Разбор 18 задания егэ математика профильный уровень 2022

Уважаемый посетитель!

Если у вас есть вопрос, предложение или жалоба, пожалуйста, заполните короткую форму и изложите суть обращения в текстовом поле ниже. Мы обязательно с ним ознакомимся и в  30-дневный срок ответим на указанный вами адрес электронной почты

Статус Абитуриент Студент Родитель Соискатель Сотрудник Другое

Филиал Абакан Актобе Алагир Алматы Алушта Анапа Ангарск Архангельск Армавир Асбест Астана Астрахань Атырау Баку Балхаш Барановичи Барнаул Белая Калитва Белгород Бельцы Берлин Бишкек Благовещенск Бобров Бобруйск Борисов Боровичи Бронницы Брянск Бузулук Чехов Челябинск Череповец Черкесск Дамаск Дербент Димитровград Дмитров Долгопрудный Домодедово Дубай Дубна Душанбе Екатеринбург Электросталь Елец Элиста Ереван Евпатория Гана Гомель Гродно Грозный Хабаровск Ханты-Мансийск Хива Худжанд Иркутск Истра Иваново Ижевск Калининград Карабулак Караганда Каракол Кашира Казань Кемерово Киев Кинешма Киров Кизляр Королев Кострома Красноармейск Краснодар Красногорск Красноярск Краснознаменск Курган Курск Кызыл Липецк Лобня Магадан Махачкала Майкоп Минеральные Воды Минск Могилев Москва Моздок Мозырь Мурманск Набережные Челны Нальчик Наро-Фоминск Нижневартовск Нижний Новгород Нижний Тагил Ногинск Норильск Новокузнецк Новосибирск Новоуральск Ноябрьск Обнинск Одинцово Омск Орехово-Зуево Орел Оренбург Ош Озёры Павлодар Пенза Пермь Петропавловск Подольск Полоцк Псков Пушкино Пятигорск Радужный Ростов-на-Дону Рязань Рыбинск Ржев Сальск Самара Самарканд Санкт-Петербург Саратов Сергиев Посад Серпухов Севастополь Северодвинск Щербинка Шымкент Слоним Смоленск Солигорск Солнечногорск Ставрополь Сургут Светлогорск Сыктывкар Сызрань Тамбов Ташкент Тбилиси Терек Тихорецк Тобольск Тольятти Томск Троицк Тула Тверь Тюмень Уфа Ухта Улан-Удэ Ульяновск Ургенч Усть-Каменогорск Вёшенская Видное Владимир Владивосток Волгодонск Волгоград Волжск Воркута Воронеж Якутск Ярославль Юдино Жлобин Жуковский Златоуст Зубова Поляна Звенигород

Тип обращения Вопрос Предложение Благодарность Жалоба

Тема обращения Поступление Трудоустройство Обучение Оплата Кадровый резерв Внеучебная деятельность Работа автоматических сервисов университета Другое

* Все поля обязательны для заполнения

Я даю согласие на обработку персональных данных, согласен на получение информационных рассылок от Университета «Синергия» и соглашаюсь c  политикой конфиденциальности

Задание №18 – для олимпиадников?

Мы знаем, что в ЕГЭ по математике вторая часть кажется значительно сложнее первой. Но особенно много вопросов вызывает задание №18. Многие думают, что решить его под силам только олимпиадникам.

Но так ли это?

Задание №18 в ЕГЭ по математике: Как решать?
Давай попробуем разобраться, почему эта задача кажется такой необычной и сложной. А еще разберемся, как ее решать!

Формат задачи

По формату задача абсолютно стандартная. Она состоит из нескольких пунктов, за каждый из которых можно получить баллы. Давай посмотрим подробнее:

Пункт А

В этой части задачи в большинстве случаев надо дать ответ на вопрос о возможности или невозможности какой-то ситуации. Если ты отвечаешь, что ситуация возможна, значит, ты можешь подтвердить ее каким-то примером.
Кстати, чаще всего эта часть решается довольно легко. Найти пример не составит труда.
Главное — не торопиться и внимательно прочитать условие задачи!

Пункт Б

Этот пункт очень схож с пунктом А. Но очень часто решение пункта Б сводится к тому, что ситуация невозможна. И тебе остается только это доказать. Но не забудь, что невозможность ситуации доказывается в общем виде, а не на конкретном примере.
А как доказать? Обычно такое доказывается с помощью рассмотрения оценок, делимостей, ограничений и т.д.
Но это только звучит сложно и страшно. Если немного потренироваться, ты научишься очень быстро решать такие задачи.

Пункт В

Последний пункт чуть-чуть посложнее, но и получить за него можно 2 балла! С наибольшей вероятностью в пункте В нужно будет найти наименьшее или наибольшее значение величины, связанной с условием задачи.
Тебе нужно будет сделать оценку на искомую величину и привести пример, когда эта оценка выполняется. За каждый правильно выполненный шаг ты получишь по 1 баллу.

Алгоритм решения задачи

К сожалению, эту задачу не получится решить, подобрав типовой алгоритм. Тут придется поразмышлять. Но от этого интереснее!
Мы подготовили для тебя подборку тем, которые пригодятся тебе для решения №18.
Задание №18 в ЕГЭ по математике: Как решать?
Разбирая задание №18, ты потренируешь свой мозг и научишься решать нестандартные задачи.

Если ты переживаешь, оставь эту задачку напоследок. Решишь ее, когда останется время.

Ну а раз ты здесь, значит, ты хочешь получить высокие баллы и максимально в этом заинтересован!
И мы знаем, что у тебя все получится!


2022-03-21 17:59

ЕГЭ
Математика

За это задание ты можешь получить 4 балла. На решение дается около 40 минут. Уровень сложности: высокий.
Средний процент выполнения: 3.2%
Ответом к заданию 18 по математике (профильной) может быть развернутый ответ (полная запись решения с обоснованием выполненных действий).

Разбор сложных заданий в тг-канале

Задачи для практики

Задача 1

На доске выписаны числа $7$ и $8$. За один ход надо заменить написанные на доске числа $a$ и $b$ числами $(2a+3)$ и $(2+a+b)$. Например, из чисел $7$ и $8$ можно получить либо числа $(17;17)$, либо числа $(19;17)$.
а) Может ли после нескольких ходов на доске появиться число $77$?
б) Может ли через $101$ ход на доске появиться число $20008$?
в) Может ли через $205$ ходов на доске появиться два одинаковых числа?

Решение

а) Да, может. Пусть после первого хода получили числа (17; 17), после второго хода: 2 · 17 + 3 = 37 и 2 + 17 + 17 = 36; после третьего хода: 2 · 37 + 3 = 77 и 2 + 36 + 37 = 75.

б) Если числа a и b — разной чётности, то число (2a + 3) — нечётное и (2 + a + b) — нечётное.

Если числа a и b — одной чётности, то число (2a + 3) — нечётное, а (2 + a + b) — чётное. Таким образом, после нечётного числа ходов оба выписанных числа — нечётные числа и число 20008 после 101 хода на доске появиться не может.

в) Если после k-го хода на доске выписаны два одинаковых числа — числа n, то после (k + 1)-го хода будет число (2n + 3) и (2 + n + n), то есть (2n + 3) и (2 + 2n); а после (k + 2) хода можно выписать на доске числа 2 · (2n + 3) + 3 = 4n + 9 и 2 + 2n + 3 + 2n + 2 = 4n + 7, либо числа 2(2n + 2) + 3 = 4n + 7 и 2 + 2n + 2 + 2n + 3 = 4n + 7. После первого хода можно получить равные числа (17; 17).

Таким образом, равные числа можно выписать на доске после 1-го, 3-го, 5-го и т.д. ходов, то есть после всех нечётных ходов. Значит, и после 205-го хода могут быть выписаны на доске одинаковые числа.

Ответ: a)да; б)нет; в)да

Задача 2

На доске было написано 20 натуральных чисел (не обязательно различных), каждое из которых не превосходит $24$ и не равно $1$. Среднее арифметическое написанных чисел равнялось $6$. Вместо каждого из чисел на доске написали число, в два раза меньшее первоначального. Числа, которые после этого оказались не больше $1$, с доски стёрли. а) Могло ли оказаться так, что среднее арифметическое чисел, оставшихся на доске, больше $8{,}5$? б) Могло ли среднее арифметическое оставшихся на доске чисел оказаться больше $9$, но меньше $10$? в) Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.

Решение

а) Пусть первоначально на доске было 15 чисел, равных 2, 5 чисел, равных 41. Их среднее арифметическое равно ${15 · 2 + 5 · 18}/{20} = 6$.

Среднее арифметическое получившихся чисел равно ${5 · 9}/{5} = 9 > 8.5$. Среднее арифметическое оставшихся на доске чисел могло быть больше $16.5$.

б) Пусть с доски было стёрто $k$ чисел, сумма оставшихся была равна $S$, а стала ${S}/{2}$. По условию оказались стёрты только числа получившиеся из 2, поэтому ${S + 2k}/{20} = 6$.

Отсюда, $S = 120 — 2k$.

Среднее арифметическое оставшихся чисел равно ${S}/{2(20 — k)}$. Тогда ${120-2k}/{2(20-k)}={60-k}/{20-k}; 9 < {60 — 2k}/{20 — k)} < 10; 180 — 9k < 60 — k < 200 — 10k$,

${table180 — 9k < 60 — k; 60 — k < 200 — 2k;$ ${table8k > 120; 9k < 140;$ ${tablek > 15; k < 15{5}/{9};$. Таких целых чисел $k$ нет.

Среднее арифметическое оставшихся на доске натуральных чисел не могло оказаться больше 9 и меньше 10.

в) Найдём наибольшее возможное значение среднего арифметического $A = {60 — k}/{20 — k}$ оставшихся чисел в зависимости от целочисленного аргумента $k$ — первоначального количества чисел 2 на доске.

Имеем $A = {60 — k}/{20 — k} = 1 + {40}/{20 — k}$.

Число $A$ будет наибольшим, если наибольшим будет значение аргумента $k$. Оценим это значение. Каждое из первоначально написанных на доске чисел было не более $24$, поэтому $120 — 2k ≤ 24(20 — k)$.

$22k ≤ 360, k ≤ 16{4}/{11}, k ∈ N , k ≤ 16$.

Тогда $A ≤ 1 + {40}/{20 — 16} = 11$.

Приведём пример, показывающий, что среднее арифметическое оставшихся на доске чисел действительно могло стать равным $11$. Пусть первоначально на доске было записано 16 чисел, равных 2, 4 числа, равных 22.

Их среднее арифметическое ${16 · 2 + 4 · 22}/{20} =6$.

Среднее арифметическое оставшихся чисел стало равно ${4 · 11}/{4} = 11$.

Ответ: а)да; б)нет; в)11

Задача 3

На доске было написано $30$ натуральных чисел (не обязательно различных), каждое из которых больше $10$, но не превосходит $50$. Среднее арифметическое написанных чисел равнялось $21$. Вместо каждого из чисел на доске написали число, в два раза меньшее первоначального. Числа, которые после этого оказались меньше $6$, с доски стёрли.

а) Могло ли оказаться так, что среднее арифметическое чисел, оставшихся на доске, больше $16{,}5$?

б) Могло ли среднее арифметическое оставшихся на доске чисел оказаться больше $18$, но меньше $19$?

в) Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.

Решение

а) Пусть первоначально на доске было 20 чисел, равных 11, 10 чисел, равных 41. Их среднее арифметическое равно ${20 · 11 + 10 · 41}/{30} = 21$.

Среднее арифметическое получившихся чисел равно ${10 · 20.5}/{10} = 20.5$, $20.5 > 16.5$. Среднее арифметическое оставшихся на доске чисел могло быть больше $16.5$.

б) Пусть с доски было стёрто $k$ чисел, сумма оставшихся была равна $S$, а стала ${S}/{2}$. По условию оказались стёрты только числа получившиеся из 11, поэтому ${S + 11k}/{30} = 21$.

Отсюда, $S = 630 — 11k$.

Среднее арифметическое оставшихся чисел равно ${S}/{2(30 — k)}$. Тогда $18 < {630 — 11k}/{2(30 — k)} < 19; 1080 — 36k < 630 — 11k < 1140 — 38k$,

${table1080 — 36k < 630 — 11k; 1140 — 38k > 630 — 11k;$ ${table450 < 25k; 510 > 27k;$ ${tablek > 18; k < 18{24}/{27};$. Таких целых чисел $k$ нет.

Среднее арифметическое оставшихся на доске натуральных чисел не могло оказаться больше 18 и меньше 19.

в) Найдём наибольшее возможное значение среднего арифметического $A = {630 — 11k}/{2(30 — k)}$ оставшихся чисел в зависимости от целочисленного аргумента $k$ — первоначального количества чисел 18 на доске.

Имеем $A = {630 — 11k}/{2(30 — k)} = {11k — 630}/{2k — 60} = {{11}/{2}(2k — 60) — 300}/{2k — 60} = {11}/{2} — {300}/{2k — 60} = {11}/{2} + {150}/{30 — k}$.

Число $A$ будет наибольшим, если наибольшим будет значение аргумента $k$. Оценим это значение. Каждое из первоначально написанных на доске чисел было не более $50$, в конце на доске осталось $30 — k$ чисел, поэтому для суммы оставшихся чисел $S = 630 — 11k$ должно выполняться неравенство $630 — 11k ≤ 50(30 — k)$.

$39k ≤ 870, k ≤ {870}/{39} = 22{12}/{39}, k ∈ N , k ≤ 22$.

Тогда $A ≤ {11}/{2} + {150}/{30 — 22} = 24{1}/{4}$.

Приведём пример, показывающий, что среднее арифметическое оставшихся на доске чисел действительно могло стать равным $24{1}/{4}$. Пусть первоначально на доске было записано 22 числа, равных 11, 7 чисел, равных 50 и 1 число, равное 38.

Их среднее арифметическое ${22 · 11 + 7 · 50 + 38}/{30} = {242 + 350 + 38}/{30} = 21$.

Среднее арифметическое оставшихся чисел стало равно ${7 · {50}/{2} + {38}/{2}}/{8} = {388}/{16} = 24.25$.

Ответ: а)да; б)нет; в)24.25

Задача 4

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно $936$ и а) три; б) четыре; в) пять из них образуют геометрическую прогрессию?

Решение

Разложим число $936$ на простые множители (это может быть сделано единственным образом с точностью до порядка множителей). $936 = 2^3 · 3^2 · 13$.

а) Можно, например, $1, 2, 4, 9, 13$.

б) Предположим, что четыре из пяти различных натуральных чисел, произведение которых равно $936$, составляют возрастающую геометрическую прогрессию. Введём обозначения: $b_1 , b_2 = b_1 · q, b_3 = b_1 · q^2, b_4 = b_1 · q^3$, пятое число обозначим $b_5$.

Тогда $q = {b_2}/{b_1}$, причём $q$ — рациональное число, большее единицы. То гда $q = {m}/{n}$, где $m$ и $n$ — натуральные взаимно простые числа, $m > n ≥ 1$.

Получим:

$936 = b_1 · b_2 · b_3 · b_4 · b_5 = b_1^4 · q^6 · b_5 = b_1^4 · ({m}/{n})^6 · b_5 = b_1^4 · {m^6}/{n^6} · b_5$.

Так как $m$ и $n$ — взаимно просты, то и $m^6$ и $n^6$ взаимно просты. Следовательно, всё произведение $b_1 · b_2 · b_3 · b_4 · b_5$ делится на $m^6$, это означает, что в разложении числа $936$ есть простой множитель в 6-ой степени, получили противоречие. Значит, нельзя.

в) Предположим, что пять различных натуральных чисел, произведение которых равно $936$, составляют геометрическую прогрессию, как и в пункте б) введём обозначения: $b_1, b_2 = b_1 · q, b_3 = b_1 · q^2 , b_4 = b_1 · q^3 , b_5 = b_1 · q^4$. Тогда $q = {b_2}/{b_1}$, причём $q$ — рациональное число, большее единицы.

Тогда $q = {m}/{n}$, где $m$ и $n$ — натуральные взаимно простые числа, $m > n ≥ 1$.

Получим:

$936 = b_1 · b_2 · b_3 · b_4 · b_5 = b_1^5 · q^{10} = b_1^5 · ({m}/{n})^{10} = b_1^5 · {m^{10}}/{n^{10}}$.

Так как $m$ и $n$ — взаимно просты, то и $m^{10}$ и $n^{10}$ взаимно просты. Следовательно, $b_1^5$ делится на $n^{10}$, а всё произведение $b_1 ·b_2 ·b_3 ·b_4 ·b_5$ делится на $m^{10}$, это означает, что в разложении числа $936$ есть простой множитель в 10-ой степени, получили противоречие. Значит, нельзя.

Ответ: а)да; б)нет; в)нет

Задача 5

Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 4725 и а) три; б) четыре; в) пять из них образуют геометрическую прогрессию?

Решение

Разложим число $4725$ на простые множители (это может быть сделано единственным образом с точностью до порядка множителей). $4725 = 3^3 · 5^2 · 7$.

а) Можно, например, $1, 3, 9, 25, 7$.

б) Предположим, что четыре из пяти различных натуральных чисел, произведение которых равно $4725$, составляют возрастающую геометрическую прогрессию. Введём обозначения: $b_1 , b_2 = b_1 · q, b_3 = b_1 · q^2, b_4 = b_1 · q^3$, пятое число обозначим $b_5$.

Тогда $q = {b_2}/{b_1}$, причём $q$ — рациональное число, большее единицы. То гда $q = {m}/{n}$, где $m$ и $n$ — натуральные взаимно простые числа, $m > n ≥ 1$.

Получим:

$4725 = b_1 · b_2 · b_3 · b_4 · b_5 = b_1^4 · q^6 · b_5 = b_1^4 · ({m}/{n})^6 · b_5 = b_1^4 · {m^6}/{n^6} · b_5$.

Так как $m$ и $n$ — взаимно просты, то и $m^6$ и $n^6$ взаимно просты. Следовательно, всё произведение $b_1 · b_2 · b_3 · b_4 · b_5$ делится на $m^6$, это означает, что в разложении числа $4725$ есть простой множитель в 6-ой степени, получили противоречие. Значит, нельзя.

в) Предположим, что пять различных натуральных чисел, произведение которых равно $4725$, составляют геометрическую прогрессию, как и в пункте б) введём обозначения: $b_1, b_2 = b_1 · q, b_3 = b_1 · q^2 , b_4 = b_1 · q^3 , b_5 = b_1 · q^4$. Тогда $q = {b_2}/{b_1}$, причём $q$ — рациональное число, большее единицы.

Тогда $q = {m}/{n}$, где $m$ и $n$ — натуральные взаимно простые числа, $m > n ≥ 1$.

Получим:

$4725 = b_1 · b_2 · b_3 · b_4 · b_5 = b_1^5 · q^{10} = b_1^5 · ({m}/{n})^{10} = b_1^5 · {m^{10}}/{n^{10}}$.

Так как $m$ и $n$ — взаимно просты, то и $m^{10}$ и $n^{10}$ взаимно просты. Следовательно, $b_1^5$ делится на $n^{10}$, а всё произведение $b_1 ·b_2 ·b_3 ·b_4 ·b_5$ делится на $m^{10}$, это означает, что в разложении числа $4725$ есть простой множитель в 10-ой степени, получили противоречие. Значит, нельзя.

Ответ: а)да; б)нет; в)нет

Задача 6

На доске написано несколько натуральных чисел, произведение любых двух из которых больше $50$ и меньше $140$. а) Может ли на доске быть $6$ чисел? б) Может ли на доске быть $7$ чисел? в) Какое наибольшее значение может принимать сумма чисел на доске, если их четыре?

Решение

а) Да. Например, на доске может быть написано шесть чисел 7, 8, 9, 10, 11, 12.

б) Заметим, что среди написанных чисел только одно число может быть больше 11, поскольку произведение любых двух различных натуральных чисел, больших 11, больше 140. Аналогично среди написанных чисел только одно число может быть меньше 8, поскольку произведение любых двух различных натуральных чисел, меньших 8, меньше 50. Таким образом, помимо наименьшего и наибольшего чисел, на доске могут быть написаны только числа 8, 9, 10, 11. Следовательно, на доске не может быть более шести чисел.

в) Пусть на доске написаны числа $a_1 , a_2 , a_3 , a_4$ , причём $a_1 < a_2 < a_3 < a_4$. Тогда для выполнения условий задачи достаточно, чтобы выполнялись неравенства $a_1 · a_2 > 50, a_3 · a_4 < 140$.

В пункте «б» было доказано $8 ≤ a_2 ≤ a_3 ≤ 11$. Рассмотрим возможные случаи.

1. Если $a_2 = 8, a_3 = 9$, то $8a_1 > 50, 9a_4 < 140$, получаем $a_1 = 7, 10 ≤ a_4 ≤ 15$. В этом случае наибольшее возможное значение суммы достигается при $a_1 = 7, a_4 = 15, 7 + 8 + 9 + 15 = 39$.

2. Если $a_2 = 9, a_3 = 10$, то $9a_1 > 50, 10a_4 < 140$, получаем $6 ≤ a_1 ≤ 8, 11 ≤ a_4 ≤ 13$. В этом случае, наибольшее возможное значение суммы достигается при $a_1 = 8, a_4 = 13, 8 + 9 + 10 + 13 = 40$.

3. Если $a_2 = 10, a_3 = 11$, то $10a_1 > 50, 11a_4 < 140$, получаем $6 ≤ a_1 ≤ 9, a_4 ≤ 12$. В этом случае наибольшее возможное значение суммы достигается при $a_1 = 9$ и $a_4 = 12, 9 + 10 + 11 + 12 = 42$.

4. Если $a_2 = 8, a_3 = 10$, то $8a_1 > 50, 10a_4 < 140$, получаем $a_1 = 7, 11 ≤ a_4 ≤ 13$. В этом случае, наибольшее возможное значение суммы достигается при $a_1 = 7, a_4 = 13, 7 + 8 + 10 + 13 = 38$.

5. Если $a_2 = 8, a_3 = 11$, то $8a_1 > 50 a_4 = 12$, получаем $a_1 = 7, a_4 = 12$. В этом случае наибольшее возможное значение суммы $7+8+11+12 = 38$.

6. Если $a_2 = 9, a_3 = 11$, то $9a_1 > 50, a_4 = 12$, получаем $6 ≤ a_1 ≤ 8, a_4 = 12$.

В этом случае наибольшее возможное значение суммы достигается при $a_1 = 8, a_4 = 12, 8 + 9 + 11 + 12 = 40$.

Таким образом, наибольшее значение суммы равно $42$.

Ответ: а)да, б)нет, в)42

Задача 7

На доске написано несколько различных натуральных чисел, произведение любых двух из которых больше $30$ и меньше $80$. а) Может ли на доске быть $4$ числа? б) Может ли на доске быть $5$ чисел? в) Какое наибольшее значение может принимать сумма чисел на доске, если их три?

Решение

а) Да, например, на доске может быть написано 6, 7, 8, 9.

б) Заметим, что среди написанных чисел только одно число может быть больше 8, поскольку произведение любых двух различных натуральных чисел, больших 8, больше 80. Аналогично, среди написанных чисел только одно число может быть меньше 7, поскольку произведение любых двух различных натуральных чисел, меньших 7, не больше 30. Таким образом, помимо наибольшего и наименьшего чисел, на доске могут быть написаны только числа 7 или 8. Следовательно, на доске не может быть более четырёх чисел.

в) Пусть на доске написаны числа $a_1 , a_2 , a_3$, причём $a_1 < a_2 < a_3$. Тогда для выполнения условий задачи достаточно, чтобы выполнялись неравенства $a_1 · a_2 > 30, a_2 · a_3 < 80$.

В пункте «б» было доказано, что $a_2 = 7$ или $a_2 = 8$.

Разберём возможные случаи. Если $a_2 = 7$, то $7a_1 > 30, 7a_3 < 80$, откуда $a_1 = 5$ или $a_1 = 6, 8 ≤ a_3 ≤ 11$. В этом случае наибольшее значение достигается при $a_1 = 6, a_3 = 11$, равно $6 + 7 + 11 = 24$.

Если $a_2 = 8$, то $8a_1 > 30, 8a_3 < 80$, откуда $4 ≤ a_1 ≤ 7, a_3 = 9$.

В этом случае наибольшее значение при $a_1 = 7$ равно $7 + 8 + 9 = 24$.

Таким образом наибольшее значение суммы равно $24$.

Ответ: а)да, б)нет, в)24

Задача 8

Множество чисел назовём особенным, если его можно разбить на два подмножества с одинаковой суммой чисел. а) Является ли множество ${750; 751; … , 949}$ особенным? б) Является ли множество ${9^2; 9^3; … . 9^{2018}}$ особенным? в) Сколько особенных четырёхэлементных подмножеств у множества ${2; 3; 6; 7; 15; 19; 25; 28}$?

Решение

а) Разобьём множество {750; 751; . . . ; 949} на 100 пар, сумма чисел в каждой из которых равна 1699: (750; 949), (751; 948), . . .

Множество {750; 751; . . . ; 949} можно разбить на два подмножества, в каждом из которых 50 таких пар. Значит, суммы чисел в этих двух подмножествах одинаковы и множество {750; 751; . . . ; 949} является особенным.

б) Заметим, что $9^{2018} > {9^{2018}− 81}/{8} = 9^2 + 9^3 + . . . + 9^{2017}$. Поэтому сумма чисел в подмножестве, содержащем $9^{2018}$, всегда больше суммы остальных чисел, следовательно, множество {$9^2; 9^3; . . . 9^{2018}$} не является особенным.

в) Заметим, что четырёхэлементное множество является особенным в двух случаях: либо одно число является суммой трёх других, либо множество содержит две пары с равными суммами. В первом случае возможны только следующие подмножества {2; 7; 19; 28}; {3; 6; 19; 28}; {6; 7; 15; 28}; {3; 7; 15; 25}; {2; 6; 7; 15}

Заметим, что сумма всех чисел особенного подмножества чётна. В исходном множестве три чётных числа, поэтому в особенное подмножество входят либо два из них, либо ни одного. Если входят числа 2 и 6, то либо сумма двух других чисел равна 8, либо их разность равна 4. Получаем особенные подмножества {2; 3; 6; 7}; {2; 6; 15; 19}. Если входят числа 2 и 28, то либо сумма двух других чисел равна 30, либо их разность равна 26. Таких подмножеств нет. Если входят числа 6 и 28, то либо сумма двух других чисел равна 34, либо их разность равна 22. Получаем особенные подмножества {3; 6; 25; 28}; {6; 15; 19; 28}. Если в особенном подмножестве нет чётных чисел, то особенное подмножество лежит во множестве {3; 7; 15; 19; 25}. Получаем следующее особенное подмножество (две пары с равными суммами): {3; 7; 15; 19}. Всего 10 особенных подмножеств.

Ответ: а)да; б)нет; в)10

Задача 9

Коля берёт пять различных натуральных чисел и проделывает с ними следующие операции: сначала находит среднее геометрическое первых двух чисел, затем — среднее геометрическое третьего числа и полученного результата, после — среднее геометрическое четвёртого числа и полученного результата, а затем — среднее геометрическое пятого числа и полученного результата. Полученный результат он обозначает через $K$. Затем Коля считает среднее геометрическое исходных чисел — число $P$. а) Возможно ли, что $K=P^5$? б) Возможно ли, что $K=P$? в) Для какого наибольшего целого числа $m$ возможно, что $K>P^m$?

Решение

а) Пусть Коля задумал различные натуральные числа $a, b, c d, e$. Тогда $K =√{e√{d√{c√{ab}}}} = a^{{1}/{16}}b^{{1}/{16}}c^{{1}/{8}}d^{{1}/{4}}e^{{1}/{2}}, P = √^5{abcde} = (abcde)^{{1}/{5}}$. Если $K = P^5$, то $a^{{1}/{16}}b^{{1}/{16}}c^{{1}/{8}}d^{{1}/{4}}e^{{1}/{2}} = abcde$, иными словами, $abc^2d^4e^8 = a^{16}b^{16}c^{16}d^{16}e^{16}$, отсюда $a^{15}b^{15}c^{14}d^{12}e^8 = 1$, что невозможно, так как числа $a, b, c d$ и $e$ — различные натуральные и среди них хотя бы 4 больше 1, а тогда $a^{15}b^{15}c^{14}d^{12}e^8 > 1$ и равенство $K = P^5$ невозможно.

б) Предположим, что $K = P$, тогда $a^{{1}/{16}}b^{{1}/{16}}c^{{1}/{8}}d^{{1}/{4}}e^{{1}/{2}} = (abcde)^{{1}/{5}}$, отсюда $a^5b^5c^{10}d^{20}e^{40} = (abcde)^{16}; d^4e^{24} = a^{11}b^{11}c^6$. Покажем, что это равенство может быть выполнено. Подберём пример, считая числа $a, b, c, d$ и $e$ различными степенями одного и того же числа, например 2. Пусть $a = 2^2, b = 2^4, c = 2^3, d = 2^{15}, e = 2$, требуемое достигается.

в) Пусть $K > P^m$, тогда $a^{{1}/{16}}b^{{1}/{16}}c^{{1}/{8}}d^{{1}/{4}}e^{{1}/{2}} > (abcde)^{{m}/{5}}; a^5b^5c^{10}d^{20}e^{40} > (abcde)^{16m}$ тогда $a^{(16m-5)}b^{(16m-5)}c^{(16m-10)}d^{(16m-20)}e^{(16m-40)} < 1$.

Это неравенство невозможно при $m ≥ 3$, так как при $m ≥ 3$ степени чисел $a, b, c, d$ и $e$ больше 1, а тогда и их произведение больше 1.

Приведём пример для $m = 2$. Тогда должно выполняться $a^{27}b^{27}c^{22}d^{12} < e^8$. Пусть $a = 2; b = 2^2, c = 2^3, d = 2^4, e = 2^{30}$, неравенство выполняется.

Ответ:

Задача 10

Маша задумала $6$ различных натуральных чисел и проделывает с ними такую операцию: сначала находит среднее арифметическое первых двух чисел, затем — среднее арифметическое полученного результата и третьего числа, после — среднее арифметическое полученного результата и четвёртого числа, затем — среднее арифметическое полученного числа и пятого числа, и наконец — среднее арифметическое полученного результата и шестого числа. Полученный результат она обозначает через $M$. Далее Маша находит число $A$ — среднее арифметическое исходных чисел.

а) Возможно ли, что $A=M$?

б) Возможно ли, что $M=6A$?

в) Найдите наибольшее натуральное значение $n$, для которого возможно, что $M=nA$.

Решение

а) Пусть Маша задумала числа $a, b, c, d, e$ и $f$. Тогда $M = {a + b + 2c + 4d + 8e + 16f}/{32}; A = {a + b + c + d + e + f}/{6}$.

$M = A$, тогда и только тогда, когда $3a + 3b + 6c + 12d + 24e + 48f = 16a + 16b + 16c + 16d + 16e + 16f; 8e + 32f = 13(a + b) + 10c + 4d$.

Пусть $a = 1, b = 3, c = 6, d = 4, e = 8, f = 2$. При этих значениях требуемое равенство выполнено.

б) Предположим, что $M = 6A$. Тогда ${a + b + 2c + 4d + 8e + 16f}/{32} = a + b + c + d + e + f, 31a + 31b + 30c + 28d + 24e + 16f = 0$.

Это равенство невозможно, так как $a, b, c, d, e$ и $f$ — натуральные числа.

в) Пусть $M = nA$, тогда $3a + 3b + 6c + 12d + 24e + 48f = 16n(a + b + c + d + e + f)$,

$(16n — 3)a + (16n — 3)b + (16n — 6)c + (16n — 12)d + (16n — 24)e +(16n — 48)f = 0$.

При $n ≥ 3$ это равенство невозможно, так как $a, b, c, d, e$ и $f$ — натуральные числа.

Приведём пример для $n = 2$. Тогда должно выполняться равенство $29(a + b) + 26c + 20d + 8e = 16f$.

Пусть $a = 1, b = 3, c = 2, d = 4, e = 5, f = 18$. При этих значениях равенство выполняется.

Ответ: а)да; б)нет; в)2

Задача 11

На окружности в случайном порядке были расположены натуральные числа от $1$ до $13$. Над каждой парой соседних чисел написали модуль их разности, после чего исходные числа стёрли.

а) Могла ли сумма оставшихся чисел равняться $30$?

б) Могла ли сумма оставшихся чисел равняться $14$?

в) Найдите наибольшее возможное значение суммы оставшихся чисел.

Решение

а) Да, могла. Пусть числа записаны в следующем порядке (считая по часовой стрелке): $1; 2; 5; 3; 4; 6; 7; 8; 13; 12; 11; 9; 10$. Сумма модулей рассматриваемых разностей равна 30.

б) Нет, не могла. Предположим противное. Модуль каждой разности — натуральное число, причём всего выписано 13 модулей разности. Их сумма равна 14, если одна из этих разностей равна 2, а 12 других равна 1. Это означает, что соседними с числом 1 могут быть только числа 2 и 3, при этом |3 — 1| = 2, то есть оставшиеся модули разностей должны равняться 1. Но тогда числа 2 и 3 не могут быть соседними. Значит вторым соседним числом с числом 2 будет число a ≥ 4. Но тогда |a-2| ≥ 2.Изначит, сумма всех модулей разности не меньше, чем |3-1|+|a-2|+11 ≥ 15. Получили противоречие. Следовательно, требуемое не возможно.

в) Пусть изначально на доске были выписаны числа в следующем порядке по часовой стрелке: $a_1, a_2, . . . , a_13$, где каждое $a_k$ — одно из натуральных чисел от 1 до 13. Заметим, что $|a_1 — a_2| + |a_2 — a_3| + |a_3 — a_4| + … + |a_12 — a_13| + |a_13 — a_1| = (x_1+x_2+x_3+…+x_13)-(y_1+y_2+y_3+… y_13)$. Каждый модуль $|a_i-a_{i+1}|$ (i = 1, 2, . . . 13) представлен в виде $x_i -y_i$, где $x_i$ — большее из чисел $a_i$ и $a_{i+1}$, $y_i$ — меньшее из них. Аналогично, $|a_{13} -a_1| = x_{13} -y_{13}$. Каждое $a_k$ встречается среди чисел $x_1, x_2, . . . , x_{13}, y_1, y_2, . . . , y_{13}$ ровно 2 раза. Тогда $x_1+x_2+x_3+…+x_{13} ≤ 2·13+2·12+2·11+2·10+2·9+2·8+7 = 133$, а $y_1+y_2+y_3+…+y_{13} ≥ 2·1+2·2+2·3+2·4+2·5+2·6+7 = 49$. Отсюда $(x_1 + x_2 + x_3 + … + x_{13}) — (y_1 + y_2 + y_3 + … + y_{13}) ≤ 133 — 49 = 84$, то есть сумма записанных модулей разностей не превышает 84. Приведём пример, в котором указанная сумма равна 84. Пусть на доске изначально числа в следующем порядке (по часовой стрелке): $1; 13; 2; 12; 3; 11; 4; 10; 5; 9; 6; 8; 7.$

Тогда $|1-13|+|13-2|+|2-12|+|12-3|+|3-11|+|11-4|+|4-10|+ +|10 — 5| + |5 — 9| + |9 — 6| + |6 — 8| + |8 — 7| + |7 — 1| = 84$.

Ответ: а)да; б)нет; в)84

Задача 12

На окружности в случайном порядке были расположены натуральные числа от $1$ до $16$. Над каждой парой соседних чисел написали модуль их разности, после чего исходные числа стёрли и посчитали сумму $s$ оставшихся модулей разностей. а) Могло ли оказаться, что $s=40$? б) Могло ли оказаться, что $s=41$? в) Найдите максимально возможное значение $s$.

Решение

а) Да, могло. Приведём пример. Пусть по часовой стрелке числа записаны в следующем порядке: $1$; $2$; $3$; $4$; $5$; $6$; $7$; $8$; $9$; $10$; $16$; $11$; $15$; $13$; $14$; $12$. Сумма модулей указанных разностей равна $40$. б) Нет, не могло. Пусть изначально на доске в порядке следования по часовой стрелке записаны числа $a_1$, $a_2$, $a_3$, … , $a_{16}$ — переставленные натуральные числа от $1$ до $16$. Заметим, что для произвольных натуральных чисел $m$ и $n$ числа $m-n$ и $n-m$ имеют одинаковую чётность, а значит $|m-n|$ имеет ту же чётность, что $m-n$. Но тогда сумма $|a_1-a_2|+|a_2-a_3|+|a_3-a_4|+ … +|a_{15}-a_{16}|+|a_{16}-a_1|$ будет
нечётной только в том случае, если сумма
$(a_1-a_2)+(a_2-a_3)+(a_3-a_4)+ … +(a_{15}-a_{16})+(a_{16}-a_1)$ будет нечётной, но последняя сумма равна $0$, следовательно, чётна. Отсюда сумма $|a_1-a_2|+|a_2-a_3|+|a_3-a_4|+ … +|a_{15}-a_{16}|+|a_{16}-a_1|$ чётна и не может равняться $41$. в) Заметим, что $|a_1-a_2|+|a_2-a_3|+|a_3-a_4|+ … +|a_{15}-a_{16}|+|a_{16}-a_1|=$
$=(x_1+x_2+x_3+… +x_{16})-(y_1+y_2+y_3+… y_{16})$. Каждый модуль $|a_i-a_{i+1}|$ ($i=1, 2, …  15$) представлен в виде, $x_i-y_i$, где $x_1$ — большее из чисел $a_i$ и $a_{i+1}$, $y_i$ — меньшее из них. Аналогично $|a_{16}-a_1|=x_{16}-y_{16}$. Причём каждое $a_k$ встречается среди чисел $x_1$, $x_2$, …, $x_{16}$, $y_1$, $y_2$, …, $y_{16}$ ровно $2$ раза. Тогда $x_1+x_2+x_3+… +x_{16}⩽ 16+16+15+15+… +9+9=200$, а $y_1+y_2+y_3+… +y_{16}⩾ 1+1+2+2+… +8+8=72$. Отсюда $(x_1+x_2+x_3+… +x_{16})-(y_1+y_2+y_3+… +y_{16})⩽200-72=128$, то есть сумма записанных модулей разностей не превышает $128$. Приведём пример, в котором указанная сумма равна $128$. Пусть на доске изначально числа в следующем порядке (по часовой стрелке): $1$; $16$; $2$; $15$; $3$; $14$; $4$; $13$; $5$; $12$; $6$; $11$; $7$; $10$; $8$; $9$. Тогда $|1-16|+|16-2|+|2-15|+|15-3|+|3-14|+|14-4|+|4-13|+$
$+|13-5|+|5-12|+|12-6|+|6-11|+|11-7|+|7-10|+|10-8|+|8-9|+$
$+|9-1|=128$.

Ответ: а)да; б)нет; в)128

Задача 13

Два мастера на протяжении некоторого числа дней изготавливали одинаковые детали. Сергей Петрович в первый день изготовил $s$ деталей, а Пётр Сергеевич — $p$ деталей, $s$ и $p$ — натуральные числа. Каждый последующий день каждый из мастеров изготавливал на $10$ деталей больше, чем в предыдущий. Всего за эти дни Сергей Петрович изготовил на $2261$ деталь больше, чем Пётр Сергеевич. а) Могло ли это быть за $20$ дней? б) Могло ли это быть за $19$ дней, если Сергей Петрович за все дни изготовил не более $3000$ деталей? в) Какое наибольшее количество деталей мог изготовить Сергей Петрович, если Пётр Сергеевич в последний день изготовил менее $300$ деталей?

Решение

а) Каждый день Сергей Петрович изготавливает на (s — p) деталей больше, чем Пётр Сергеевич. Тогда за 20 дней Сергей Петрович изготовил на 20(s — p) деталей больше. Должно выполняться равенство 20(s-p) = 2261, но 2261 нацело не делится на 20. Следовательно, требуемое невозможно.

б) Если Сергей Петрович изготовил не более 3000 деталей, то Пётр Сергеевич не более 739 деталей. За 19 дней Сергей Петрович изготовил бы не менее, чем ${2 + 192}/{2}·19 = 1843$ деталей. Значит, требуемое не возможно.

в) Пусть рабочие делали детали в течение n дней, тогда $n(s — p) = 2261 = 7·17·19$. При этом в последний день Пётр Сергеевич изготовил p + 10(n — 1) деталей, p + 10(n — 1) < 300, 10(n — 1) < 300, n ≤ 60. Значит, n натуральный делитель числа 2261, не превосходящий 60. Таким образом n = 1, n = 7, n = 17 или n = 19. Пусть Пётр Сергеевич за все дни изготовил R деталей, тогда Сергей Петрович (R + 2261). Следовательно, наибольшее возможное количество деталей, изготовленных Сергеем Петровичем, будет при наибольшем количестве деталей, изготовленных Петром Сергеевичем. $R = {2p + 10(n — 1)}/{2}·n$ При каждом фиксированном значении n значение R тем больше, чем больше p, то есть R — наибольшее при p = 309 — 10n и $R = {608 — 10n}/{2}·n = 304n — 5n^2 = (304 — 5n)·n$. При n = 1 R = 299. При n = 7 R = 1883. При n = 17 R = 3723. При n = 19 R = 3971.

Наибольшее число деталей, изготовленных Сергеем Петровичем, равно 3971 + 2261 = 6232.

Ответ: а)нет; б)нет; в)6232

Задача 14

Две девочки делают фотографии во время туристической поездки. В первый день Катя сделала $k$ фотографий, а Маша — $m$ ($k⩾1$, $m⩾1$). Каждый последующий день каждая из девочек делает на $1$ фотографию больше, чем в предыдущий. Всего за время поездки Маша сделала на $715$ фотографий больше, чем Катя. а) Могло ли это произойти за $5$ дней? б) Могла ли Катя за $11$ дней сделать $1000$ фотографий? в) Определите максимальное количество фотографий, которое могла сделать Маша за все эти дни, если Катя в последний день поездки сделала меньше $35$ фотографий.

Решение

а) Да, возможно. Маша с первого по 5 день сделала бы в сумме m + (m + 1) + (m + 2) + (m + 3) + (m + 4) фотографии, а Катя k + (k + 1) + (k + 2) + (k + 3) + (k + 4) фотографий. Тогда (m+4)+(m+3)+(m+2)+(m+1)+m-(k+4)-(k+3)-(k+2)-(k+1)-k = = 5(m — k). Значит, должно выполняться равенство 5(m — k) = 715, m- k = 143. Пусть Катя в первый день сделала одну фотографию, а Маша 144. Тогда за 5 дней Маша сделает на 715 фотографий больше.

б) Нет, не может. Предположим, что это возможно. Тогда m+ (m+1)+ …+ (m+ 10) = 1000; 11m = 1000-55, но (1000- 55) не делится нацело на 11, значит получили противоречие.

в) Пусть девочки делали фотографии в течение n дней. Тогда Маша сделала на m + (m+ 1) + (m+ 2) + … (m + n — 1) — k — (k + 1) — … …-(k+n-1) = n(m-k) фотографий больше. Значит, n(m-k) = 715, n делитель числа 715. Но 715 = 5·11·13, все его натуральные делители это числа 1, 5, 11, 13, 55, 65, 143, 715. В последний день Катя сделала k + (n — 1) фотографий, k + (n — 1) < 35, но k ≥ 1, следовательно (n — 1) < 34, n < 35. Тогда n = 1, n = 5, n = 11 или 13. Так как за все дни Маша сделала на 715 фотографий больше, чем Катя, то большее количество фотографий, сделанных Машей, будет при наибольшем количестве фотографий, сделанных Катей. За n дней Катя сделала s = k + (k + 1) + … + (k + (n — 1)) = ${2k + n — 1}/{2}·n$ фотографий. При каждом фиксированном n это количество тем больше, чем больше k, но k + (n — 1) < 35, то есть k + n < 36, k < 36 — n. При n = 1 наибольшее k = 34 и s = ${2·34}/{2}$ = 34. При n = 5 наибольшее k = 30 и s = ${2·30 + 4}/{2}·5$ = 160. При n = 11 наибольшее k = 24 и s = ${2·24 + 10}/{2}·11$ = 319. При n = 13 наибольшее k = 22 и s = ${2·22 + 12}/{2}·13$ = 364. Тогда наибольшее количество Машиных фотографий равно 364 + 715 = 1079.

Ответ: а)да; б)нет; в)1079

Задача 15

Для $20$ студентов профессор подготовил две контрольные работы. Любой студент может написать только одну из них или обе. За каждую контрольную работу можно получить от $0$ до $30$ баллов. Средний балл за каждую из контрольных работ равен $24$. Каждый студент называет наивысший из полученных им баллов профессору. Если студент написал одну работу, то он называет балл за неё. а) Может ли среднее арифметическое всех поданных баллов быть меньше $24$? б) Может ли среднее арифметическое равняться $21$, если обе конт-
рольные написали только $2$ студента? в) Какое наименьшее количество студентов должно было написать обе контрольные, чтобы среднее арифметическое названных баллов равнялось $21$?

Решение

а) Пусть два человека написали обе контрольные, за каждую из них набрав по 30 баллов. И пусть 9 человек написали только первую контрольную (двое на — 18 баллов и семеро на — 24 балла). Аналогично, пусть только вторую контрольную написали 9 оставшихся студентов (двое на — 18 баллов и семеро на — 24 балла). Тогда средний балл за каждую контрольную равен ${30·2 + 18·2 + 7·24}/{11} = 24$. Среднее арифметическое названных баллов равно ${30·2 + 18·4 + 24·14}/{20} = 23.4 < 24$.

б) Нет, не может. Предположим противное. Тогда сумма названных баллов равна $21·20 = 420$. Всего написанных контрольных 22 и сумма набранных за них баллов равна $22·24 = 528$. При этом, 528 — 420 = 108, то есть 108 баллов из заработанных не были поданы профессору. Эти 108 баллов могли быть заработаны только двумя студентами, которые написали обе контрольные. Каждый из них не назвал баллы за 1 контрольную, то есть не более 30 баллов. В сумме количество баллов, не поданных профессору, не превышает $2·30 = 60$. Но $108 > 60$, поэтому наше предположение не верно.

в) Пусть k студентов написали обе контрольные, тогда всего было написано (20 + k) работ и общее количество заработанных баллов равно 24(20 + k) = 480 + 24k. Сумма баллов, названных профессору, равна $21·20 = 420$. Тогда не поданными остались (480+ 24k — 420) = 60 + 24k баллов. Эти баллы могли быть получены только теми студентами, которые написали обе контрольные. Каждый из этих студентов оставил не поданными не более 30 баллов (30 — максимальный балл за одну контрольную). Следовательно, всего осталось не поданными не более 30k баллов. Получим неравенство $60 + 24k ≤ 30k$, отсюда $k ≥ 10$.

Приведём пример для k = 10. Пусть 10 студентов написали обе контрольные на 30 баллов, 5 — только первую контрольную (каждый на 12 баллов), 5 — только вторую контрольную (каждый на 12 баллов). Тогда среднее арифметическое названных баллов равно ${30·10 + 12·10}/{20} = 21$.

Средний балл за каждую контрольную равен ${30·10 + 5·12}/{15} = 24$.

Ответ: а)да; б)нет; в)10

Задача 16

Для $52$ студентов профессор подготовил две контрольные работы. Любой студент может написать только одну из них или обе. За каждую контрольную работу можно получить от $0$ до $30$ баллов. Средний балл за каждую из контрольных работ равен $17$. Каждый студент называет наивысший из полученных им баллов профессору. Если студент написал одну работу, то он называет балл за неё.

а) Может ли среднее арифметическое всех названных баллов быть больше $17$?

б) Может ли среднее арифметическое равняться $13$, если обе контрольные написали ровно четыре студента?

в) Какое наименьшее количество студентов должно было написать обе контрольные, чтобы среднее арифметическое названных баллов могло равняться $13$?

Решение

а) Пусть два студента написали обе контрольные на $4$ балла, $25$ студентов написали только первую контрольную (двое — на $30$ баллов, $23$ — на $17$ баллов), $25$ студентов написали только вторую контрольную (двое — на $30$ баллов, $23$ — на $17$ баллов). Тогда средний балл за каждую контрольную равен ${2⋅ 4+2⋅ 30+23⋅17} / {27}=17$, а средний балл среди названных равен ${2⋅ 4+4⋅ 30+46⋅17} / {52}=17{,}5>17$.

б) Нет, не может. Предположим противное. Тогда сумма названных баллов равна $13⋅ 52=676$. Всего написанных контрольных $56$ и сумма набранных за них баллов равна $56⋅ 17=952$. При этом $952-676=276$, то есть $276$ баллов из числа заработанных не было подано профессору. Эти $276$ баллов могли быть заработаны только теми $4$ студентами, которые написали обе контрольные. Каждый из них не назвал балл за $1$ контрольную, то есть не более $30$ баллов. В сумме количество баллов, не поданных профессору, не превышает $4⋅ 30=120$. Но $120<276$, поэтому наше предположение не верно.

в) Пусть $n$ студентов написали обе контрольные, тогда всего было написано $(52+n)$ работ и общее количество заработанных баллов равно $17(52+n)=884+17n$. Сумма баллов, поданных профессору, равна $52⋅ 13=676$. Тогда не поданными остались $(884+17n)-676$ баллов, то есть $208+17n$ баллов. Эти баллы могли быть получены только теми студентами, которые написали обе контрольные. Каждый из этих студентов оставил не поданными не более $30$ баллов. Следовательно, всего остались не поданными не более $30n$ баллов. Получим неравенство $208+17n⩽30n$, $n⩾16$. Приведём пример для $n=16$. Пусть $16$ студентов написали обе контрольные на $30$ баллов, $18$ — только первую контрольную ($3$ — на $30$ баллов, $1$ — на $8$, остальные на $0$) и $18$ написали только вторую контрольную с теми же результатами.

Ответ: а)да; б)нет; в)16

Задача 17

На доске написаны $40$ натуральных чисел. Какие-то из них белые, а какие-то — зелёные. Белые числа кратны $9$, зелёные кратны $4$. Все белые числа отличаются друг от друга, все зелёные тоже отличаются друг от друга, среди чисел разных цветов могут быть одинаковые. а) Может ли сумма всех написанных чисел быть меньше $3280$, если все они зелёные? б) Может ли сумма всех чисел равняться $2453$, если только $1$ число белое? в) Найдите наименьшее количество белых чисел, если сумма всех чисел равна $2453$.

Решение

а) Нет, не может. Наименьшая сумма $40$ различных натуральных чисел, кратных $4$, равна $4·1+ 4·2+ . . .+ 4·40=4(1 + 2 + … + 40) = {4·41·40}/{2}= 3280$.

б) Нет, не может. Сумма $17$ чисел, оканчивающихся на $7$, не меньше, чем $7 + 17 + … + 167 = {7 + 167}/{2}·17 = 1479$. Значит, при $17$ числах с последней цифрой $7$ сумма всех выписанных чисел больше $840$.

б) Нет, не может. Если только $1$ число белое, то остальные $39$ чисел — зелёные и их сумма не меньше чем $4·1 + 4·2 + … + 4·39 = 4(1 + 2 + … 39) = 4·{40·39}/{2} = 3120$, а сумма всех чисел не меньше, чем $3120 + 9 = 3129$.

в) Пусть $m$ — количество белых чисел, тогда зелёных чисел выписано $(40 — m)$. Сумма всех выписанных чисел не меньше, чем $9(1+2+…+m)+4(1+2+…+40-m) = 9·{(m+ 1)m}/{2} +4·{(41 -m)(40 -m)}/{2}$. Должно выполняться неравенство ${9(m+ 1)m}/{2} + {4(41-m)(40 -m)}/{2} ≤ 2453, 13m^2 — 315m + 1654 ≤ 0$. Перебирая натуральные значения $m$, получаем, что наименьшее значение $m$, для которого выполнено это неравенство, равно $8$. Действительно, при $m ≤ 5, 315m < 1654$, следовательно, $13m^2 — 315m + 1654 > 0$. При $m = 6, 13m^2 > 360, 13m^2 + 1654 > 2000, 315m < 2000$. Аналогично, при $m = 7$ выполняется $13m^2-315m+1654 > 0$. При $m = 8$ выполняется $13m^2-315m+1654 < 0$. Построим пример для $m = 8$. Наименьшее значение суммы в этом случае равно $9·{9·8}/{2} +4·{33·32}/{2} = 2436$, что на $17$ меньше требуемой суммы.

Учитывая, что $17 = 9 + 4 + 4$, построим один из возможных примеров. Выписаны белые числа $9·1, 9·2, . . . , 9·6, 9·7$ и $9·9$ и зелёные числа $4·1, 4·2, . . . , 4·30, 4·31$ и $4·34$.

Ответ: а)нет; б)нет; в)8

Задача 18

На доске написано $30$ различных натуральных чисел, каждое из которых или оканчивается на $7$, или чётное. Сумма всех чисел равна $840$. а) Может ли на доске быть выписано ровно $28$ чётных чисел? б) Может ли быть на доске ровно $17$ чисел, оканчивающихся на $7$? в) Найдите наибольшее возможное количество чисел, оканчивающихся на $7$, среди выписанных.

Решение

а) Да, может. Пусть выписаны $2$ числа, оканчивающиеся на $7: 7, 17$ и $28$ чётных чисел: $2, 2·2, 2·3, 2·4, . . . 2·26, 2·27$, а так же число $60$.

б) Нет, не может. Сумма $17$ чисел, оканчивающихся на $7$, не меньше, чем $7 + 17 + … + 167 = {7 + 167}/{2}·17 = 1479$. Значит, при $17$ числах с последней цифрой $7$ сумма всех выписанных чисел больше $840$.

в) Пусть на доске $n$ чисел, оканчивающихся на $7$. Тогда остальные $(30 — n)$ чисел чётны. Значит, сумма всех выписанных чисел не меньше чем $7 + 17 + … (7 + (n — 1)·10) + 2·1 + 2·2 + … + 2(30 — n) = {14 + (n — 1)10}/{2}·n + {(30 — n)(31 — n)}/{2}·2 = 6n^2 — 59n + 930$.

Должно выполняться неравенство $6n^2 — 59n + 930 ≤ 840$, то есть $6n^2 — 59n + 90 ≤ 0$. Решим уравнение $6n^2 — 59n + 90 = 0$, получим $n_{1,2} = {59±√{1321}}/{12}$. Неравенство $6n^2 — 59n + 90 ≤ 0$ выполнено при ${59 — √{1321}}/{12} ≤ n ≤ {59 + √{1321}}/{12}$.

Тогда $n ≤ {59 + √{1321}}/{12} ≤ {59 + 37}/{12} = 8$. Так как $n$ натуральное число, то $n ≤ 7$. Количество чисел, оканчивающихся на $7$, должно быть чётным, иначе сумма всех выписанных чисел была бы нечетна. Приведём пример для $n = 6$. Пусть выписаны числа $7, 17, 27, 37, 47, 57$, а так же $21, . . . 2·23$ и число $96$.

Ответ: а)да; б)нет; в)6

Задача 19

На доске написано $30$ различных натуральных чисел, каждое из которых или оканчивается на $1$, или чётное. Сумма всех чисел равна $771$. а) Может ли на доске быть выписано ровно $4$ числа, оканчивающихся на $1$? б) Может ли быть выписано ровно $13$ чисел, оканчивающихся на $1$? в) Найдите наименьшее возможное количество чисел, оканчивающихся на $1$, среди выписанных.

Решение

а) Нет, не может. Сумма $4$ чисел, оканчивающихся на $1$, чётна, сумма $26$ чётных чисел — тоже чётна, следовательно, сумма $4$ чисел, оканчивающихся на $1$, и $26$ чётных чисел — чётна и не равна $771$. б) Нет. Если на доске выписаны $13$ разных чисел, оканчивающихся на $1$, то их сумма не меньше чем $1+11+… +111+121={122} / {2}⋅ 13=793>771$. Тогда сумма всех выписанных чисел тем более больше $771$. в) Пусть на доске $n$ чисел, оканчивающихся на $1$, тогда $(30-n)$ чисел — чётные. Следовательно, сумма всех чисел не меньше чем $1+11+…+(1+10(n-1))+2⋅ 1+2⋅ 2+… +2⋅ (30-n)=$ ${1+1+10(n-1)} / {2}⋅ n+{(30-n)(31-n)} / {2}⋅2=6n^2-65n+930$. Должно выполняться неравенство $6n^2-65n+930⩽771$, то есть $6n^2-65n+159⩽0$. Решим уравнение $6n^2-65n+159=0$, $ n_{1,2}={65±√ {409}} / {12}$. Неравенство $6n^2-65n+159⩽0$ выполняется при ${65-√ {409}} / {12}⩽ n⩽{65+√ {409}} / {12}$. Значит, $n⩾{65-√ {409}} / {12}>{65-21} / {12}>3$. Так как $n$ — натуральное число, то $n⩾4$. Но $n$ должно быть нечётным (иначе сумма всех чисел была бы чётной), значит, $n⩾5$. Приведём пример для $n=5$. Пусть выписаны числа $1$, $11$, $21$, $31$, $41$, а также $2⋅1$, $2⋅2$, $2⋅ 3$, … $2⋅ 24$ и число $66$.

Ответ: а)нет; б)нет; в)5

Задача 20

На доске выписаны числа $10$ и $11$. За один ход надо заменить написанные на доске числа $a$ и $b$ числами ($2a+1$) и ($a+b$). Например, из чисел $10$ и $11$ можно получить либо $21$ и $21$, либо числа $21$ и $23$. а) Может ли после нескольких ходов на доске появиться число $95$? б) Может ли после $1003$ ходов на доске появиться число $20018$? в) Укажите наибольшую разность чисел через $2018$ ходов.

Решение

а) Да, может. Пусть после первого хода получены числа 21 и 23, после второго 44 и 47, после третьего 91 и 95.

б) Если числа a и b разной чётности, то числа (2a + 1) и (a + b) нечётные, если числа a и b — одной чётности, то (2a + 1) — нечётно, а (a + b) — чётное. Таким образом, после нечётного числа ходов на доске выписаны два нечётных числа и число 20018 выписано быть не может.

в) Если выписаны числа a и b и a $≤$ b, то их разность b-a и следующим ходом будут выписаны числа 2b + 1 и a + b, их разность (b — a + 1) или числа 2a + 1 и a + b, их неотрицательная разность |b — a — 1|.

Таким образом, разность каждый раз изменяется на 1 и будет наибольшей, если каждый ход будет увеличивается на 1. Тогда её значение 1 + 2018 = 2019.

Ответ: а)да; б)нет; в)2019

Рекомендуемые курсы подготовки

Задачи с параметром


В 18 задании —  предпоследнем задании профильного уровня ЕГЭ по математике — необходимо продемонстрировать умение решать задачи с параметрами. В подавляющем большинстве данное задание представляет собой систему из двух уравнений с параметром а, и необходимо найти такие значения, при которых система будет вести себя заданным образом — иметь два или одно или вообще не иметь решений.


Разбор типовых вариантов заданий №18 ЕГЭ по математике профильного уровня


Первый вариант задания (демонстрационный вариант 2018)

Найдите все положительные значения a, при каждом из которых система имеет единственное решение:

  • (|x|–5)2+(y–4)2=4
  • (x–2)2+y2=a2
Алгоритм решения:
  1. Рассматриваем второе уравнения, устанавливаем, что является его графиком.
  2. Определяем условие единственности решения.
  3. Находим расстояние между центрами, определяем значения параметра.
  4. Записываем ответ.
Решение:

1. Первое уравнение — это две окружности радиусами 3 и координатами центров С 2(5;4) и С2(-5;4). Одну окружность задает данное уравнение при х≥0, а вторую – при х<0. Они не пересекаются и не касаются.

2. Второе уравнение — это одна окружность радиуса «а» с координатами центра: С (-2;0).

3. Наличие единственного решения означает, что одна окружность должна коснуться одной из окружностей в одной точке. Поэтому следует решить попарно две системы.

Первая:

Задание №18 ЕГЭ по математике профильного уровня

Вторая:

Задание №18 ЕГЭ по математике профильного уровня

Естественно, в первом и втором случае получается пара корней т. е. координат касания внешним и внутренним образом.

Но стоит заметить что нас будут интересовать только корни определяющие касание внешнее левой окружности и касание внутреннее правой окружности. Т. к. два других уравнения противоречить условию и будут иметь более одного решения. Достаточно взглянуть на прилагаемый рисунок:

Задание №18 ЕГЭ по математике профильного уровня

4. Воспользуемся приложенным рисунком.

Проведем лучи СС1, и СС2, обозначив точки их пересечения с окружностями А1, В1 и А2, В2.
Тогда

Задание №18 ЕГЭ по математике профильного уровня

Задание №18 ЕГЭ по математике профильного уровня

Если a<CA2 или CA2<a<CB2 окружности не пересекаются. А это означает, корней система иметь не может.

5. Имеем: исходная система имеет единственное решение при

Задание №18 ЕГЭ по математике профильного уровня

Ответ: Задание №18 ЕГЭ по математике профильного уровня


Второй вариант (из Ященко, №1)

Найдите все значения а, при каждом из которых уравнение

http://self-edu.ru/htm/2018/ege2018_36/files/1_18.files/image001.gif

имеет ровно один корень.

Решение:

Данное уравнение равносильно виду:

Задание №18 ЕГЭ по математике профильного уровня

Рассматриваем случай:

Задание №18 ЕГЭ по математике профильного уровня  при условии Задание №18 ЕГЭ по математике профильного уровня

Получаем Задание №18 ЕГЭ по математике профильного уровня .

При этом значении х условие принимает вид:

Задание №18 ЕГЭ по математике профильного уровня

Отсюда

Задание №18 ЕГЭ по математике профильного уровня

Имеем в данном случае: Задание №18 ЕГЭ по математике профильного уровня  при Задание №18 ЕГЭ по математике профильного уровня .

Рассмотрим теперь случай:

Задание №18 ЕГЭ по математике профильного уровня ,

при этом Задание №18 ЕГЭ по математике профильного уровня .

Решаем уравнение. Получаем:

Задание №18 ЕГЭ по математике профильного уровня

Отсюда Задание №18 ЕГЭ по математике профильного уровня .

Условие Задание №18 ЕГЭ по математике профильного уровня принимает вид:

Задание №18 ЕГЭ по математике профильного уровня

Следовательно, получается Задание №18 ЕГЭ по математике профильного уровня . То есть Задание №18 ЕГЭ по математике профильного уровня  при Задание №18 ЕГЭ по математике профильного уровня .

Корни Задание №18 ЕГЭ по математике профильного уровня  и Задание №18 ЕГЭ по математике профильного уровня  равны между собой, если Задание №18 ЕГЭ по математике профильного уровня .

Таким образом, уравнение имеет только один корень если Задание №18 ЕГЭ по математике профильного уровня  и Задание №18 ЕГЭ по математике профильного уровня .

Ответ: Задание №18 ЕГЭ по математике профильного уровня

Понравилась статья? Поделить с друзьями:
  • Разбор 1 задания егэ информатика теория
  • Разбаловка егэ физика оценка
  • Разбор 1 варианта егэ по русскому языку 2023 цыбулько
  • Разбор 1 варианта егэ по информатике 2023 крылов
  • Разбаловка егэ физика за первую часть