ЕГЭ Профиль №15. Рациональные неравенства
Нашли ошибку в заданиях? Оставьте, пожалуйста, отзыв.
15 заданием профильного ЕГЭ по математике является неравенство. Одним из видов неравенств которое может оказаться в 15 задание является рациональное неравенство. Прежде чем решать рациональные неравенства, следует научиться решать рациональные уравнения. Как правило, рациональное неравенство решается методом интервалов, который не требует каких-то специальных навыков, но при этом решение оказывается достаточно объемным и требует внимательности. Также не следует забывать про метод замен. Без умения решать рациональные неравенства невозможно будет научиться решать все остальные неравенства (показательные, логарифмические и т.д.). Поэтому изучение темы «Неравенства и системы неравенств» необходимо начинать именно с рациональных неравенств. В данном разделе представлены рациональные неравенства (всего 113) разбитые на два уровня сложности. Уровень А — это простейшие рациональные неравенства, которые являются подготовительными для решения реальных рациональных неравенств предлагаемых на экзамене. Уровень В — состоит из неравенств, которые предлагали на реальных ЕГЭ и в диагностических работах прошлых лет.
(blacktriangleright) Рациональное неравенство – это неравенство, которое можно свести к виду [large{dfrac{P(x)}{Q(x)}geqslant 0}
quad (*)] где (P(x), Q(x)) – многочлены.
(на месте знака (geqslant) может стоять любой из знаков (leqslant,
>,
<))
Способы решения данного неравенства:
1 способ: Классический. Т.к. дробь положительна (отрицательна) тогда и только тогда, когда числитель и знаменатель дроби одного знака (разных знаков), то неравенство ((*)) равносильно совокупности:
[{large{left[begin{gathered}
begin{aligned}
&begin{cases} P(x)geqslant 0\ Q(x)>0 end{cases}\
&begin{cases} P(x)leqslant 0\ Q(x)<0 end{cases}
end{aligned}
end{gathered}
right.}}]
2 способ: Удобный. Метод интервалов (будем рассматривать этот метод на примере):
1 ШАГ. Разложим на множители числитель и знаменатель дроби.
Пусть после разложения неравенство примет вид [dfrac{x^2(x-1)^3(x+1)(2x^2+3x+5)(2x-x^2-3)}{(x+1)^3(3-x)(2-3x)^2} geqslant0] Помним, что если квадратное уравнение:
(sim) имеет два корня (x_1) и (x_2) (дискриминант (D>0)), то (ax^2+bx+c=a(x-x_1)(x-x_2)).
(sim) имеет один корень (x_1) ((D=0)), то (ax^2+bx+c=a(x-x_1)^2).
(sim) не имеет корней ((D<0)), то квадратный трехчлен (ax^2+bc+c) никогда не может быть равен нулю, соответственно, не разлагается на линейные множители.
2 ШАГ. Рассмотрим скобки, в которых находится квадратный трехчлен с (D<0).
Если при (x^2) находится положительный коэффициент, то эти скобки можно вычеркнуть (в нашем неравенстве это ((2x^2+3x+5))).
Если при (x^2) находится отрицательный коэффициент, то при вычеркивании такой скобки знак неравенства меняем на противоположный (в нашем неравенстве это ((2x-x^2-3))).
Заметим, что если таких скобок несколько, то вычеркиваем их последовательно по одной, каждый раз меняя знак неравенства на противоположный.
Таким образом, неравенство примет вид [dfrac{x^2(x-1)^3(x+1)}{(x+1)^3(3-x)(2-3x)^2}
leqslant0]
3 ШАГ. Рассмотрим линейные скобки.
Назовем скобку хорошей, если при (x) находится положительный коэффициент (такие скобки не трогаем), и плохой, если при (x) находится отрицательный коэффициент (в таких скобках меняем все знаки на противоположные, т.е. делаем их хорошими).
Если плохих скобок было четное количество, то знак неравенства не изменится, если нечетное – то знак неравенства изменится на противоположный.
В нашем неравенстве одна скобка ((3-x)) и две скобки ((2-3x)) (т.к. ((2-3x)^2=(2-3x)(2-3x))), т.е. всего три плохих скобки, следовательно, неравенство примет вид: [dfrac{x^2(x-1)^3(x+1)}{(x+1)^3(x-3)(3x-2)^2}
geqslant0quad (**)]
4 ШАГ. Отметим нули каждой скобки на числовой прямой, причем нули знаменателя – выколотые, нули числителя – закрашенные (если знак неравенства нестрогий, как у нас) или выколотые (если знак неравенства строгий).
Если мы отметили (n) точек, то числовая прямая разобьется на (n+1) промежутков.
Расставим знак на каждом промежутке справа налево.
Т.к. все скобки – хорошие, то первый знак всегда будет («+»). Если какая-то точка входит в четное количество скобок, то при переходе через нее (справа налево!) знак меняться не будет (например, точка (-1) входит в четное количество скобок: одна в числителе и три в знаменателе);
если точка входит в нечетное количество скобок, то знак будет меняться (например, точка (3)).
5 ШАГ. Запишем ответ. В нашем случае, т.к. знак преобразованного ((**)) неравенства (geqslant 0), то в ответ пойдут промежутки со знаком («+») и закрашенные точки: [xin
(-infty;-1)cup left(-1;frac23right)cup
left(dfrac23;1right]cup(3;+infty)]
Задание 14 Профильного ЕГЭ по математике можно считать границей между «неплохо сдал ЕГЭ» и «поступил в вуз с профильной математикой». Здесь не обойтись без отличного знания алгебры. Потому что встретиться вам может любое неравенство: показательное, логарифмическое, комбинированное (например, логарифмы и тригонометрия). И еще бывают неравенства с модулем и иррациональные неравенства. Некоторые из них мы разберем в этой статье.
Хотите получить на Профильном ЕГЭ не менее 70 баллов? Учитесь решать неравенства!
Темы для повторения:
New
Решаем задачи из сборника И. В. Ященко, 2021
Квадратичные неравенства
Метод интервалов
Уравнения и неравенства с модулем
Иррациональные неравенства
Показательные неравенства
Логарифмические неравенства
Метод замены множителя (рационализации)
Решение неравенств: основные ошибки и полезные лайфхаки
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 8, задача 15
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 32, задача 15
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 36, задача 15
Логарифмические неравенства повышенной сложности
Разберем неравенства разных типов из вариантов ЕГЭ по математике.
Дробно-рациональные неравенства
1. Решите неравенство:
Сделаем замену
Тогда , а
Получим:
Решим неравенство относительно t методом интервалов:
Получим:
Вернемся к переменной x:
Ответ:
Показательные неравенства
2. Решите неравенство
Сделаем замену Получим:
Умножим неравенство на
Дискриминант квадратного уравнения
Значит, корни этого уравнения:
Разложим квадратный трехчлен на множители.
. Вернемся к переменной x.
Внимание. Сначала решаем неравенство относительно переменной t. Только после этого возвращаемся к переменной x. Запомнили?
Ответ:
Следующая задача — с секретом. Да, такие тоже встречаются в вариантах ЕГЭ.
3. Решите неравенство
Сделаем замену Получим:
Вернемся к переменной
Первое неравенство решим легко: С неравенством тоже все просто. Но что делать с неравенством ? Ведь Представляете, как трудно будет выразить х?
Оценим Для этого рассмотрим функцию
Сначала оценим показатель степени. Пусть Это парабола с ветвями вниз, и наибольшее значение этой функции достигается в вершине параболы, при х = 1. При этом
Мы получили, что
Тогда , и это значит, что Значение не достигается ни при каких х.
Но если и , то
Мы получили:
Ответ:
Логарифмические неравенства
4. Решите неравенство
Запишем решение как цепочку равносильных переходов. Лучше всего оформлять решение неравенства именно так.
Ответ:
Следующее неравенство — комбинированное. И логарифмы, и тригонометрия!
5. Решите неравенство
ОДЗ:
Замена
Ответ:
А вот и метод замены множителя (рационализации). Смотрите, как он применяется. А на ЕГЭ не забудьте доказать формулы, по которым мы заменяем логарифмический множитель на алгебраический.
6. Решите неравенство:
Мы объединили в систему и область допустимых значений, и само неравенство. Применим формулу логарифма частного, учитывая, что . Используем также условия
Обратите внимание, как мы применили формулу для логарифма степени. Строго говоря,
Поскольку
Согласно методу замены множителя, выражение заменим на
Получим систему:
Решить ее легко.
Ответ: .
Разберем какое-нибудь нестандартное неравенство. Такое, что не решается обычными способами.
7. Решите неравенство:
ОДЗ:
Привести обе части к одному основанию не получается. Ищем другой способ.
Заметим, что при x = 9 оба слагаемых равны 2 и их сумма равна 4.
Функции и — монотонно возрастающие, следовательно, их сумма также является монотонно возрастающей функцией и каждое свое значение принимает только один раз.
Поскольку при x=9 значение монотонно возрастающей функции равно 4, при значения этой функции меньше 4. Конечно, при этом , то есть x принадлежит ОДЗ.
Ответ:
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 14. Неравенства u0026#8212; профильный ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
09.03.2023