(blacktriangleright) Рациональное неравенство – это неравенство, которое можно свести к виду [large{dfrac{P(x)}{Q(x)}geqslant 0}
quad (*)] где (P(x), Q(x)) – многочлены.
(на месте знака (geqslant) может стоять любой из знаков (leqslant,
>,
<))
Способы решения данного неравенства:
1 способ: Классический. Т.к. дробь положительна (отрицательна) тогда и только тогда, когда числитель и знаменатель дроби одного знака (разных знаков), то неравенство ((*)) равносильно совокупности:
[{large{left[begin{gathered}
begin{aligned}
&begin{cases} P(x)geqslant 0\ Q(x)>0 end{cases}\
&begin{cases} P(x)leqslant 0\ Q(x)<0 end{cases}
end{aligned}
end{gathered}
right.}}]
2 способ: Удобный. Метод интервалов (будем рассматривать этот метод на примере):
1 ШАГ. Разложим на множители числитель и знаменатель дроби.
Пусть после разложения неравенство примет вид [dfrac{x^2(x-1)^3(x+1)(2x^2+3x+5)(2x-x^2-3)}{(x+1)^3(3-x)(2-3x)^2} geqslant0] Помним, что если квадратное уравнение:
(sim) имеет два корня (x_1) и (x_2) (дискриминант (D>0)), то (ax^2+bx+c=a(x-x_1)(x-x_2)).
(sim) имеет один корень (x_1) ((D=0)), то (ax^2+bx+c=a(x-x_1)^2).
(sim) не имеет корней ((D<0)), то квадратный трехчлен (ax^2+bc+c) никогда не может быть равен нулю, соответственно, не разлагается на линейные множители.
2 ШАГ. Рассмотрим скобки, в которых находится квадратный трехчлен с (D<0).
Если при (x^2) находится положительный коэффициент, то эти скобки можно вычеркнуть (в нашем неравенстве это ((2x^2+3x+5))).
Если при (x^2) находится отрицательный коэффициент, то при вычеркивании такой скобки знак неравенства меняем на противоположный (в нашем неравенстве это ((2x-x^2-3))).
Заметим, что если таких скобок несколько, то вычеркиваем их последовательно по одной, каждый раз меняя знак неравенства на противоположный.
Таким образом, неравенство примет вид [dfrac{x^2(x-1)^3(x+1)}{(x+1)^3(3-x)(2-3x)^2}
leqslant0]
3 ШАГ. Рассмотрим линейные скобки.
Назовем скобку хорошей, если при (x) находится положительный коэффициент (такие скобки не трогаем), и плохой, если при (x) находится отрицательный коэффициент (в таких скобках меняем все знаки на противоположные, т.е. делаем их хорошими).
Если плохих скобок было четное количество, то знак неравенства не изменится, если нечетное – то знак неравенства изменится на противоположный.
В нашем неравенстве одна скобка ((3-x)) и две скобки ((2-3x)) (т.к. ((2-3x)^2=(2-3x)(2-3x))), т.е. всего три плохих скобки, следовательно, неравенство примет вид: [dfrac{x^2(x-1)^3(x+1)}{(x+1)^3(x-3)(3x-2)^2}
geqslant0quad (**)]
4 ШАГ. Отметим нули каждой скобки на числовой прямой, причем нули знаменателя – выколотые, нули числителя – закрашенные (если знак неравенства нестрогий, как у нас) или выколотые (если знак неравенства строгий).
Если мы отметили (n) точек, то числовая прямая разобьется на (n+1) промежутков.
Расставим знак на каждом промежутке справа налево.
Т.к. все скобки – хорошие, то первый знак всегда будет («+»). Если какая-то точка входит в четное количество скобок, то при переходе через нее (справа налево!) знак меняться не будет (например, точка (-1) входит в четное количество скобок: одна в числителе и три в знаменателе);
если точка входит в нечетное количество скобок, то знак будет меняться (например, точка (3)).
5 ШАГ. Запишем ответ. В нашем случае, т.к. знак преобразованного ((**)) неравенства (geqslant 0), то в ответ пойдут промежутки со знаком («+») и закрашенные точки: [xin
(-infty;-1)cup left(-1;frac23right)cup
left(dfrac23;1right]cup(3;+infty)]
ЕГЭ Профиль №15. Рациональные неравенства
Нашли ошибку в заданиях? Оставьте, пожалуйста, отзыв.
15 заданием профильного ЕГЭ по математике является неравенство. Одним из видов неравенств которое может оказаться в 15 задание является рациональное неравенство. Прежде чем решать рациональные неравенства, следует научиться решать рациональные уравнения. Как правило, рациональное неравенство решается методом интервалов, который не требует каких-то специальных навыков, но при этом решение оказывается достаточно объемным и требует внимательности. Также не следует забывать про метод замен. Без умения решать рациональные неравенства невозможно будет научиться решать все остальные неравенства (показательные, логарифмические и т.д.). Поэтому изучение темы «Неравенства и системы неравенств» необходимо начинать именно с рациональных неравенств. В данном разделе представлены рациональные неравенства (всего 113) разбитые на два уровня сложности. Уровень А — это простейшие рациональные неравенства, которые являются подготовительными для решения реальных рациональных неравенств предлагаемых на экзамене. Уровень В — состоит из неравенств, которые предлагали на реальных ЕГЭ и в диагностических работах прошлых лет.
Рациональные неравенства – подробнее
Рациональные неравенства – это неравенства, обе части которых являются рациональными выражениями.
Что такое рациональное выражение? Напомню:
Рациональное выражение – это алгебраическое выражение, составленное из чисел и переменной (displaystyle x) с помощью операций сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем.
Например, такое рациональное неравенство: (displaystyle frac{x+1}{{x}-2}le frac{x+2}{x})
Решение всех рациональных неравенств сводится к двум основным шагам:
Шаг 1. Перенос. Общий знаменатель. Разложение на множители
Переносим все в одну сторону, приводим к общему знаменателю и раскладываем числитель и знаменатель на множители.
Все множители должны быть «линейными», то есть переменная в каждом из них – только в первой степени.
Если какой-то из множителей нелинейный, и его невозможно разложить на линейные, от него надо избавиться.
Если забыл, как раскладывать выражение на множители, прочти тему «Разложение многочленов на множители».
Шаг 2. Метод интервалов
Если не знаешь, что это такое, прочти тему «Метод интервалов».
Первый шаг у нас уже раньше встречался. Где? В рациональных уравнениях!
Но в отличие от уравнений, в неравенствах мы никогда не разделяем числитель и знаменатель!
Более того, если в числителе и знаменателе есть одинаковые нечисловые множители, мы их не сокращаем!
Это правило у нас уже было в теме «Метод интервалов». И вообще, в этой теме мы уже учились решать рациональные неравенства. Поэтому здесь ограничимся отдельными примерами.
Бонусы: Вебинары с нашего курса подготовки к ЕГЭ по математике
ЕГЭ 15. Решение уравнений и неравенств. Метод интервалов
В этом видео мы узнаем (вспомним) метод интервалов, поймём как и почему он работает.
Вспомним, как решать квадратные, рациональные неравенства, а также неравенства с модулем и иррациональные.
ЕГЭ 15. Смешанные неравенства. Логарифмические и тригонометрические
Задачу №15 мы на курсе уже научились решать: разобрали по косточкам и показательные, и логарифмические (в том числе с переменными основаниями), и смешанные неравенства.
Ну и системы неравенств не забыли. Бонусом прошлись по иррациональным неравенствам и неравенствам с модулем.
Но погодите, не выдыхайте пока. Поиграем в слабо!
А слабо скрестить логарифмы с тригонометрией? Этим и займемся в задаче на логарифмы с разными основаниями. Мы решим эту сложную задачу 2-мя способами!
Эти видео – вебинары, входящие в наш курс подготовки к ЕГЭ по математике.
По 15 задаче ЕГЭ мы также разберем как решать рациональные уравнения, уравнения с модулем, иррациональные уравнения системы уравнений с двумя неизвестными, рассмотрим тему сравнение чисел – корни.
Научившись решать отдельные неравенства, мы перейдем к системам неравенств и узнаем, как строится решение системы неравенств.
Все это нужно знать для решения 15-й задачи. Если вы будете готовиться к ЕГЭ самостоятельно, составьте план подготовки и включите в него все эти темы.
И не забудьте решить как можно больше задач по этим темам!