cases} Leftrightarrow x=2)

2) (a+1ne 0 Rightarrow ane -1). В этом случае система равносильна: [begin{cases}
xgeqslant -2a\
left[ begin{gathered} begin{aligned}
&x_1=-2a \
&x_2=dfrac3{a+1}
end{aligned} end{gathered} right.
end{cases}]

Данная система будет иметь одно решение, если (x_2leqslant -2a), и два решения, если (x_2>-2a):

2.1) (dfrac3{a+1}leqslant -2a Rightarrow a<-1 Rightarrow ) имеем один корень (x=-2a).

2.2) (dfrac3{a+1}>-2a Rightarrow a>-1 Rightarrow ) имеем два корня (x_1=-2a, x_2=dfrac3{a+1}).

Ответ:

(ain(-infty;-1) Rightarrow x=-2a\
a=-1 Rightarrow x=2\
ain(-1;+infty) Rightarrow xin{-2a;frac3{a+1}})

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Сразу оговорюсь — для того, чтобы научиться решать задачи с параметром, не выйдет просто прочитать краткую инструкцию с указаниями, что вам делать. Нужно потратить некоторое время, чтобы научиться решать такие задачи. Здесь необходимо развитое аналитическое мышление (задачи бывают совершенно разные и нужно уметь анализировать разные функции), отличное умение решать все типы уравнений и неравенств (если вы не можете решить любое задание С1 или С3, то для вас будет очень сложно решить и С6), знание, как ведут себя различные функции и умение строить их графики. Как видите, все не так уж просто, но и 4 первичных балла дают не просто так. Тем не менее, решить С6 более чем реально, нужно набраться терпения. На самом деле, не так уж и много материала, да и раз вы задумались о С6, скорее всего, большинство необходимых знаний у вас есть, в основном придется потратить время на отработку практических навыков и разбор различных методов решения. Материал разбит на несколько частей, и я рекомендую внимательно их изучить, разбирая представленные примеры.

Решение уравнения или неравенства с параметром обычно предполагает несколько случаев, и ни один из них нельзя потерять.
Для того, чтобы решить задачу с параметром, необходимо для начала преобразовать заданное выражение к более простому виду, если это, конечно, возможно. При этом необходимо понимать, какие преобразования являются равносильными, а какие нет. В противном случае могут появиться посторонние корни, которые будет нужно проверить (это не всегда просто, поэтому рекомендую стараться использовать равносильные преобразования).

Рекомендации к выполнению задания 18 ЕГЭ:

  1. Надо избавиться от логарифмов, модулей, показательных степеней и т.д.
  2. Еще раз внимательно прочитать задание. Понять, что от вас требуется.
  3. Попытаться проанализировать получившееся после преобразований выражение на наличие каких-либо специальных свойств функции (периодичность, возрастание/убывание, четность/нечетность и т.д.)
  4. Часто решить задачу с параметром можно и удобно при помощи графиков. Иногда удобно выполнять построения на обычной координатной плоскости (Х, У), а иногда удобно построить графики в плоскости (Х, а), где а – параметр. Данный способ решения возможен, если вы видите знакомые функции (параболы, прямые, гиперболы, окружности и т.д.). Разумеется, бывает несколько способов решения поставленной задачи, но графический, как правило, наименее громоздок и прост для понимания. Ведь графики показывают поведение функций, и весь необходимый анализ появится у вас перед глазами.
  5. Важно помнить, что методы решения уравнения или неравенства зависят от степени многочлена. Для этого необходимо рассматривать те значения параметра, при которых (если это возможно) обращается в нуль коэффициент при старшей степени. Пример: (a*x^2-3*x+1=0), при (a=0) выражение принимает вид (-3*x+1=0), т.е. превращается в линейную функцию, а способы решения квадратного и линейного уравнений различны.

Понравилась статья? Поделить с друзьями:
  • Протокол пробного егэ по обществознанию 11 класс
  • Простые задачи с параметром егэ
  • Протокол пробного егэ по английскому языку 2022
  • Простые варианты егэ биология
  • Протокол приема экзаменов на право управления самоходными машинами шаблон