Рамка считывания генетического кода егэ по биологии

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 179    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (концу в одной цепи соответствует 3ʹ- конец другой цепи). Синтез нуклеиновых кислот начинается с 5ʹ- конца. Рибосома движется по иРНК

в направлении от 5ʹ- к 3ʹ- концу. Все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (нижняя цепь  — матричная):

5’-ЦГААГГТГАЦААТГТ-3’

3’-ГЦТТЦЦАЦТГТТАЦА-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5ʹ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.

Показать

1

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь матричная (транскрибируемая)):

5’-АТЦАТГЦТТТАЦЦГА-3’

3’-ТАГТАЦГАААТГГЦТ-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте ДНК. Укажите триплет, который является антикодоном, если данная тРНК переносит аминокислоту ала. Ответ поясните. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи

Источник: Демонстрационная версия ЕГЭ—2022 по биологии


Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. Синтез молекулы белка всегда начинается с аминокислоты мет.

Фрагмент молекулы ДНК, на которой синтезируется молекула белка, имеет следующую последовательность нуклеотидов (верхняя цепь матричная (транскрибируемая)):

5’-ААТАЦГЦГТТЦАТЦГ-3’

3’-ТТАТГЦГЦААГТАГЦ-5’

Найдите первый кодирующий триплет на смысловой цепи ДНК. Установите кодирующую последовательность нуклеотидов иРНК и аминокислотную последовательность молекулы белка, которые синтезируются на данном фрагменте ДНК. Объясните последовательность решения задачи. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Показать

1

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (концу в одной цепи соответствует 3ʹ- конец другой цепи). Синтез нуклеиновых кислот начинается с 5ʹ- конца. Рибосома движется по иРНК

в направлении от 5ʹ- к 3ʹ- концу. Все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (нижняя цепь  — матричная):

5’-ЦГААГГТГАЦААТГТ-3’

3’-ГЦТТЦЦАЦТГТТАЦА-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5ʹ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.

Источник: Демонстрационная версия ЕГЭ—2022 по биологии


Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. Синтез молекулы белка всегда начинается с аминокислоты мет.

Фрагмент молекулы ДНК, на которой синтезируется молекула белка, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая (кодирующая)):

5’-ААТГЦГЦГТТЦАТЦГ-3’

3’-ТТАЦГЦГЦААГТАГЦ-5’

Найдите первый кодирующий триплет на смысловой цепи ДНК. Установите кодирующую последовательность нуклеотидов иРНК и аминокислотную последовательность молекулы белка, которые синтезируются на данном фрагменте ДНК. Объясните последовательность решения задачи. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Показать

1

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (концу в одной цепи соответствует 3ʹ- конец другой цепи). Синтез нуклеиновых кислот начинается с 5ʹ- конца. Рибосома движется по иРНК

в направлении от 5ʹ- к 3ʹ- концу. Все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (нижняя цепь  — матричная):

5’-ЦГААГГТГАЦААТГТ-3’

3’-ГЦТТЦЦАЦТГТТАЦА-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5ʹ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.

Источник: Демонстрационная версия ЕГЭ—2022 по биологии


Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь матричная (транскрибируемая)):

5’-АТЦАТГЦТТТАЦЦГА-3’

3’-ТАГТАЦГАААТГГЦТ-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте ДНК. Укажите триплет, который является антикодоном, если данная тРНК переносит аминокислоту ала. Ответ поясните. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Показать

1

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (концу в одной цепи соответствует 3ʹ- конец другой цепи). Синтез нуклеиновых кислот начинается с 5ʹ- конца. Рибосома движется по иРНК

в направлении от 5ʹ- к 3ʹ- концу. Все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (нижняя цепь  — матричная):

5’-ЦГААГГТГАЦААТГТ-3’

3’-ГЦТТЦЦАЦТГТТАЦА-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5ʹ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.

Источник: Демонстрационная версия ЕГЭ—2022 по биологии

Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи


Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу в одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. При синтезе фрагмента полипептида в рибосому входят молекулы тРНК в следующей последовательности (указаны антикодоны в направлении от 5’ к 3’ концу):

ГГА, УУУ, АГЦ, ГЦГ, АЦА.

Установите нуклеотидную последовательность участка ДНК, который кодирует данный полипептид, и определите, какая цепь является матричной (транскрибируемой) в данном фрагменте ДНК. Установите аминокислотную последовательность синтезируемого фрагмента полипептида. Объясните последовательность решения задачи. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Показать

1

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (концу в одной цепи соответствует 3ʹ- конец другой цепи). Синтез нуклеиновых кислот начинается с 5ʹ- конца. Рибосома движется по иРНК

в направлении от 5ʹ- к 3ʹ- концу. Все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (нижняя цепь  — матричная):

5’-ЦГААГГТГАЦААТГТ-3’

3’-ГЦТТЦЦАЦТГТТАЦА-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5ʹ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.

Источник: Демонстрационная версия ЕГЭ—2022 по биологии

Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи


Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. При синтезе фрагмента полипептида в рибосому входят молекулы тРНК в следующей последовательности (указаны антикодоны в направлении от 5’ к 3’ концу):

ЦУГ, УАУ, АУА, ГЦУ, АУА.

Установите нуклеотидную последовательность участка ДНК, который кодирует данный полипептид, и определите, какая цепь является матричной (транскрибируемой) в данном фрагменте ДНК. Установите аминокислотную последовательность синтезируемого фрагмента полипептида. Укажите последовательность решения задачи. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Показать

1

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (концу в одной цепи соответствует 3ʹ- конец другой цепи). Синтез нуклеиновых кислот начинается с 5ʹ- конца. Рибосома движется по иРНК

в направлении от 5ʹ- к 3ʹ- концу. Все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (нижняя цепь  — матричная):

5’-ЦГААГГТГАЦААТГТ-3’

3’-ГЦТТЦЦАЦТГТТАЦА-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5ʹ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.

Источник: Демонстрационная версия ЕГЭ—2022 по биологии

Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи


Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу.

Ген имеет кодирующую и некодирующую области. Кодирующая область гена называется открытой рамкой считывания. Фрагмент конца гена имеет следующую последовательность нуклеотидов (нижняя цепь матричная (транскрибируемая)):

5’-ЦТЦГАТТГАГГЦАТТАТАГАГЦАТЦГ-3’

3’-ГАГЦТААЦТЦЦГТААТАТЦТЦГТАГЦ-5’

Определите верную открытую рамку считывания и найдите последовательность аминокислот во фрагменте конца полипептидной цепи. Известно, что конечная часть полипептида, кодируемая этим геном, имеет длину более четырёх аминокислот. Объясните последовательность решения задачи. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Показать

1

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (концу в одной цепи соответствует 3ʹ- конец другой цепи). Синтез нуклеиновых кислот начинается с 5ʹ- конца. Рибосома движется по иРНК

в направлении от 5ʹ- к 3ʹ- концу. Все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (нижняя цепь  — матричная):

5’-ЦГААГГТГАЦААТГТ-3’

3’-ГЦТТЦЦАЦТГТТАЦА-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5ʹ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.

Источник: Демонстрационная версия ЕГЭ—2022 по биологии

Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи


Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. Ген имеет кодирующую и некодирующую области. Кодирующая область гена называется открытой рамкой считывания. Фрагмент конца гена имеет следующую последовательность нуклеотидов (нижняя цепь матричная (транскрибируемая)):

5’-АГЦАТГТААГЦТТТАЦТГАГЦТГЦ-3’

3’-ТЦГТАЦАТТЦГАААТГАЦТЦГАЦГ-5’

Определите верную открытую рамку считывания и найдите последовательность аминокислот во фрагменте конца полипептидной цепи. Известно, что конечная часть полипептида, кодируемая этим геном, имеет длину более четырёх аминокислот. Объясните последовательность решения задачи. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Показать

1

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (концу в одной цепи соответствует 3ʹ- конец другой цепи). Синтез нуклеиновых кислот начинается с 5ʹ- конца. Рибосома движется по иРНК

в направлении от 5ʹ- к 3ʹ- концу. Все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (нижняя цепь  — матричная):

5’-ЦГААГГТГАЦААТГТ-3’

3’-ГЦТТЦЦАЦТГТТАЦА-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5ʹ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.

Источник: Демонстрационная версия ЕГЭ—2022 по биологии

Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи


Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. Ген имеет кодирующую и некодирующую области. Кодирующая область гена называется открытой рамкой считывания. Фрагмент конца гена имеет следующую последовательность нуклеотидов: (нижняя цепь матричная (транскрибируемая)):

5’-ТГЦГЦГТААЦТГЦГАТГТГАГЦТАТАЦЦ-3’

3’-АЦГЦГЦАТТГАЦГЦТАЦАЦТЦГАТАТГГ-5’

Определите верную открытую рамку считывания и найдите последовательность аминокислот во фрагменте конца полипептидной цепи. Известно, что итоговый полипептид, кодируемый этим геном, имеет длину более четырёх аминокислот. Объясните последовательность решения задачи. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Показать

1

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (концу в одной цепи соответствует 3ʹ- конец другой цепи). Синтез нуклеиновых кислот начинается с 5ʹ- конца. Рибосома движется по иРНК

в направлении от 5ʹ- к 3ʹ- концу. Все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (нижняя цепь  — матричная):

5’-ЦГААГГТГАЦААТГТ-3’

3’-ГЦТТЦЦАЦТГТТАЦА-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5ʹ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.

Источник: Демонстрационная версия ЕГЭ—2022 по биологии

Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи


Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. Ген имеет кодирующую и некодирующую области. Кодирующая область гена называется открытой рамкой считывания. Фрагмент конца гена имеет следующую последовательность нуклеотидов (нижняя цепь матричная (транскрибируемая)):

5’-ААГЦГЦТААТАГЦАТАТТАГАГЦТА-3’

3’-ТТЦГЦГАТТАТЦГТАТААТЦТЦГАТ-5’

Определите верную открытую рамку считывания и найдите последовательность аминокислот во фрагменте конца полипептидной цепи. Известно, что конечная часть полипептида, кодируемая этим геном, имеет длину более четырёх аминокислот. Объясните последовательность решения задачи. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Показать

1

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (концу в одной цепи соответствует 3ʹ- конец другой цепи). Синтез нуклеиновых кислот начинается с 5ʹ- конца. Рибосома движется по иРНК

в направлении от 5ʹ- к 3ʹ- концу. Все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (нижняя цепь  — матричная):

5’-ЦГААГГТГАЦААТГТ-3’

3’-ГЦТТЦЦАЦТГТТАЦА-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5ʹ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.

Источник: Демонстрационная версия ЕГЭ—2022 по биологии

Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи


Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5′ концу одной цепи соответствует 3′ конец другой цепи). Синтез нуклеиновых кислот начинается с 5′ конца. Рибосома движется по иРНК в направлении от 5′ к 3′ концу. Ген имеет кодирующую и некодирующую области. Фрагмент начала гена имеет следующую последовательность нуклеотидов:

5′-ЦААТАТГЦГЦГГТАТТАТАГАГ-3′

3′-ГТТАТАЦГЦГЦЦАТААТАТЦТЦ-5′

Определите последовательность аминокислот начала полипептида, если синтез начинается с аминокислоты Мет. Объясните последовательность решения задачи. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Показать

1

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (концу в одной цепи соответствует 3ʹ- конец другой цепи). Синтез нуклеиновых кислот начинается с 5ʹ- конца. Рибосома движется по иРНК

в направлении от 5ʹ- к 3ʹ- концу. Все виды РНК синтезируются на ДНК- матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (нижняя цепь  — матричная):

5’-ЦГААГГТГАЦААТГТ-3’

3’-ГЦТТЦЦАЦТГТТАЦА-5’

Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5ʹ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. При написании нуклеиновых кислот указывайте направление цепи.

Источник: Демонстрационная версия ЕГЭ—2022 по биологии

Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи


Найдите три ошибки в приведённом тексте «Генетический код». Укажите номера предложений, в которых сделаны ошибки, исправьте их. Дайте правильную формулировку.

(1) Расшифровка генетического кода  — важнейшее открытие в биологии ХХ в. (2) Генетический код  — это участок молекулы ДНК, содержащий информацию о первичной структуре определённого белка. (3) Генетический код обладает определёнными свойствами. (4) Код триплетен; это значит, что каждая аминокислота белка кодируется сочетанием трёх последовательно расположенных нуклеотидов в цепи ДНК (РНК). (5) Каждый триплет кодирует только одну аминокислоту, поэтому код универсален. (6) Большинство аминокислот зашифровано более чем одним кодоном, это избыточность (вырожденность) генетического кода. (7) В генетическом коде все 64 кодона кодируют 20 аминокислот.

Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи


Исходный фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь  — смысловая, нижняя  — транскрибируемая):

5’ − ГЦГГГЦТАТГАТЦТГ − 3’

3’ − ЦГЦЦЦГАТАЦТАГАЦ − 5’

В результате замены одного нуклеотида в ДНК четвёртая аминокислота во фрагменте полипептида заменилась на аминокислоту Вал. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК, иРНК в результате замены одного нуклеотида? Благодаря какому свойству генетического кода одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом? Ответ поясните. Для выполнения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда, второй  — из верхнего горизонтального ряда и третий  — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.


Фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь  — смысловая, нижняя  — транскрибируемая):

5’ − ГЦГГГЦТАТГАТЦТГ − 3’

3’ − ЦГЦЦЦГАТАЦТАГАЦ − 5’

В результате замены одного нуклеотида в ДНК третья аминокислота во фрагменте полипептида заменилась на аминокислоту Гис. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК, иРНК в результате замены одного нуклеотида? Благодаря какому свойству генетического кода одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом? Ответ поясните. Для выполнения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда, второй  — из верхнего горизонтального ряда и третий  — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.


Фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь  — смысловая, нижняя  транскрибируемая):

5′ − ГЦГГГЦТАТГАТЦТГ − 3′

3′ − ЦГЦЦЦГАТАЦТАГАЦ − 5′

В результате мутации  — замены одного нуклеотида в ДНК третья аминокислота во фрагменте полипептида заменилась на аминокислоту Гис. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК, иРНК в результате замены одного нуклеотида? Благодаря какому свойству генетического кода одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом? Ответ поясните.

Для выполнения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г


Исходный фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь  — смысловая, нижняя  — транскрибируемая):

5’ − ЦТАЦТТАТЦАЦГААГ − 3′

3’ − ГАТГААТАГТГЦТТЦ − 5′

В результате замены одного нуклеотида в ДНК третья аминокислота в полипептиде заменилась на аминокислоту Вал. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК, иРНК в результате замены одного нуклеотида? Благодаря какому свойству генетического кода одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом? Ответ поясните. Для решения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берется из левого вертикального ряда, второй – из верхнего горизонтального ряда и третий – из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота


Фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь  — смысловая, нижняя  — транскрибируемая):

5’ − ГТЦАЦАГЦГАТЦААТ − 3’

3’ − ЦАГТГТЦГЦТАГТТА − 5’

Определите последовательность аминокислот во фрагменте полипептидной цепи и обоснуйте свой ответ. Какие изменения могли произойти в результате генной мутации во фрагменте молекулы ДНК, если вторая аминокислота в полипептиде заменилась на аминокислоту Про? Какое свойство генетического кода определяет возможность существования разных фрагментов мутированной молекулы ДНК? Ответ обоснуйте. Для решения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда, второй  — из верхнего горизонтального ряда и третий  — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.


Исходный фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь  — смысловая, нижняя  — транскрибируемая)

5’ − АААТЦГАЦАГЦЦАТЦ − 3’3’ − ТТТАГЦТГТЦГГТАГ − 5′ В результате замены одного нуклеотида в пятом триплете ДНК аминокислота во фрагменте полипептида заменилась на аминокислоту Фен. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК, иРНК в результате замены одного нуклеотида. Какое свойство генетического кода определяет возможность существования разных фрагментов мутированной молекулы ДНК. Ответ обоснуйте. Для выполнения задания используйте таблицу генетического кода.Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г


Фрагмент молекулы ДНК имеет последовательность нуклеотидов (верхняя цепь  — смысловая, нижняя  — транскрибируемая):

5’ − ТАТТЦЦТАЦГГАААА − 3’

3’ − АТААГГАТГЦЦТТТТ − 5’

Определите последовательность аминокислот во фрагменте полипептидной цепи и обоснуйте свой ответ. Какие изменения могли произойти в результате генной мутации во фрагменте молекулы ДНК, если третья аминокислота в полипептиде заменилась на аминокислоту Цис? Какое свойство генетического кода определяет возможность существования разных фрагментов мутированной молекулы ДНК? Ответ обоснуйте. Для выполнения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда, второй  — из верхнего горизонтального ряда и третий  — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.


Исходный фрагмент молекулы ДНК имеет следующую последовательность:

5’ − ГАГЦГТТГЦААГТТА − 3′

3’ − ЦТЦГЦААЦГТТЦААТ − 5′

Определите последовательность аминокислот во фрагменте полипептидной цепи и обоснуйте свой ответ. Какие изменения могли произойти в результате генной мутации во фрагменте молекулы ДНК, если четвертая аминокислота в полипептиде заменилась на аминокислоту Тре? Какое свойство генетического кода определяет возможность существования разных фрагментов мутированной молекулы ДНК? Ответ поясните. Для решения задания используйте таблицу генетического кода.

Генетический код (иРНК)

Первое

основание

Второе основание Третье

основание

У Ц А Г
У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда, второй  — из верхнего горизонтального ряда и третий  — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.

Всего: 179    1–20 | 21–40 | 41–60 | 61–80 …

1.Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. Ген имеет кодирующую и некодирующую области. Кодирующая область гена называется открытой рамкой считывания. Фрагмент конца гена имеет следующую последовательность нуклеотидов: (нижняя цепь матричная (транскрибируемая)):

5’-ТГЦГЦГТААЦТГЦГАТГТГАГЦТАТАЦЦ-3’

3’-АЦГЦГЦАТТГАЦГЦТАЦАЦТЦГАТАТГГ-5’

Определите верную открытую рамку считывания и найдите последовательность аминокислот во фрагменте конца полипептидной цепи. Известно, что итоговый полипептид, кодируемый этим геном, имеет длину более четырёх аминокислот. Объясните последовательность решения задачи. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Генетический код (иРНК от 5′ к 3′ концу)

Первое

основание

Второе основание

Третье

основание

У

Ц

А

Г

У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда; второй  — из верхнего горизонтального ряда и третий  — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.

Ответ:

1.  3’-АЦГЦГЦАТТГАЦГЦТАЦАЦТЦГАТАТГГ-5’  ПО транскрибируемой цепи находим

последовательность иРНК:

5’-УГЦГЦГУААЦУГЦГАУГУГАГЦУАУАЦЦ-3’

2.  В последовательности иРНК присутствует стоп-кодон 5’-УГА-3’ (УГА)

3.  По стоп-кодону находим открытую рамку считывания.

4.  Последовательность полипептида: арг-вал-тре-ала-мет.

2. Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. Ген имеет кодирующую и некодирующую области. Кодирующая область гена называется открытой рамкой считывания. Фрагмент конца гена имеет следующую последовательность нуклеотидов: (нижняя цепь матричная (транскрибируемая)):

5’-ЦАТГГЦАТГАТАТАЦГЦГЦЦАГ- 3’

3’- ГТАЦЦГТАЦТАТАТГЦГЦГГТЦ-5’

Определите верную открытую рамку считывания и найдите последовательность аминокислот во фрагменте начала полипептидной цепи. При ответе учитывайте ,что полипептидная цепь начинается с аминокислоты мет. Известно, что итоговый полипептид, кодируемый этим геном , имеет длину более четырех аминокислот. Объясните последовательность решения задачи. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

Генетический код (иРНК от 5′ к 3′ концу)

Первое

основание

Второе основание

Третье

основание

У

Ц

А

Г

У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

  —

  —

Цис

Цис

  —

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда; второй  — из верхнего горизонтального ряда и третий  — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.

ОТВЕТ:

  1. По транскрибируемой цепи ДНК находим

3’- ГТАЦЦГТАЦТАТАТГЦГЦГГТЦ-5’

Последовательность на и РНК :

             5’-ЦАУГГЦАУГАУАУАЦГЦГЦЦАГ-3’

2.Аминокислоте мет соответствует кодон 5’-АУГ-3’

3. таких кодонов 2, синтез начинается со второго из них ( и с 7 нуклеотида)

4. потому что при синтезе с  первого кодона 5’-АУГ-3’ полипептид обрывается( в рамке считывания присутствуют стоп-кодон)

5. последовательность полипептида: мет-иле-тир-ала-про

3. Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. Ген имеет кодирующую и некодирующую области. Кодирующая область гена называется открытой рамкой считывания. Фрагмент конца гена имеет следующую последовательность нуклеотидов: (нижняя цепь матричная (транскрибируемая)): 5’-ТГЦГЦГТААЦТГЦГАТГТГАГЦТАТАЦЦ-3’ 3’-АЦГЦГЦАТТГАЦГЦТАЦАЦТЦГАТАТГГ-5’ Определите верную открытую рамку считывания и найдите последовательность аминокислот во фрагменте конца полипептидной цепи. Известно, что итоговый полипептид, кодируемый этим геном, имеет длину более четырёх аминокислот. Объясните последовательность решения задачи. Для выполнения задания используйте таблицу генетического кода. При написании последовательностей нуклеиновых кислот указывайте направление цепи.

ОТВЕТ:

  1. последовательность иРНК:
    5’-УГЦГЦГУААЦУГЦГАУГУГАГЦУАУАЦЦ-3’;
    2) в последовательности иРНК присутствует стоп-кодон 5’-УГА-3’ (УГА);
    3) по стоп-кодону находим открытую рамку считывания;
    4) последовательность полипептида: арг-вал-тре-ала-мет.

НОВЫЙ ТИП С ПАЛИНДРОМАМИ

Палиндром — участок связанных комплиментарных нуклеотидов одной цепи РНК или ДНК.

Здесь нет ничего сложного, главное — разобраться со строением вторичной структуры тРНК и понять, каким образом полинуклеотидная цепь сворачивается в петлю.

1) По принципу комплементарности строим последовательность тРНК.

2) Складываем тРНК пополам, как показано на рисунке, и находим центр. Центральные три нуклеотида будут антикодоном.

3) Записываем антикодон от 3′ к 5′ концу. Находим комплементарный кодон иРНК (от 5′ к 3′ концу). И по таблице генетического кода находим нужную аминокислоту.

Известно, что комплементарные цепи нуклеиновых кислот антипараллельны (5’ концу одной цепи соответствует 3’ конец другой цепи). Синтез нуклеиновых кислот начинается с 5’ конца. Рибосома движется по иРНК в направлении от 5’ к 3’ концу. Ген имеет кодирующую и некодирующую области.

Все виды РНК синтезируется на ДНК-матрице. В цепи РНК и ДНК могут иметься специальные комплементарные участки- паллиндромы, благодаря которым могут образоваться вторичная структура. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли т-РНК имеет следующую последовательность:

5’-ГААТТЦЦТГЦЦГААТТЦ-3’

3’-ЦТТААГГАЦГГЦТТААГ-5’

Установить нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте. Найдите на данном участке палиндром и установите вторичную структуру центральной петли т-РНК. Определить аминокислоту, которую будет переносить  эта т-РНК в процессе биосинтеза белка, если антикодон равноудален от концов палиндрома.

Решение:

  1. 5’-ГААУУЦЦУГЦЦГААУУЦ-3’
  2. Палиндром в последовательности

5’-ГААУЦ-3’

      3’-ЦУУАГ-5’

  1. Вторичная структура тРНК

5’-ГААУЦ

      3’-ЦУУАГ-5’СИНИМ Цветом свернуть в клубок

4. Нуклеотидная последовательность антикодона в тРНК 5’- УГЦ-3’соответствует кодону

3’-АЦГ-5’

5. По таблице находим аминокислоту: ала

Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот

Генетическая информация в клетке

Воспроизведение себе подобных является одним из фундаментальных свойств живого. Благодаря этому явлению существует сходство не только между организмами, но и между отдельными клетками, а также их органоидами (митохондриями и пластидами). Материальной основой этого сходства является передача зашифрованной в последовательности нуклеотидов ДНК генетической информации, которая осуществляется благодаря процессам репликации (самоудвоения) ДНК. Реа лизуются все признаки и свойства клеток и организмов благодаря белкам, структуру которых в первую очередь и определяют последовательности нуклеотидов ДНК. Поэтому первостепенное значение в процессах метаболизма играет именно биосинтез нуклеиновых кислот и белка. Структурной единицей наследственной информации является ген.

Гены, генетический код и его свойства

Наследственная информация в клетке не является монолитной, она разбита на отдельные «слова» — гены.

Ген — это элементарная единица генетической информации.

Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, дали нам понимание того, что у человека всего около 25–30 тыс. генов, но информация с большей части нашей ДНК не считывается никогда, так как в ней содержится огромное количество бессмысленных участков, повторов и генов, кодирующих признаки, утратившие значение для человека (хвост, оволосение тела и др.). Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы большего количества людей и станет понятно, чем же все-таки они различаются.

Гены, кодирующие первичную структуру белка, рибосомальной или транспортной РНК называются структурными, а гены, обеспечивающие активацию или подавление считывания информации со структурных генов, — регуляторными. Однако даже структурные гены содержат регуляторные участки.

Наследственная информация организмов зашифрована в ДНК в виде определенных сочетаний нуклеотидов и их последовательности — генетического кода. Его свойствами являются: триплетность, специфичность, универсальность, избыточность и неперекрываемость. Кроме того, в генетическом коде отсутствуют знаки препинания.

Каждая аминокислота закодирована в ДНК тремя нуклеотидами — триплетом, например, метионин закодирован триплетом ТАЦ, то есть код триплетен. С другой стороны, каждый триплет кодирует только одну аминокислоту, в чем заключается его специфичность или однозначность. Генетический код универсален для всех живых организмов, то есть наследственная информация о белках человека может считываться бактериями и наоборот. Это свидетельствует о единстве происхождения органического мира. Однако 64 комбинациям нуклеотидов по три соответствует только 20 аминокислот, вследствие чего одну аминокислоту может кодировать 2–6 триплетов, то есть генетический код избыточен, или вырожден. Три триплета не имеют соответствующих аминокислот, их называют стоп-кодонами, так как они обозначают окончание синтеза полипептидной цепи.

Последовательность оснований в триплетах ДНК и кодируемые ими аминокислоты

*Стоп-кодон, означающий конец синтеза полипептидной цепи.

Сокращения названий аминокислот:

Ала — аланин

Арг — аргинин

Асн — аспарагин

Асп — аспарагиновая кислота

Вал — валин

Гис — гистидин

Гли — глицин

Глн — глутамин

Глу — глутаминовая кислота

Иле — изолейцин

Лей — лейцин

Лиз — лизин

Мет — метионин

Про — пролин

Сер — серин

Тир — тирозин

Тре — треонин

Три — триптофан

Фен — фенилаланин

Цис — цистеин

Если начать считывание генетической информации не с первого нуклеотида в триплете, а со второго, то произойдет не только сдвижка рамки считывания — синтезированный таким образом белок будет совсем иным не только по последовательности нуклеотидов, но и по структуре и свойствам. Между триплетами отсутствуют какие бы то ни было знаки препинания, поэтому нет никаких препятствий для сдвижки рамки считывания, что открывает простор для возникновения и сохранения мутаций.

Матричный характер реакций биосинтеза

Клетки бактерий способны удваиваться каждые 20–30 минут, а клетки эукариот — каждые сутки и даже чаще, что требует высокой скорости и точности репликации ДНК. Кроме того, каждая клетка содержит сотни и тысячи копий многих белков, особенно ферментов, следовательно, для их воспроизведения неприемлем «штучный» способ их производства. Более прогрессивным способом является штамповка, которая позволяет получить многочисленные точные копии продукта и к тому же снизить его себестоимость. Для штамповки необходима матрица, с которой осуществляется оттиск.

В клетках принцип матричного синтеза заключается в том, что новые молекулы белков и нуклеиновых кислот синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).

Биосинтез белка и нуклеиновых кислот

Репликация ДНК. ДНК представляет собой двухцепочечный биополимер, мономерами которого являются нуклеотиды. Если бы биосинтез ДНК происходил по принципу ксерокопирования, то неизбежно возникали бы многочисленные искажения и погрешности в наследственной информации, которые в конечном итоге привели бы к гибели новых организмов. Поэтому процесс удвоения ДНК происходит иным, полуконсервативным способом: молекула ДНК расплетается, и на каждой из цепей синтезируется новая цепь по принципу комплементарности. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называется репликацией (от лат. репликацио — повторение). В результате репликации образуются две абсолютно точные копии материнской молекулы ДНК, каждая из которых несет по одной копии материнской.

Процесс репликации на самом деле крайне сложен, так как в нем участвует целый ряд белков. Одни из них раскручивают двойную спираль ДНК, другие разрывают водородные связи между нуклеотидами комплементарных цепей, третьи (например, фермент ДНК-полимераза) подбирают по принципу комплементарности новые нуклеотиды и т. д. Образовавшиеся в результате репликации две молекулы ДНК в процессе деления расходятся по двум вновь образующимся дочерним клеткам.

Ошибки в процессе репликации возникают крайне редко, однако если они и происходят, то очень быстро устраняются как ДНК-полимеразами, так и специальными ферментами репарации, поскольку любая ошибка в последовательности нуклеотидов может привести к необратимому изменению структуры и функций белка и, в конечном итоге, неблагоприятно сказаться на жизнеспособности новой клетки или даже особи.

Биосинтез белка. Как образно выразился выдающийся философ XIX века Ф. Энгельс: «Жизнь есть форма существования белковых тел». Структура и свойства белковых молекул определяются их первичной структурой, т. е. последовательностью аминокислот, зашифрованной в ДНК. От точности воспроизведения этой информации зависит не только существование самого полипептида, но и функционирование клетки в целом, поэтому процесс синтеза белка имеет огромное значение. Он, по-видимому, является самым сложным процессом синтеза в клетке, поскольку здесь участвует до трехсот различных ферментов и других макромолекул. Кроме того, он протекает с высокой скоростью, что требует еще большей точности.

В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.

Транскрипция (от лат. транскрипцио — переписывание) — это биосинтез молекул иРНК на матрице ДНК.

Поскольку молекула ДНК содержит две антипараллельных цепи, то считывание информации с обеих цепей привело бы к образованию совершенно различных иРНК, поэтому их биосинтез возможен только на одной из цепей, которую называют кодирующей, или кодогенной, в отличие от второй, некодирующей, или некодогенной. Обеспечивает процесс переписывания специальный фермент РНК-полимераза, который подбирает нуклеотиды РНК по принципу комплементарности. Этот процесс может протекать как в ядре, так и в органоидах, имеющих собственную ДНК, — митохондриях и пластидах.

Синтезированные в процессе транскрипции молекулы иРНК проходят сложный процесс подготовки к трансляции (митохондриальные и пластидные иРНК могут оставаться внутри органоидов, где и происходит второй этап биосинтеза белка). В процессе созревания иРНК к ней присоединяются первые три нуклеотида (АУГ) и хвост из адениловых нуклеотидов, длина которого определяет, сколько копий белка может синтезироваться на данной молекуле. Только потом зрелые иРНК покидают ядро через ядерные поры.

Параллельно в цитоплазме происходит процесс активации аминокислот, в ходе которого аминокислота присоединяется к соответствующей свободной тРНК. Этот процесс катализируется специальным ферментом, на него затрачивается АТФ.

Трансляция (от лат. трансляцио — передача) — это биосинтез полипептидной цепи на матрице иРНК, при котором происходит перевод генетической информации в последовательность аминокислот полипептидной цепи.

Второй этап синтеза белка чаще всего происходит в цитоплазме, например на шероховатой ЭПС. Для его протекания необходимы наличие рибосом, активация тРНК, в ходе которой они присоединяют соответствующие аминокислоты, присутствие ионов Mg2+, а также оптимальные условия среды (температура, рН, давление и т. д.).

Для начала трансляции (инициации) к готовой к синтезу молекуле иРНК присоединяется малая субъединица рибосомы, а затем по принципу комплементарности к первому кодону (АУГ) подбирается тРНК, несущая аминокислоту метионин. Лишь после этого присоединяется большая субъединица рибосомы. В пределах собранной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону присоединяется вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь. Рибосома передвигается на один кодон иРНК; первая из тРНК, освободившаяся от аминокислоты, возвращается в цитоплазму за следующей аминокислотой, а фрагмент будущей полипептидной цепи как бы повисает на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется и шаг за шагом полипептидная цепь удлиняется, т. е. происходит ее элонгация.

Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК встретится специфическая последовательность нуклеотидов, которая не кодирует аминокислоту (стоп-кодон). После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок приобретает соответствующую структуру и транспортируется в ту часть клетки, где он будет выполнять свои функции.

Трансляция является весьма энергоемким процессом, поскольку на присоединение одной аминокислоты к тРНК расходуется энергия одной молекулы АТФ, еще несколько используются для продвижения рибосомы по молекуле иРНК.

Для ускорения синтеза определенных белковых молекул к молекуле иРНК могут присоединяться последовательно несколько рибосом, которые образуют единую структуру — полисому.

Задачи по цитологии на ЕГЭ по биологии

  • Типы задач по цитологии

  • Решение задач первого типа

  • Решение задач второго типа

  • Решение задач третьего типа

  • Решение задач четвертого типа

  • Решение задач пятого типа

  • Решение задач шестого типа

  • Решение задач седьмого типа

  • Примеры задач для самостоятельного решения

  • Приложение I Генетический код (и-РНК)

Автор статьи — Д. А. Соловков, кандидат биологических наук

к оглавлению ▴

Типы задач по цитологии

Задачи по цитологии, которые встречаются в ЕГЭ, можно разбить на семь основных типов. Первый тип связан с определением процентного содержания нуклеотидов в ДНК и чаще всего встречается в части А экзамена. Ко второму относятся расчетные задачи, посвященные определению количества аминокислот в белке, а также количеству нуклеотидов и триплетов в ДНК или РНК. Этот тип задач может встретиться как в части А, так в части С.

Задачи по цитологии типов 3, 4 и 5 посвящены работе с таблицей генетического кода, а также требуют от абитуриента знаний по процессам транскрипции и трансляции. Такие задачи составляют большинство вопросов С5 в ЕГЭ.

Задачи типов 6 и 7 появились в ЕГЭ относительно недавно, и они также могут встретиться абитуриенту в части С. Шестой тип основан на знаниях об изменениях генетического набора клетки во время митоза и мейоза, а седьмой тип проверяет у учащегося усвоения материала по диссимиляции в клетке эукариот.

Ниже предложены решения задач всех типов и приведены примеры для самостоятельной работы. В приложении дана таблица генетического кода, используемая при решении.

к оглавлению ▴

Решение задач первого типа

Основная информация:

  • В ДНК существует 4 разновидности нуклеотидов: А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин).
  • В 1953 г Дж.Уотсон и Ф.Крик открыли, что молекула ДНК представляет собой двойную спираль.
  • Цепи комплементарны друг другу: напротив аденина в одной цепи всегда находится тимин в другой и наоборот (А-Т и Т-А); напротив цитозина — гуанин (Ц-Г и Г-Ц).
  • В ДНК количество аденина и гуанина равно числу цитозина и тимина, а также А=Т и Ц=Г (правило Чаргаффа).

Задача: в молекуле ДНК содержится 17% аденина. Определите, сколько (в %) в этой молекуле содержится других нуклеотидов.

Решение: количество аденина равно количеству тимина, следовательно, тимина в этой молекуле содержится 17%. На гуанин и цитозин приходится 100% - 17% - 17% = 66%. Т.к. их количества равны, то Ц=Г=33%.

к оглавлению ▴

Решение задач второго типа

Основная информация:

  • Аминокислоты, необходимые для синтеза белка, доставляются в рибосомы с помощью т-РНК. Каждая молекула т-РНК переносит только одну аминокислоту.
  • Информация о первичной структуре молекулы белка зашифрована в молекуле ДНК.
  • Каждая аминокислота зашифрована последовательностью из трех нуклеотидов. Эта последовательность называется триплетом или кодоном.

Задача: в трансляции участвовало 30 молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

Решение: если в синтезе участвовало 30 т-РНК, то они перенесли 30 аминокислот. Поскольку одна аминокислота кодируется одним триплетом, то в гене будет 30 триплетов или 90 нуклеотидов.

к оглавлению ▴

Решение задач третьего типа

Основная информация:

  • Транскрипция — это процесс синтеза и-РНК по матрице ДНК.
  • Транскрипция осуществляется по правилу комплементарности.
  • В состав РНК вместо тимина входит урацил

Задача: фрагмент одной из цепей ДНК имеет следующее строение: ААГГЦТАЦГТТГ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка.

Решение: по правилу комплементарности определяем фрагмент и-РНК и разбиваем его на триплеты: УУЦ-ЦГА-УГЦ-ААУ. По таблице генетического кода определяем последовательность аминокислот: фен-арг-цис-асн.

к оглавлению ▴

Решение задач четвертого типа

Основная информация:

  • Антикодон — это последовательность из трех нуклеотидов в т-РНК, комплементарных нуклеотидам кодона и-РНК. В состав т-РНК и и-РНК входят одни те же нуклеотиды.
  • Молекула и-РНК синтезируется на ДНК по правилу комплементарности.
  • В состав ДНК вместо урацила входит тимин.

Задача: фрагмент и-РНК имеет следующее строение: ГАУГАГУАЦУУЦААА. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК.

Решение: разбиваем и-РНК на триплеты ГАУ-ГАГ-УАЦ-УУЦ-ААА и определяем последовательность аминокислот, используя таблицу генетического кода: асп-глу-тир-фен-лиз. В данном фрагменте содержится 5 триплетов, поэтому в синтезе будет участвовать 5 т-РНК. Их антикодоны определяем по правилу комплементарности: ЦУА, ЦУЦ, АУГ, ААГ, УУУ. Также по правилу комплементарности определяем фрагмент ДНК (по и-РНК!!!): ЦТАЦТЦАТГААГТТТ.

к оглавлению ▴

Решение задач пятого типа

Основная информация:

  • Молекула т-РНК синтезируется на ДНК по правилу комплементарности.
  • Не забудьте, что в состав РНК вместо тимина входит урацил.
  • Антикодон — это последовательность из трех нуклеотидов, комплементарных нуклеотидам кодона в и-РНК. В состав т-РНК и и-РНК входят одни те же нуклеотиды.

Задача: фрагмент ДНК имеет следующую последовательность нуклеотидов ТТАГЦЦГАТЦЦГ. Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.

Решение: определяем состав молекулы т-РНК: ААУЦГГЦУАГГЦ и находим третий триплет — это ЦУА. Это антикодону комплементарен триплет и-РНК — ГАУ. Он кодирует аминокислоту асп, которую и переносит данная т-РНК.

к оглавлению ▴

Решение задач шестого типа

Основная информация:

  • Два основных способа деления клеток — митоз и мейоз.
  • Изменение генетического набора в клетке во время митоза и мейоза.

Задача: в клетке животного диплоидный набор хромосом равен 34. Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.

Решение: По условию, rm 2n=34. Генетический набор:

к оглавлению ▴

Решение задач седьмого типа

Основная информация:

  • Что такое обмен веществ, диссимиляция и ассимиляция.
  • Диссимиляция у аэробных и анаэробных организмов, ее особенности.
  • Сколько этапов в диссимиляции, где они проходят, какие химические реакции проходят во время каждого этапа.

Задача: в диссимиляцию вступило 10 молекул глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции.

Решение: запишем уравнение гликолиза: rm C_6H_{12}O_6 = 2ПВК + 4Н + 2АТФ. Поскольку из одной молекулы глюкозы образуется 2 молекулы ПВК и 2АТФ, следовательно, синтезируется 20 АТФ. После энергетического этапа диссимиляции образуется 36 молекул АТФ (при распаде 1 молекулы глюкозы), следовательно, синтезируется 360 АТФ. Суммарный эффект диссимиляции равен rm 360+20=380 АТФ.

к оглавлению ▴

Примеры задач для самостоятельного решения

  1. В молекуле ДНК содержится rm 31% аденина. Определите, сколько (в %) в этой молекуле содержится других нуклеотидов.
  2. В трансляции участвовало 50 молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.
  3. Фрагмент ДНК состоит из 72 нуклеотидов. Определите число триплетов и нуклеотидов в иРНК, а также количество аминокислот, входящих в состав образующегося белка.
  4. Фрагмент одной из цепей ДНК имеет следующее строение: ГГЦТЦТАГЦТТЦ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).
  5. Фрагмент и-РНК имеет следующее строение: ГЦУААУГУУЦУУУАЦ. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).
  6. Фрагмент ДНК имеет следующую последовательность нуклеотидов АГЦЦГАЦТТГЦЦ. Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.
  7. В клетке животного диплоидный набор хромосом равен 20. Определите количество молекул ДНК перед митозом, после митоза, после первого и второго деления мейоза.
  8. В диссимиляцию вступило 15 молекул глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции.
  9. В цикл Кребса вступило 6 молекул ПВК. Определите количество АТФ после энергетического этапа, суммарный эффект диссимиляции и количество молекул глюкозы, вступившей в диссимиляцию.

Ответы:

  1. Т=31%, Г=Ц= по 19%.
  2. 50 аминокислот, 50 триплетов, 150 нуклеотидов.
  3. 24 триплета, 24 аминокислоты, 24 молекулы т-РНК.
  4. и-РНК: ЦЦГ-АГА-УЦГ-ААГ. Аминокислотная последовательность: про-арг-сер-лиз.
  5. Фрагмент ДНК: ЦГАТТАЦААГАААТГ. Антикодоны т-РНК: ЦГА, УУА, ЦАА, ГАА, АУГ. Аминокислотная последовательность: ала-асн-вал-лей-тир.
  6. т-РНК: УЦГ-ГЦУ-ГАА-ЦГГ. Антикодон ГАА, кодон и-РНК — ЦУУ, переносимая аминокислота — лей.
  7. rm 2n=20. Генетический набор:
    1. перед митозом 40 молекул ДНК;
    2. после митоза 20 молекулы ДНК;
    3. после первого деления мейоза 20 молекул ДНК;
    4. после второго деления мейоза 10 молекул ДНК.
  8. Поскольку из одной молекулы глюкозы образуется 2 молекулы ПВК и 2АТФ, следовательно, синтезируется 30 АТФ. После энергетического этапа диссимиляции образуется 36 молекул АТФ (при распаде 1 молекулы глюкозы), следовательно, синтезируется 540 АТФ. Суммарный эффект диссимиляции равен 540+30=570 АТФ.
  9. В цикл Кребса вступило 6 молекул ПВК, следовательно, распалось 3 молекулы глюкозы. Количество АТФ после гликолиза — 6 молекул, после энергетического этапа — 108 молекул, суммарный эффект диссимиляции 114 молекул АТФ.

Итак, в этой статье приведены основные типы задач по цитологии, которые могут встретиться абитуриенту в ЕГЭ по биологии. Надеемся, что варианты задач и их решение будет полезно всем при подготовке к экзамену. Удачи!

Смотри также: Подборка заданий по цитологии на ЕГЭ по биологии с решениями и ответами.

к оглавлению ▴

Приложение I Генетический код (и-РНК)

Первое основание Второе основание Третье основание
У Ц А Г
У Фен Сер Тир Цис У
Фен Сер Тир Цис Ц
Лей Сер А
Лей Сер Три Г
Ц Лей Про Гис Арг У
Лей Про Гис Арг Ц
Лей Про Глн Арг А
Лей Про Глн Арг Г
А Иле Тре Асн Сер У
Иле Тре Асн Сер Ц
Иле Тре Лиз Арг А
Мет Тре Лиз Арг Г
Г Вал Ала Асп Гли У
Вал Ала Асп Гли Ц
Вал Ала Глу Гли А
Вал Ала Глу Гли Г

Если вам понравился наш разбор задач по цитологии — записывайтесь на курсы подготовки к ЕГЭ по биологии онлайн

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задачи поu0026nbsp;цитологии на ЕГЭ по биологии» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.03.2023

Рамка считывания

Основная
статья:
 Открытая
рамка считывания

Поскольку
каждый кодон содержит три нуклеотида,
один и тот же генетический текст можно
прочитать тремя разными способами
(начиная с первого, второго и третьего
нуклеотидов), то есть в трех разных рамках
считывания
.
За некоторыми интересными исключениями,
значимой является информация,
закодированная только в одной рамке
считывания. По этой причине крайне
важным для синтеза белка рибосомой
является её правильное позиционирование
на стартовом AUG-кодоне — инициация
трансляции.

Схема
инициации трансляции у прокариот.

Начальная
стадия предусматривает связывание
малой рибосомной субъединицы (30S) с мРНК.
Это может происходить двумя способами:
либо сначала к мРНК присоединяется
комплекс, содержащий рибосомную
субчастицу (1), а затем к нему привлекается
тРНК в комплексе с IF2 и ГТФ (2), либо 30S
субъединица изначально связывается с
тРНК, а уже потом садится на мРНК (3). К
образовавшемуся комплексу приходит
большая (50S) рибосомная субъединица (4),
инициаторные факторы отсоединяются от
30S субчастицы, что сопровождается
гидролизом ГТФ белком IF2 (5), и собранная
рибосома начинает элонгировать цепь
(6). В правом нижнем углу дана схема
инициаторного участка прокариотической
мРНК. Отмечены 5′ и 3′ концы молекулы.
RBS — сайт связывания рибосомы, SD —
последовательность Шайн-Дальгарно,
AUG — инициаторный кодон

У эукариот

У
эукариот существуют два механизма
нахождения рибосомой стартового AUG:
кэп-зависимый (сканирующий) и кэп-независимый
(внутренняя инициация).

  • При сканирующем механизмерибосома
    (точнее, её малая субъединица) садится
    на 5′-конец мРНК в области кэпа и двигается
    вдоль молекулы мРНК, «сканируя» один
    кодон за другим, пока не наткнётся на
    инициаторный AUG. Для привлечения рибосомы
    к 5′-концу мРНК требуется специальная
    структура,кэп— 7-метилгуанин,
    прикреплённый к 5′-концевому нуклеотиду
    мРНК.

  • При механизме внутренней инициации,
    называемом у эукариот такжеIRES-зависимым
    механизмом
    , рибосома садится на
    внутренний участок мРНК, называемыйIRES(от
    англ.InternalRibosomalEntrySite,
    участок внутренней посадки рибосомы) —
    участок мРНК, обладающий выраженной
    вторичной структурой, позволяющей ему
    направлять рибосомы на стартовый AUG.
    По IRES-зависимому механизму инициируется
    синтез лишь на небольшой части клеточных
    мРНК, а также на РНК некоторыхвирусов[2].

Также
у эукариот возможна реинициация
трансляции
, когда после окончания
трансляции рибосома с белковыми факторами
не диссоциирует от мРНК, а перескакивает
с 3′ на 5′ конец мРНК и начинает инициацию
ещё раз. Такое возможно благодаря
замкнутой кольцевой форме мРНК в
цитоплазме.

[Править]Кэп-зависимый механизм

В
отличие от прокариот, инициация трансляции
у которых обеспечивается лишь тремя
белковыми факторами, трансляция
подавляющего большинства мРНК эукариот,
содержащих 5′-кэп[m7G(5′)ppp(5′)N]
и 3′ поли(А)-хвост, требует участия, по
крайней мере, 13 общих эукариотических
факторов инициации (eIF), представленных
31 полипептидом. Инициация трансляции
включает события между диссоциацией
рибосомы во время терминации в предыдущем
цикле трансляции и сборкой рибосомы,
готовой к элонгации, на старт-кодоне
мРНК. Во время инициации аппарат
трансляции решает следующие задачи:

  1. диссоциация и антиассоциация рибосомных
    субъединиц;

  2. выбор инициаторной метионил-тРНК
    (Met-tRNAiMet);

  3. связывание 5′-кэпа, связывание поли(А),
    сканирование;

  4. выбор правильного старт-кодона;

  5. объединение рибосомных субъединиц на
    старт-кодоне[3][4][5][6][7]

[править]

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Наследственная информация – это информация о строении белка (информация о том, какие аминокислоты в каком порядке соединять при синтезе первичной структуры белка).

Информация о строении белков закодирована в ДНК, которая у
эукариот входит в состав хромосом и находится в ядре. Участок ДНК
(хромосомы), в котором закодирована информация об одном белке,
называется ген.

Транскрипция – это переписывание информации с ДНК на иРНК
(информационную РНК). иРНК переносит информацию из ядра в цитоплазму, к
месту синтеза белка (к рибосоме).

Трансляция – это процесс биосинтеза белка на рибосоме.

Реакции транскрипции, трансляции, а так же репликации (удвоения ДНК) являются реакциями матричного синтеза. ДНК служит матрицей для синтеза иРНК, иРНК служит матрицей для синтеза белка.

Генетический код – это способ, с помощью которого информация о строении белка записана в ДНК.

Свойства генетического кода:

1) Триплетность
Одна аминокислота кодируется тремя нуклеотидами. В ДНК они
называются триплет, в иРНК – кодон, в тРНК – антикодон. Всего
существует 64 триплета, 61 из них кодирует аминокислоты, а 3 являются
стоп-сигналами – показывают рибосоме место, в котором надо прекратить
синтез белка.

2) Вырожденность (избыточность)
Кодонов, кодирующих аминокислоты, существует 61, а аминокислот
только 20, поэтому большинство аминокислот кодируются несколькими
кодонами. Например, аминокислота аланин кодируется четырьмя кодонами –
ГЦУ, ГЦЦ, ГЦА, ГЦГ. Исключение – метионин, он  кодируется одним кодоном
АУГ – у эукариот это старт-кодон при трансляции.

3) Однозначность
Каждый кодон кодирует только одну аминокислоту. Например, кодон ГЦУ кодирует только одну аминокислоту – аланин.

4) Непрерывность
Между отдельными триплетами нет никаких разделителей («знаков
препинания»). Из-за этого при выпадении или вставке одного нуклеотида
происходит «сдвиг рамки считывания»: начиная с места мутации считывание
триплетного кода нарушается, синтезируется совершенно другой белок.

5) Универсальность
Генетический код одинаков для всех живых организмов на Земле.

Задачи на количество нуклеотидов/аминокислот
1 аминокислота – 3 нуклеотида
10 аминокислот – 30 нуклеотидов
44 аминокислоты – 132 нуклеотида и т.д.

1. Участок одной из двух цепей молекулы ДНК содержит 300 нуклеотидов с
аденином (А), 100 нуклеотидов с тимином (Т), 150 нуклеотидов с
гуанином (Г) и 200 нуклеотидов с цитозином (Ц). Какое количество
нуклеотидов с А, Т, Г и Ц содержится в двуцепочечной молекуле ДНК?
Сколько аминокислот должен содержать белок, кодируемый этим
участком молекулы ДНК? Ответ поясните.

 Ответ

Если в одной цепи ДНК 300 А, 100 Т, 150 Г и
200 Ц, то в комплементарной ей цепи, соответственно, 300 Т, 100 А, 150 Ц
и 200 Г. Следовательно, в двуцепочечной ДНК 400 А, 400 Т, 350 Г и 350
Ц.

Если в одной цепи ДНК 300 + 100 +150 + 200 = 750 нуклеотидов,
значит там 750 / 3 = 250 триплетов. Следовательно, этот участок ДНК
кодирует 250 аминокислот.

2. В одной молекуле ДНК нуклеодиды с тимином (Т) составляют 24%
от общего числа нуклеотидов. Определите количество (в %) нуклеотидов с
гуанином (Г), аденином (А), цитозином (Ц) в молекуле ДНК и объясните
полученные результаты.

Ответ

Если 24% Т, значит, по принципу
комплементарности 24% А. В сумме на А и Т приходится 48%, следовательно,
на Г и Ц в сумме приходится 100%-48%=52%. Количество Г равно количеству
Ц, 52% / 2 = 26%.

3. В процессе трансляции участвовало 30 молекул тРНК. Определите
число аминокислот, входящих в состав синтезируемого белка, а также
число триплетов и нуклеотидов в гене, который кодирует этот белок.

Ответ

Если было 30 тРНК (каждая несла по одной
аминокислоте) значит, белок содержит 30 аминокислот. Каждая аминокислота
кодируется одним триплетом, следовательно, в гене 30 триплетов. Каждый
триплет состоит из 3 нуклеотидов, следовательно, в гене 30х3=90
нуклеотидов.

4. Белок состоит из 100 аминокислот. Установите, во сколько раз
молекулярная масса участка гена, кодирующего данный белок, превышает
молекулярную массу белка, если средняя молекулярная масса аминокислоты –
110, а нуклеотида – 300. Ответ поясните.

Ответ

Молекулярная масса белка из 100 аминокислот
100 х 110 = 11 000. Сто аминокислот кодируется трехстами нуклеотидами,
молекулярная масса гена 300 х 300 = 90 000. Следовательно, молекулярная
масса гена больше в 90/11= 8,18 раз.

5. Участок молекулы ДНК содержит 50 нуклеотидов с гуанином (Г).
Определите, сколько нуклеотидов с цитозином (Ц) содержится на этом
участке, а также их число в каждой из дочерних молекул ДНК, образующихся
в процессе репликации. Поясните каждый полученный результат.

Ответ

Напротив гуанина в двойной цепи ДНК стоит
цитозин, следовательно, в исходной молекуле 50 нуклеотидов с цитозином. В
результате репликации получаются молекулы ДНК, полностью идентичные
материнской, следовательно, в каждой из них тоже будет по 50 молекул
цитозина и 50 молекул гуанина.

Задачи на АТГЦ
ДНК иРНК тРНК
   А        У        А
   Т        А        У
   Г        Ц        Г
   Ц        Г        Ц

Задания 27 проверяют умения применять знания по цитологии при решении задач с использованием таблицы генетического кода, определять хромосомный набор клеток гаметофита и спорофита у растений, число хромосом и молекул ДНК в разных фазах деления клетки. От выпускника требуется решать задачи на заданную тему, обосновывать ход решения и объяснять полученные результаты.

Для решения задач по цитологии необходимо очень хорошо понимать биологический смысл всех процессов, протекающих в клетке (метаболизм, деление), последовательность их этапов и фаз. А также знать особенности строения нуклеиновых кислот, их свойства и функции; свойства генетического кода, уметь пользоваться таблицей генетического кода. Ещё очень важно правильно оформлять решение задачи, отвечать на все вопросы и комментировать полученные результаты.

Задания 27 предполагают чёткую структуру ответа и оцениваются максимально в 3 балла при наличии трёх или четырёх элементов. Такие задания содержат закрытый ряд требований («Правильный ответ должен содержать следующие позиции»). Все приведённые в эталоне ответа элементы значимы и не имеют альтернативных вариантов. В листе ответа выпускник должен представить ход решения задачи с комментариями и объяснениями, без которых невозможно получить полный ответ.

Задание с тремя элементами ответа

Содержание верного ответа и указания по оцениванию
(правильный ответ должен содержать следующие позиции)
Баллы
Элементы ответа:
1) 
2) 
3) 
 
Ответ включает в себя все названные выше элементы и не содержит биологических ошибок 3
Ответ включает в себя два из названных выше элементов, которые не содержат биологических ошибок 2
Ответ включает в себя один из названных выше элементов, который не содержит биологических ошибок 1
Ответ неправильный 0
Максимальный балл 3

Задание с четырьмя элементами ответа

Содержание верного ответа и указания по оцениванию
(правильный ответ должен содержать следующие позиции)
Баллы
Элементы ответа:
1)
2) 
3) 
4) 
 
Ответ включает в себя все названные выше элементы и не содержит биологических ошибок 3
Ответ включает в себя три из названных выше элементов, которые не содержат биологических ошибок 2
Ответ включает в себя два из названных выше элементов, которые не содержат биологических ошибок 1
Ответ неправильный 0
Максимальный балл 3

  • Для решения задач с использованием таблицы генетического кода необходимо помнить следующие правила и принципы:
  1. Смысловая и транскрибируемая цепи ДНК антипараллельны.
  2. Смысловая цепь начинается с 5´- конца, а транскрибируемая – с 3 ´- конца
  3. Кодоны и антикодоны принято писать с 5 ´- конца на 3 ´- конец.
  4. В таблице генетического кода кодоны записаны с 5 ´- конца на 3 ´- конец.
  5. Транскрипция идёт в направлении 3 ´ → 5´, а трансляция в направлении 5 ´ → 3 ´.
  6. В молекулярной биологии принято писать смысловую цепь ДНК сверху, а транскрибируемую цепь под ней.
  • Для решения задач по определению числа хромосом, молекул ДНК в разных фазах деления клетки необходимо помнить, что:
  1. Перед митозом и мейозом в интерфазе происходит удвоение числа молекул ДНК (синтетический период интерфазы), а число хромосом остаётся прежним – 2n.
  2. В профазе и метафазе митоза и мейоза число хромосом и молекул ДНК не изменяется.
  3. Если в задаче указано конкретное число хромосом, то при решении задачи указывают число хромосом и молекул ДНК, не формулы.

Фаза Митоз

Мейоз

1-е деление 2-е деление
И 2n2c; 2n4c 2n2c; 2n4c n2c
П 2n4c 2n4c n2c
М 2n4c 2n4c n2c
А 2n2c
(у каждого полюса клетки)
n2c
(у каждого полюса клетки)
nc
(у каждого полюса клетки)
Т 2n2c n2c nc
  2 клетки 2 клетки 4 клетки
  • Для решения задач по определению хромосомного набора клеток гаметофита и спорофита у растений необходимо помнить, что:
  1. У растений споры и гаметы гаплоидны.
  2. Споры образуются в результате мейоза, а гаметы – в результате митоза.
  3. У водорослей и мхов в жизненном цикле преобладает гаметофит (половое поколение), а у папоротников, хвоща, плаунов, голосеменных и покрытосеменных – спорофит (бесполое поколение). У бурых водорослей преобладает спорофит.
  4. Зигота делится путём митоза и даёт начало всем тканям и органам растения.
  5. У семенных растений мегаспоры (макроспоры) образуются из клеток семязачатка в результате мейоза; клетки зародышевого мешка образуются из макроспоры путём митоза.
  6. У голосеменных эндосперм гаплоидный и образуется до оплодотворения, у покрытосеменных – 3n, образуется в результате слияния спермия (n) и центральной клетки (2n).
  7. Пыльцевое зерно состоит из двух клеток – вегетативной и генеративной; за счёт вегетативной клетки образуется пыльцевая трубка, генеративная делится митозом, в результате образуются два спермия.
  8. У покрытосеменных оба спермия участвуют в оплодотворении, у голосеменных в оплодотворении принимает участие один спермий, а другой погибает.

Рассмотрим примеры решения задач по цитологии.

Пример 1.

Фрагмент начала гена имеет следующую последовательность нуклеотидов (верхняя цепь – смысловая, нижняя – транскрибируемая):

5´ − АЦАТГЦЦАГГЦТАТТЦЦАГЦ −3´

3´ − ТГТАЦГГТЦЦГАТААГГТЦГ −5´

 Ген содержит информативную и неинформативную части для трансляции. Информативная часть гена начинается с триплета, кодирующего аминокислоту Мет. С какого нуклеотида начинается информативная часть гена? Определите последовательность аминокислот во фрагменте полипептидной цепи. Ответ поясните. Для выполнения задания используйте таблицу генетического кода.

Решение:

  1. По принципу комплементарности строим цепь и-РНК и обозначаем 5´- и 3´-концы.
  2. ДНК: 3´– Т Г Т А Ц Г Г Т Ц Ц Г А Т А А Г Г Т Ц Г
    и-РНК 5´– А Ц А У Г Ц Ц А Г Г Ц У А У У Ц Ц А Г Ц
  3. В условии сказано, что информативная часть гена начинается с аминокислоты Мет. По таблице генетического кода определяем, что эту аминокислоту кодирует только один кодон и-РНК – АУГ. По принципу комплементарности определяем триплет в транскрибируемой цепи ДНК, соответствующий кодону 5´– АУГ –3´; это триплет 3´– ТАЦ –5´. Внимание! В таблице генетического кода кодоны и-РНК записаны в направлении 5´→ 3´.Следовательно, информативная часть гена начинается с третьего нуклеотида Т в транскрибируемой цепи ДНК.
  4. По таблице генетического кода определяем аминокислотный состав белка, начиная с кодона АУГ.

    Белок: Мет – Про – Гли – Тир – Сер – Сер.

Пример 2.

Гаплоидный набор хромосом цесарки составляет 38. Сколько хромосом и молекул ДНК содержится в клетках кожи перед делением, в анафазе и телофазе митоза? Ответ поясните.

Решение:

В задаче рассматривается непрямое деление клетки – митоз. Таким способом делятся соматические клетки, которые имеют диплоидный набор хромосом. Обязательно необходимо указать конкретное число хромосом и молекул ДНК!

  1. Клетки кожи цесарки – это соматические клетки, =>, они имеют диплоидный набор хромосом (2n) – 38 × 2 = 76 (хромосом).
  2. Перед митозом в синтетическом периоде (S) происходит самоудвоение молекул ДНК, =>, клетки имеют набор 2n4c: 76 хромосом и 152 молекулы ДНК.
  3. В анафазе митоза к противоположным полюсам клетки расходятся сестринские хроматиды, которые становятся самостоятельными хромосомами, =>, клетки кожи содержат 2n2c (у каждого полюса клетки): 76 хромосом и 76 молекул ДНК (у каждого полюса клетки) ИЛИ в анафазе в клетке содержатся 152 хромосомы и 152 молекулы ДНК.
  4. В телофазе митоза образуются две дочерние клетки с диплоидным набором хромосом 2n2c: 76 хромосом и 76 молекул ДНК.

Пример 3.

Какой хромосомный набор характерен для клеток пыльцевого зерна и спермиев сосны? Объясните, из каких исходных клеток и в результате какого деления образуются эти клетки.

Решение:

  1. клетки пыльцевого зерна сосны и спермии имеют набор хромосом – n (гаплоидный);
  2. клетки пыльцевого зерна сосны развиваются из гаплоидных спор митозом;
  3. спермии сосны развиваются из клеток пыльцевого зерна (генеративной клетки) митозом.

РЕКОМЕНДУЕМЫЕ ТОВАРЫ

Понравилась статья? Поделить с друзьями:
  • Рамка для экзамена
  • Расписание экзаменов кемгу 2022 2023
  • Рал экзамен аудит
  • Расписание экзаменов кгэу магистратура
  • Ракъинин муг гьаким къурбан сочинение