Разбор текстовых задач егэ математика профиль

Задание 9 Профильного ЕГЭ по математике – это несколько типов текстовых задач. Условия и «сюжеты» задач могут быть разными. При этом в каждой из них нужно построить математическую модель, то есть обозначить какие-либо величины за переменные, составить уравнение и решить его. И еще есть неочевидные секреты их решения. О них – в конце статьи.

Вот основные типы текстовых задач, которые могут вам встретиться на ЕГЭ под номером 9. Переходите по ссылкам, читайте краткую теорию и разбирайте вместе с нами решения задач!

1. Задачи на движение

2. Задачи на работу

3. Задачи на проценты

4. Задачи на сплавы, смеси, растворы

5. Задачи на движение по окружности

Формула S = v cdot t работает и в этом случае. Здесь S – расстояние,  v – скорость, t – время.

А секрет задач на движение по окружности: тот, кто обгоняет, проезжает на 1 круг больше, если это первый обгон. И на n кругов больше, если обогнал другого в n-ный раз.

6. Задачи на нахождение средней скорости

По определению, средняя скорость получается, если всё расстояние поделить на всё время. В общем случае она не равна среднему арифметическому скоростей, а находится по следующей формуле:

.

7. Задачи на движение протяженных тел, встречное движение и обгон

Да, это те самые задачи, где поезд проходит через туннель. Или проезжает мимо платформы. И нам нужно учитывать длину поезда.

Есть еще задачи на встречное движение или обгон. Например, два поезда движутся навстречу друг другу (конечно, по параллельным путям), или один поезд обгоняет другой. Такие задачи удобно решать в движущейся системе отсчета.

Но и это не все. Есть еще задачи ЕГЭ на арифметическую и геометрическую прогрессии.

8. Задачи на арифметическую прогрессию

Арифметическая прогрессия в задачах ЕГЭ по математике

9. Задачи на геометрическую прогрессии

Геометрическая прогрессия в задачах ЕГЭ по математике

И еще мы обещали секреты решения текстовых задач на движение и работу. Читайте и применяйте!

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Задание 9. Текстовые задачи u0026#8212; профильный ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

ЕГЭ по математике

В данном разделе мы занимаемся подготовкой к ЕГЭ по математике как базового, профильного уровня — у нас представлены разборы задач, тесты, описание экзамена и полезные рекомендации. Пользуясь нашим ресурсом, вы как минимум разберетесь в решении задач и сможете успешно сдать ЕГЭ по математике в 2020 году. Начинаем!

ЕГЭ по математике является обязательным экзаменом любого школьника в 11 классе, поэтому информация, представленная в данном разделе актуальна для всех. Экзамен по математике делится на два вида — базовый и профильный. В данном разделе я приведен разбор каждого вида заданий с подробным объяснением для двух вариантов. Задания ЕГЭ строго тематические, поэтому для каждого номера можно дать точные рекомендации и привести теорию, необходимую именно для решения данного вида задания. Ниже вы найдете ссылки на задания, перейдя по которым можно изучить теорию и разобрать примеры. Примеры постоянно пополняются и актуализируются.


Структура базового уровня ЕГЭ по математике


Экзаменационная работа по математике базового уровня состоит из одной части, включающей 20 заданий с кратким ответом. Все задания направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.

Ответом к каждому из заданий 1–20 является целое числоконечная десятичная дробь, или последовательность цифр.

Задание с кратким ответом считается выполненным, если верный ответ записан в бланке ответов №1 в той форме, которая предусмотрена инструкцией по выполнению задания.


Разбор заданий ЕГЭ по математике (база)


Слайд 1

Алгебра Часть 1 Задачи на сплавы Преподаватель высшей категории Анисимова Оксана Михайловна ВИФК Кадетский корпус (спортивная школа)

Слайд 2

?? всего концентрация Масса вещества Было 5 14 % Добавили 5 — — стало 5+5=10 ? 0,7 Решение задач «задание 11» №1 Ответ: 7 В сосуд, содержащий 5 литров 14-процентного водного раствора некоторого вещества, добавили 5 литров воды. Сколько процентов составляет концентрация получившегося раствора?

Слайд 3

?? всего концентрация Масса вещества I x 15% 0,15x II x 17% 0,17x I+II 2x ? 0,15x + 0,17x = 0,32x Решение задач «задание 11» № 2 Ответ: 16 Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 17-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Слайд 4

?? всего концентрация Масса вещества I 4 20% 0,2·4=0,8 II 6 35% 0,35·6=2,1 I+II 4+6=10 ? 0,8 + 2,1 = 2,9 Решение задач «задание 11» № 3 Ответ: 29 Смешали 4 литра 20-процентного водного раствора некоторого вещества с 6 литрами 35- процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Слайд 5

?? всего концентрация Масса вещества I II I+II Решение задач «задание 11» № 4 .1 Ответ: 90 Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго? ?? всего концентрация Масса вещества I x 10% 0,1x II y 35% 0,35y I+II 150 30% 0,3·150=45 0,1x+0,35y=45

Слайд 6

?? всего концентрация Масса вещества I II I+II Решение задач «задание 11» № 4 .2 Ответ: 18 Имеется два сплава. Первый содержит 20% никеля, второй — 45% никеля. Из этих двух сплавов получили третий сплав массой 90 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была больше массы второго? ?? всего концентрация Масса вещества I x 2 0% 0, 2 x II y 4 5% 0, 4 5y I+II 90 30% 0,3· 90 = 27 0, 2 x+0, 4 5y=27

Слайд 7

Первый год Второй год I II I+II Решение задач «задание 11» № 5 Ответ: 110 Численность волков в двух заповедниках составляла 210 особей. Через год обнаружили, что в первом заповеднике численность волков возросла на 10%, а во втором — на 30%. В результате общая численность волков в двух заповедниках составила 251.Сколько волков было в первом из заповедников первоначально? ?? Первый год Второй год I x x+0,1x II y y+0,3y I+II 210 251

Слайд 8

?? всего Процентное содержание Масса вещества I II I+II Решение задач «задание 11» № 6 .1 Ответ: 27 Имеется два сплава. Первый сплав содержит 5% меди, второй — 14% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах. ?? всего Процентное содержание Масса вещества I x 5% 0,05x II x+9 14% 0,14(x+9) I+II 2x+9 11% 0,11(2x+9)= 0,05x+0,14(x+9)

Слайд 9

?? всего Процентное содержание Масса вещества I II I+II Решение задач «задание 11» №6.2 Ответ: 9 Имеется два сплава. Первый сплав содержит 10% меди, второй — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третье го сплава. Ответ дайте в килограммах. ?? всего Процентное содержание Масса вещества I x 10 % 0,1x II x+ 3 40 % 0,4(x+3) I+II 2x+3 30 % 0,3(2x+3)= 0,1x+0,4(x+3)

Слайд 10

Решение задач «задание 11» №7.1 Смешав 6-процентный и 74-процентный растворы кислоты и добавив 10 кг чистой воды, получили 19-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50- процентного раствора той же кислоты, то получили бы 24-процентный раствор кислоты. Сколько килограммов 6-процентного раствора использовали для получения смеси? ?? всего Процент Масса вещества I x 6% 0,06x II y 74% 0,74y Добавили 1 раз 10 — — Получили 1 раз x+y+10 19% 0.19(x+y+10)= =0,06x+0,74y Добавили 2раз 10 50% 0,5·10=5 Получили 2 раз x+y+10 24% 0. 24 (x+y+10)= =0,06x+0,74y +5

Слайд 11

Решение задач «задание 11» №7.1 ?? всего Процент Масса вещества I x 6% 0,06x II y 74% 0,74y Добавили 1 раз 10 — — Получили 1 раз x+y+10 19% 0.19(x+y+10)= =0,06x+0,74y Добавили 2раз 10 50% 0,5·10=5 Получили 2 раз x+y+10 24% 0. 24 (x+y+10)= =0,06x+0,74y +5

Слайд 12

Решение задач «задание 11» №7.1 Ответ: 70

Слайд 13

Самостоятельно Сборник «4000 задач» № 1586 , № 1590 № 1587 , № 11 вариант1 №11 вариант2

Слайд 14

Алгебра Урок №11 Часть 2 Задачи на совместную работу Преподаватель высшей категории Анисимова Оксана Михайловна ВИФК Кадетский корпус (спортивная школа)

Слайд 15

Объем работы Производительность (скорость) время I II Решение задач «задание 11» №1 .1 Ответ: 6 Объем работы Производительность (скорость) время I 20 x+4 II 60 x

Слайд 16

На изготовление 16 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 40 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей в час делает второй рабочий? Объем работы Производительность (скорость) время I II Решение задач «задание 11» №1 .2 Ответ: 5 Объем работы Производительность (скорость) время I 16 x+3 II 40 x

Слайд 17

Первая труба пропускает на 1 литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 110 литров она заполняет на 1 минуту дольше, чем вторая труба? Объем работы Производительность (скорость) время I II Решение задач «задание 11» №1 .3 Ответ: 10 Объем работы Производительность (скорость) время I 110 x II 110 x+1

Слайд 18

Решение задач «задание 11» № 2.1 Ответ: 16 Объем работы Производительность (скорость) время I 12y·10 12y 10 24yx 12y+12y X II 21y·10 21y 10 9yx 21y-12y=9y X !!!

Слайд 19

Решение задач «задание 11» № 2.2 Ответ: 16 Объем работы Производительность (скорость) время I 16y·7=112y 16y 7 24yx 16y+8y=24y X II 25y·7=175y 25y 7 17yx 25y-8y=17y X !!! Две бригады, состоящие из рабочих одинаковой квалификации, одновременно начали выполнять два одинаковых заказа. В первой бригаде было 16 рабочих, а во второй — 25 рабочих. Через 7 дней после начала работы в первую бригаду перешли 8 рабочих из второй бригады. В итоге оба заказа были выполнены одновременно. Найдите, сколько дней потребовалось на выполнение заказов.

Слайд 20

Самостоятельно Сборник «4000 задач» № 1639 №1652 № 1622

Слайд 21

Интернет ссылки

Понравилась статья? Поделить с друзьями:
  • Разбор эссе по английскому языку на егэ 2022
  • Разбор структуры сочинения егэ по русскому языку
  • Разбор экономической задачи по математике егэ 2022
  • Разбор стихотворений для егэ по литературе
  • Разбор экономических задач егэ профильная математика 2023