Реакции диспропорционирования егэ химия

1. Окислители и восстановители
2. Классификация окислительно–восстановительных реакций
3. Основные правила составления ОВР
4. Общие закономерности протекания ОВР
5. Основные схемы ОВР
5.1. Схема восстановления перманганатов
5.2. Схема восстановления хроматов/бихроматов
5.3. Разложение нитратов
5.4. Окислительные свойства азотной кислоты
5.5. Взаимодействие металлов с серной кислотой
5.6. Пероксид водорода

Окислительно-восстановительные реакции — это химические реакции, сопровождающиеся изменением степени окисления у атомов реагирующих веществ. При этом некоторые частицы отдают электроны, а некоторые получают.

Окислители и восстановители

Окислители — это частицы (атомы, молекулы или ионы), которые принимают электроны в ходе химической реакции. При этом степень окисления окислителя понижается. Окислители при этом восстанавливаются.

Восстановители — это частицы (атомы, молекулы или ионы), которые отдают электроны в ходе химической реакции. При этом степень окисления восстановителя повышается. Восстановители при этом окисляются.



Химические вещества можно разделить на типичные окислители, типичные восстановители, и вещества, которые могут проявлять и окислительные, и восстановительные свойства. Некоторые вещества практически не проявляют окислительно-восстановительную активность.

К типичным окислителям относят:

  • простые вещества-неметаллы с наиболее сильными окислительными свойствами (фтор F2, кислород O2, хлор Cl2);
  • сложные вещества, в составе которых есть ионы металлов или неметаллов с высокими положительными (как правило, высшими) степенями окисления: кислоты (HN+5O3, HCl+7O4), соли (KN+5O3, KMn+7O4), оксиды (S+6O3,  Cr+6O3)
  • соединения, содержащие некоторые катионы металлов, имеющих  высокие степени окисления: Pb4+, Fe3+, Au3+ и др.

Типичные восстановители – это, как правило:

  • простые вещества-металлы (восстановительные способности металлов определяются рядом электрохимической активности);
  • сложные вещества, в составе которых есть атомы или ионы неметаллов с отрицательной (как правило, низшей) степенью окисления: бинарные водородные соединения (H2S, HBr), соли бескислородных кислот (K2S, NaI);
  • некоторые соединения, содержащие катионы с минимальной положительной степенью окисления (Sn2+, Fe2+, Cr2+), которые, отдавая электроны, могут повышать свою степень окисления;
  • соединения, содержащие сложные ионы, состоящие из неметаллов с промежуточной положительной степенью окисления (S+4O3)2–, (НР+3O3)2–, в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления.

Большинство остальных веществ может проявлять как окислительные, так и восстановительные свойства.


Типичные окислители и восстановители приведены в таблице.


В лабораторной практике наиболее часто используются следующие окислители:

  • перманганат калия (KMnO4);

  • дихромат калия (K2Cr2O7);

  • азотная кислота (HNO3);

  • концентрированная серная кислота (H2SO4);

  • пероксид водорода (H2O2);

  • оксиды марганца (IV) и свинца (IV) (MnO2, PbO2);

  • расплавленный нитрат калия (KNO3) и расплавы некоторых других нитратов .

К восстановителям, которые применяются в лабораторной практике относятся:

  • магний (Mg), алюминий (Al), цинк (Zn) и другие активные металлы;
  • водород (Н2) и углерод (С);
  • иодид калия (KI);
  • сульфид натрия (Na2S) и сероводород (H2S);
  • сульфит натрия (Na2SO3);
  • хлорид олова (SnCl2).

Классификация окислительно-восстановительных реакций 


Окислительно-восстановительные реакции обычно разделяют на четыре типа: межмолекулярные, внутримолекулярные, реакции диспропорционирования (самоокисления-самовосстановления), и реакции контрдиспропорционирования.

Межмолекулярные реакции протекают с изменением степени окисления разных элементов из разных реагентов. При этом образуются разные продукты окисления и восстановления.

2Al0 + Fe+32O3 → Al+32O3 + 2Fe0,

C0 + 4HN+5O3(конц) = C+4O2 ↑ + 4N+4O↑+ 2H2O.

Внутримолекулярные реакции – это такие реакции, в которых разные элементы из одного реагента  переходят в разные продукты, например:

(N-3H4)2Cr+62O7  → N20 ↑+ Cr+32O3 + 4 H2O,

2 NaN+5O-23 → 2 NaN+3O2 + O02↑.

Реакции диспропорционирования (самоокисления-самовосстановления) – это такие реакции, в которых окислитель и восстановитель – один  и тот же элемент одного реагента, который при этом переходит в разные продукты:

3Br2 + 6 KOH → 5KBr + KBrO3 + 3 H2O,

Репропорционирование (конпропорционирование, контрдиспропорционирование) – это реакции, в которых окислитель и восстановитель – это один и тот же элемент, который из разных реагентов переходит в один продукт. Реакция, обратная диспропорционированию.

 2H2S-2 + S+4O2 = 3S + 2H2O

Основные правила составления окислительно-восстановительных реакций

Окислительно-восстановительные реакции сопровождаются процессами окисления и восстановления:

Окисление — это процесс отдачи электронов восстановителем.

Восстановление — это процесс присоединения электронов окислителем.

Окислитель восстанавливается, а восстановитель окисляется.

В окислительно-восстановительных  реакциях соблюдается электронный баланс: количество электронов, которые отдает восстановитель, равно количеству электронов, которые получает окислитель. Если баланс составлен неверно, составить сложные ОВР у вас не получится.

Используется несколько методов составления окислительно-восстановительных реакций (ОВР): метод электронного баланса, метод электронно-ионного баланса (метод полуреакций) и другие.

Рассмотрим подробно метод электронного баланса.

«Опознать» ОВР довольно легко — достаточно расставить степени окисления во всех соединениях и определить, что атомы меняют степень окисления:

K+2S-2 + 2K+Mn+7O-24 = 2K+2Mn+6O-24 + S0

Выписываем отдельно атомы элементов, меняющих степень окисления, в состоянии ДО реакции и ПОСЛЕ реакции.

Степень окисления меняют атомы марганца и серы:

S-2 -2e = S0

Mn+7 + 1e = Mn+6

Марганец поглощает 1 электрон, сера отдает 2 электрона. При этом необходимо, чтобы соблюдался электронный баланс. Следовательно, необходимо удвоить число атомов марганца, а число атомов серы оставить без изменения. Балансовые коэффициенты указываем и перед реагентами, и перед продуктами!

Схема составления уравнений ОВР методом электронного баланса:

Внимание! В реакции может быть несколько окислителей или восстановителей. Баланс необходимо составить так, чтобы ОБЩЕЕ число отданных и полученных электронов было одинаковым.

Общие закономерности протекания окислительно-восстановительных реакций

Продукты окислительно-восстановительных реакций зачастую зависят от условий проведения процесса. Рассмотрим основные факторы, влияющие на протекание окислительно-восстановительных реакций.

Самый очевидный фактор, определяющий — среда раствора реакции — кислая, нейтральная или щелочная. Как правило (но не обязательно), вещество, определяющее среду, указано среди реагентов. Возможны такие варианты:

  • окислительная активность усиливается в более кислой среде и окислитель восстанавливается глубже (например, перманганат калия, KMnO4, где Mn+7 в кислой среде восстанавливается до Mn+2, а в щелочной — до Mn+6);
  • окислительная активность усиливается в более щелочной среде, и окислитель восстанавливается глубже (например, нитрат калия KNO3, где N+5 при взаимодействии с восстановителем в щелочной среде восстанавливается до N-3);
  • либо окислитель практически не подвержен изменениям среды.

Среда протекания реакции позволяет определить состав и форму существования остальных продуктов ОВР. Основной принцип — продукты образуются такие, которые не взаимодействуют с реагентами!

Обратите внимание! Если среда раствора кислая, то среди продуктов реакции не могут присутствовать основания и основные оксиды, т.к. они взаимодействуют с кислотой. И, наоборот, в щелочной среде исключено образование кислоты и кислотного оксида. Это одна из наиболее частых, и наиболее грубых ошибок.

Также на направление протекания ОВР влияет природа реагирующих веществ. Например, при взаимодействии азотной кислоты HNO3 с восстановителями наблюдается закономерность — чем больше активность восстановителя, тем больше восстанавливается азот N+5.

При увеличении температуры большинство ОВР, как правило, проходят более интенсивно и более глубоко.

В гетерогенных реакциях на состав продуктов зачастую влияет степень измельчения твердого вещества. Например, порошковый цинк с азотной кислотой образует одни продукты, а гранулированный — совершенно другие. Чем больше степень измельчения реагента, тем больше его активность, как правило.

Рассмотрим наиболее типичные лабораторные окислители.

Основные схемы окислительно-восстановительных реакций

Схема восстановления перманганатов

 В составе перманганатов есть мощный окислитель — марганец в степени окисления +7. Соли марганца +7 окрашивают раствор в фиолетовый цвет.

Перманганаты, в зависимости от среды реакционного раствора, восстанавливаются по-разному.

В кислой среде восстановление происходит более глубоко, до Mn2+. Оксид марганца в степени окисления +2 проявляет основные свойства, поэтому в кислой среде образуется соль. Соли марганца +2 бесцветны. В нейтральном растворе марганец восстанавливается до степени окисления +4, с образованием амфотерного оксида MnO2 — коричневого осадка, нерастворимого в кислотах и щелочах. В щелочной среде марганец восстанавливается минимально — до ближайшей степени окисления +6. Соединения марганца +6  проявляют кислотные свойства, в щелочной среде образуют соли — манганаты. Манганаты придают раствору зеленую окраску.

Рассмотрим взаимодействие перманганата калия KMnO4 с сульфидом калия в кислой, нейтральной и щелочной средах. В этих реакциях продуктом окисления сульфид-иона является S0.

5 K2S + 2 KMnO4 + 8 H2SO4 = 5 S + 2 MnSO4 + 6 K2SO4 + 8 H2O,

3 K2S + 2 KMnO4 + 4 H2O = 2 MnO2↓ + 3 S↓ + 8 KOH,

Распространенной ошибкой в этой реакции является  указание на взаимодействие серы и щелочи в продуктах реакции. Однако, сера взаимодействует с щелочью в довольно жестких условиях (повышенная температура), что не соответствует условиям этой реакции. При обычных условиях правильно будет указывать именно молекулярную серу и щелочь отдельно, а не продукты их взаимодействия.

K2S + 2 KMnO4 –(KOH)= 2 K2MnO4 + S↓

При составлении этой реакции также возникают трудности. Дело в том, что в данном случае написание молекулы среды (КОН или другая щелочь) в реагентах не требуется для уравнивания реакции. Щелочь принимает участие в реакции, и определяет продукт восстановления перманганата калия, но реагенты и продукты уравниваются и без ее участия. Этот, казалось бы, парадокс легко разрешим, если вспомнить, что химическая реакция — это всего лишь условная запись, которая не указывает на каждый происходящий процесс, а всего лишь является отображением суммы всех процессов. Как определить это самостоятельно? Если действовать по классической схеме — баланс-балансовые коэффициенты-уравнивание металла, то вы увидите, что металлы уравниваются балансовыми коэффициентами, и наличие щелочи в левой части уравнения реакции будет лишним.

Перманганаты окисляют:

  • неметаллы с отрицательной степенью окисления до простых веществ (со степенью окисления 0), исключения фосфор, мышьяк — до +5;
  • неметаллы с промежуточной степенью окисления до высшей степени окисления;
  • активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.

KMnO4 + неМе (низшая с.о.) = неМе0 + другие продукты

KMnO4 + неМе (промежуточная с.о.) = неМе(высшая с.о.) + др. продукты

KMnO4 + Ме0 = Ме (стабильная с.о.) + др. продукты

KMnO4 + P-3, As-3= P+5, As+5 + др. продукты

Схема восстановления хроматов/бихроматов

Особенностью хрома с валентностью VI является то, что он образует 2 типа солей в водных растворах: хроматы и бихроматы, в зависимости от среды раствора. Хроматы активных металлов (например, K2CrO4) — это соли, которые устойчивы в щелочной среде. Дихроматы (бихроматы) активных металлов (например, K2Cr2O7) — соли, устойчивые в кислой среде.

Восстанавливаются соединения хрома (VI)  до соединений хрома (III). Соединения хрома Cr+3 — амфотерные, и в зависимости от среды раствора они существуют в растворе в различных формах: в кислой среде в виде солей (амфотерные соединения при взаимодействии с кислотами образуют соли), в нейтральной среде — нерастворимый амфотерный гидроксид хрома (III) Cr(OH)3, и в щелочной среде соединения хрома (III) образуют комплексную соль, например, гексагидроксохромат (III) калия K3[Cr(OH)6].

Схема восстановления соединений хрома +6

Соединения хрома VI окисляют:

  •  неметаллы в отрицательной степени окисления до простых веществ (со степенью окисления 0), исключения фосфор, мышьяк – до +5;
  • неметаллы в промежуточной степени окисления до высшей степени окисления;
  • активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.

Хромат/бихромат + неМе (отрицательная с.о.) = неМе0 + другие продукты

Хромат/бихромат + неМе (промежуточная положительная  с.о.) = неМе(высшая с.о.) + др. продукты

Хромат/бихромат + Ме0 = Ме (стабильная с.о.) + др. продукты

Хромат/бихромат + P, As (отрицательная с.о.) = P, As+5 + другие продукты

Разложение нитратов

Соли-нитраты содержат азот в степени окисления +5 — сильный окислитель. Такой азот может окислять кислород (О-2). Это происходит при нагревании нитратов. При этом в большинстве случаев кислород окисляется до степени окисления 0, т.е. до молекулярного кислорода O2.

В зависимости от типа металла, образующего соль, при термическом (температурном) разложении нитратов образуются различные продукты: если металл активный (в ряду электрохимической активности находятся до магния), то азот восстанавливается до степени окисления +3, и при разложении образуется соли-нитриты и молекулярный кислород.

Например:

2NaNO3 → 2NaNO2 + O2. 

Активные металлы в природе встречаются в виде солей (KCl, NaCl).

Если металл в ряду электрохимической активности находится правее магния и левее меди (включая магний и медь), то при разложении образуется оксид металла в устойчивой степени окисления, оксид азота (IV) (бурый газ) и кислород. Оксид металла образует также при разложении нитрат лития.

Например, разложение нитрата цинка:

2Zn(NO3)2 → 2ZnО + 4NO2 + O2.

Металлы средней активности чаще всего в природе встречаются в виде оксидов (Fe2O3, Al2O3 и др.).

Ионы металлов, расположенных в ряду электрохимической активности правее меди являются сильными окислителями. При разложении нитратов они, как и N+5, участвуют в окислении кислорода, и восстанавливаются до простых веществ, т.е. образуется металл и выделяются газы — оксид азота (IV) и кислород.

Например, разложение нитрата серебра:

2AgNO3 → 2Ag + 2NO2 + O2.

Неактивные металлы в природе встречаются в виде простых веществ.

Некоторые исключения!

Разложение нитрата аммония:

В молекуле нитрата аммония есть и окислитель, и восстановитель: азот в степени окисления -3 проявляет только восстановительные свойства, азот в степени окисления +5 — только окислительные.

При нагревании нитрат аммония разлагается. При температуре до 270 оС образуется оксид азота (I) («веселящий газ») и вода:

NH4NO3 → N2O + 2H2O

Это пример реакции контрдиспропорционирования.

Результирующая степень окиcления азота — среднее арифметическое степени окисления атомов азота в исходной молекуле.

При более высокой температуре оксид азота (I) разлагается на простые вещества — азот и кислород:

2NH4NO3 → 2N2 + O2 + 4H2O

При разложении нитрита аммония NH4NO2 также происходит контрдиспропорционирование.

Результирующая степень окисления азота также равна среднему арифметическому степеней окисления исходных атомов азота — окислителя N+3 и восстановителя N-3

NH4NO2 → N2 + 2H2O

Термическое разложение  нитрата марганца (II) сопровождается окислением металла:

Mn(NO3)2 = MnO2 + 2NO2

Нитрат железа (II) при низких температурах разлагается до оксида железа (II), при нагревании железо окисляется до степени окисления +3:

2Fe(NO3)2 → 2FeO + 4NO2 + O2 при 60°C
4Fe(NO3)2 → 2Fe2O3 + 8NO2 + O2 при >60°C

Нитрат никеля (II) разлагается до нитрита при нагревании до 150оС под вакуумом и до оксида никеля при более высоких температурах (разложения нитрата никеля в ЕГЭ по химии не должно быть, но это не точно)).

  Окислительные свойства азотной кислоты

Азотная кислота HNO3 при взаимодействии с металлами практически никогда не образует водород, в отличие от большинства минеральных кислот.

Это связано с тем, что в составе кислоты есть очень сильный окислитель — азот в степени окисления +5. При взаимодействии с восстановителями — металлами образуются различные продукты восстановления азота.

Азотная кислота + металл = соль металла + продукт восстановления азота + H2O

Азотная кислота при восстановлении может переходить в оксид азота (IV) NO2 (N+4); оксид азота (II) NO (N+2); оксид азота (I) N2O («веселящий газ»); молекулярный азот N2;  нитрат аммония NH4NO3. Как правило, образуется смесь продуктов с преобладанием одного из них. Азот восстанавливается при этом до степеней окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. При этом работает правило: чем меньше концентрация кислоты и выше активность металла, тем больше электронов получает азот, и тем более восстановленные продукты образуются.

Некоторые закономерности позволят верно определять основной продукт восстановления металлами  азотной кислоты в реакции:

  • при действии очень разбавленной азотной кислоты на металлы образуется, как правило, нитрат аммония NH4NO3;

Например, взаимодействие цинка с очень разбавленной азотной кислотой:

4Zn + 10HNO3 = 4Zn(NO3)2 + NH4NO3 + 3H2O

  • концентрированная азотная кислота на холоде пассивирует некоторые металлы — хром Cr, алюминий Al и железо Fe. При нагревании или разбавлении раствора реакция идет;

пассивация металлов — это перевод поверхности металла в неактивное состояние за счет образования на поверхности металла тонких слоев инертных соединений, в данном случае преимущественно оксидов металлов, которые не реагируют с концентрированной азотной кислотой

  • азотная кислота не реагирует с металлами платиновой подгруппызолотом Au, платиной Pt, и палладием Pd;
  • при взаимодействии концентрированной кислоты с неактивными металлами и металлами средней активности азотная кислота восстанавливается до оксида азота (IV) NO2;

Например, окисление меди концентрированной азотной кислотой:

Cu+ 4HNO3 = Cu(NO3)2 + 2NO2 + 2H2

  • при взаимодействии концентрированной азотной кислоты с активными металлами образуется оксид азота (I) N2O;

Например, окисление натрия концентрированной азотной кислотой:

8Na+ 10HNO3 = 8NaNO3 + N2O + 5H2

  • при взаимодействии разбавленной азотной кислоты с неактивными металлами (в ряду активности правее водорода) кислота восстанавливается до оксида азота (II) NO;
  • при взаимодействии разбавленной азотной кислоты с металлами средней активности образуется либо  оксид азота (II) NO, либо оксид азота N2O, либо молекулярный азот N2 — в зависимости от дополнительных факторов (активность металла, степень измельчения металла, степень разбавления кислоты, температура).
  • при взаимодействии разбавленной азотной кислоты с активными металлами образуется молекулярный азот N2.

Для приближенного определения продуктов восстановления азотной кислоты при взаимодействии с разными металлами я предлагаю воспользоваться принципом маятника. Основные факторы, смещающие положение маятника: концентрация кислоты и активность металла. Для упрощения используем 3 типа концентраций кислоты: концентрированная (больше 30%), разбавленная (30% или меньше), очень разбавленная (меньше 5%). Металлы по активности разделим на активные (до алюминия), средней активности (от алюминия до водорода) и неактивные (после водорода). Продукты восстановления азотной кислоты располагаем в порядке убывания степени окисления:

NO2; NO; N2O; N2; NH4NO3

Чем активнее металл, тем больше мы смещаемся вправо. Чем больше концентрация или меньше степень разбавления кислоты, тем больше мы смещаемся влево.

Например, взаимодействуют концентрированная кислота и неактивный металл медь Cu. Следовательно, смещаемся в крайнее левое положение, образуется оксид азота (IV), нитрат меди и вода.

 Взаимодействие металлов с серной кислотой

Разбавленная серная кислота взаимодействует с металлами, как обычная минеральная кислота. Т.е. взаимодействует с металлами, которые расположены в ряду электрохимических напряжений до водорода. Окислителем здесь выступают ионы H+, которые восстанавливаются до молекулярного водорода H2. При этом металлы окисляются, как правило, до минимальной степени окисления.

Например:

Fe + H2SO4(разб) = FeSO4 + H2

Концентрированная серная кислота взаимодействует с металлами, стоящими в ряду напряжений как до, так и после водорода.

H2SO4 (конц) + металл = соль металла + продукт восстановления серы (SO2, S, H2S) + вода 

При взаимодействии концентрированной серной кислоты с металлами образуются соль металла (в устойчивой степени окисления), вода и продукт восстановления серы — сернистый газ S+4O2, молекулярная сера S либо сероводород H2S-2, в зависимости от степени концентрации, активности металла, степени его измельчение, температуры и т.д. При взаимодействии концентрированной серной кислоты с металлами молекулярный водород не образуется!

Основные принципы взаимодействия концентрированной серной кислоты с металлами:

1. Концентрированная серная кислота пассивирует алюминий, хром, железо при комнатной температуре, либо на холоду;

2. Концентрированная серная кислота не взаимодействует с золотом, платиной и палладием;

3. С неактивными металлами концентрированная серная кислота восстанавливается до оксида серы (IV).

Например, медь окисляется концентрированной серной кислотой:

Cu0 + 2H2S+6O4(конц) = Cu+2SO4 + S+4O2 + 2H2O

4. При взаимодействии с активными металлами и цинком концентрированная серная кислота образует серу S либо сероводород H2S2- (в зависимости от температуры, степени измельчения и активности металла).

Например, взаимодействие концентрированной серной кислоты с цинком:

8Na0 + 5H2S+6O4(конц) → 4Na2+SO4 + H2S2 + 4H2O

Пероксид водорода

Пероксид водорода H2O2 содержит кислород в степени окисления -1. Такой кислород может и повышать, и понижать степень окисления. Таким образом, пероксид водорода проявляет и окислительные, и восстановительные свойства.

При взаимодействии с восстановителями пероксид водорода проявляет свойства окислителя, и восстанавливается до степени окисления -2. Как правило, продуктом восстановления пероксида водорода является вода или гидроксид-ион, в зависимости от условий проведения реакции. Например:

S+4O2 + H2O2-1 → H2S+6O4-2

При взаимодействии с окислителями перекись окисляется до молекулярного кислорода (степень окисления 0): O2. Например:

2KMn+7O4 + 5H2O2-1 + 3H2SO4 → 5O20 + 2Mn+2SO4 + K2SO4 + 8H2O

1.4.8. Реакции окислительно-восстановительные. Коррозия металлов и способы защиты от нее.

Окислительно-восстановительные реакции

Окислительно-восстановительные реакции (ОВР) — такие реакции, которые протекают с изменением степеней окисления элементов.

Изменение степеней окисления происходит из-за полной или частичной передачи электронов от одних атомов к другим:

фосфин + азотная кислота ОВР

Поскольку электроны имеют заряд «-1» , следовательно, понижение степени окисления атома химического элемента происходит в результате приобретения им дополнительных электронов.

Процесс приобретения атомом дополнительных электронов называется восстановлением:

N+5 + 1e = N+4

Вещество, которое содержит восстанавливающиеся атомы, называют окислителем.

В примере выше окислителем является азотная кислота HNO3.

Аналогично повышение степени окисления происходит в том случае, когда атом элемента теряет некоторое количество своих электронов. Процесс потери атомом электронов называют окислением:

P-3 - 8e = P+5

Химическое вещество, которое содержит окисляющиеся атомы, называют восстановителем.  В указанном примере восстановителем является фосфин PH3.

Виды окислительно-восстановительных реакций

Межмолекулярные ОВР

Межмолекулярные окислительно-восстановительные реакции — такие реакции, в которых атомы окислителя и атомы восстановителя находятся в разных веществах. Например:

HCl + K2Cr2O7

Внутримолекулярные ОВР

Внутримолекулярные окислительно-восстановительные реакции — такие реакции,  в которых атомы восстановителя и атомы окислителя содержатся в одном веществе. Например:

уравнение разложения азотной кислоты

Реакции диспропорционирования

Реакциями диспропорционирования называют такие реакции, в которых атомы одного химического элемента, являются окислителями и восстановителями и при этом находятся в одном веществе. Такие реакции также называют реакциями самоокисления-самовосстановления. Например, к таким реакциям относятся все реакции взаимодействия галогенов с растворами щелочей:

взаимодействие хлора с горячей и холодной щелочью уравнения

Расстановка коэффициентов в окислительно-восстановительных реакциях

Метод электронного баланса

Метод электронного баланса — метод расстановки коэффициентов в окислительно-восстановительной реакции, основанный на том, что количество электронов, отданных восстановителем, равно числу электронов, полученных окислителем.

Алгоритм расстановки коэффициентов данным методом выглядит следующим образом:

1) Следует записать схему реакции, указав формулы всех реагентов и продуктов. Например, при взаимодействии концентрированной серной кислоты с фосфором образуется фосфорная кислота, диоксид серы и вода:

H2SO4 + P окислительно-восстановительные реакции

2) Далее следует расставить все степени окисления и найти те элементы, у которых изменилось значение степени окисления.

окислительно-восстановительные реакции

3) После расстановки степеней окисления химических элементов находят те элементы, которые изменили свои степени окисления. Далее записывают уравнения полуреакций окисления и восстановления. В нашем случае они имеют вид:

Электронный баланс

4) Поскольку количество отдаваемых электронов восстановителем должно быть равно количеству принимаемых электронов окислителем, далее следует подобрать дополнительные множители к записанным полуреакциям:

электронный баланс множители

5) Подобранные к полуреакциям множители переносятся в схему реакции:

H2SO4 + P ОВР

6) Отталкиваясь от тех коэффициентов, которые уже известны из электронного баланса, оставшиеся коэффициенты расставляют методом подбора:

H2SO4 + P

Примечание:

Следует отметить, что если в одной структурной единице какого-либо участника реакции содержится не один атом химического элемента, изменившего степень окисления, а 2 или больше, то это обязательно следует учитывать при записи уравнений полуреакций. Обратите внимание на составление электронного баланса для реакции горения этана в кислороде:

C2H6 + O2 = CO2 + H2O

окислительно-восстановительные реакеции

Как можно видеть в первом уравнении полуреакции, мы учли то, что в левой части уравнения уже сразу содержится не менее двух атомов углерода, поскольку одна формульная единица C2H6 содержит два атома C. По этой причине мы поставили коэффициент 2 перед атомами углерода в левой и правой частях полуреакции, а также удвоили количество «уходящих» электронов (14 вместо 7-ми).

Во второй полуреакции мы также учли, что в левой части уравнения реакции не может быть менее двух атомов кислорода, поскольку 2 атома  O содержатся в одной молекуле O2. Однако как вы могли заметить, в случае простого вещества кислорода мы не стали писать 2O, а записали O2.  Также следует поступать и в случае других простых молекулярных веществ, например, O2, F2, Cl2, N2, H2 и т.д.

Очевидно, что электронный баланс — не самая сложная часть в процессе составления уравнения окислительно-восстановительной реакции. Часто трудности возникают в том, какие продукты записывать в правой части схемы реакции.

Для того чтобы записывать уравнения ОВР, не нужно пытаться выучить все возможные реакции, тем более, что это невозможно в принципе. Надо учиться их составлять. В первую очередь, что действительно следует выучить, так это формы существования окислителей и восстановителей до и после реакции в зависимости от среды раствора. Среда раствора определяется по наличию или отсутствию среди реагентов кислоты или щелочи. Также всегда нужно помнить, что в качестве возможных продуктов не следует писать формулы веществ, реагирующих с остальными продуктами и/или со средой. Так, например, в продуктах не может быть кислоты, если изначально среда раствора щелочная и наоборот. В общем, говоря более простыми словами, все продукты должны быть химически «безразличны» друг к другу, а также к среде раствора (исключение — электролиз).

Ниже представлены основные окислительно-восстановительные переходы окислителей и восстановителей в зависимости от среды. Во многих случаях указаны не целые формулы веществ, а формулы ионов, входящих в их состав. В таком случае для записи уравнения реакции в молекулярном виде формулу иона требуется дополнить противоионами. Катионы металлов, чаще всего, объединяют с кислотными остатками, если среда кислая, а анионы с катионами металлов (если среда щелочная) или водорода, если среда кислая или нейтральная.

Окислители

переходы основных окислителей в ОВР

Восстановители

переходы основных восстановителей в ОВР

Коррозия металлов и способы защиты от нее

Коррозией металла называют процесс его самопроизвольного разрушения в результате контакта с окружающей средой.

Коррозия бывает химическая и электрохимическая.

Химическая коррозия — вид коррозии, при котором металл разрушается из-за его взаимодействия с газами или жидкостями, не проводящими электрический ток. Так, например, к химической коррозии относится образование окалины при взаимодействии железа с кислородом при высоких температурах, а также разрушение металлического оборудования под действием нефтяных фракций, содержащих сернистые соединения.

Электрохимической коррозией называют разрушение металла в растворе электролита вследствие возникновения в данной системе электрических токов. Электрические токи, способствующие коррозии, возникают в тех случаях, когда в растворе электролита изделие из металла контактирует с другим менее активным металлом. Также такие токи могут появляться из-за химической неоднородности металлического материала, из которого выполнено изделие.

Так, например, из-за электрохимической коррозии страдают подводные части судов, паровые котлы, трубопроводы, металлические конструкции в почве и т.д.

Способы защиты металлов от коррозии

1) Контроль условий, в которых эксплуатируется металлическое оборудование. Например, хранение и использование изделий из стали на открытом воздухе нежелательно и этого, по возможности, следует избегать. Эксплуатация металлического оборудования в помещениях с низкой влажностью существенно продлит его срок службы.

2) Создание защитных покрытий, изолирующих металлоконструкцию от контакта с окружающей средой. Среди таких покрытий различают:

— неметаллические покрытия — всевозможные краски, лаки, эмали, а также пленки из таких полимеров, как полиэтилен, поливинилхлорид и т.д.;

— химические покрытия (оксидные, нитридные, фосфатные и т.д.) (Такие покрытия получают специальной химической обработкой поверхности металла.);

— металлические покрытия.

Металлические покрытия получают нанесением на защищаемую металлическую конструкцию тонкого слоя другого металла (чаще всего с помощью процесса электролиза).

При этом, если в качестве покрытия используется менее активный металл, то такое покрытие будет защищать металлоконструкцию только при условии его целостности. В случае, если целостность такого покрытия будет нарушена, защищаемый металл будет ускоренно корродировать.

Также широко используется покрытие металлоконструкций более активным металлом. Например, распространено использование так называемого оцинкованного железа. Такое покрытие защищает металлические объекты даже при нарушении его целостности, поскольку пока практически полностью не исчезнет слой покрытия из более активного металла, коррозия металла, из которого сделан защищаемый объект, не начнется.

3) Электрохимические методы защиты:

— катодная защита — вид защиты, при котором металлический объект подключается с помощью проводников к катоду внешнего источника тока либо же приводится в контакт с более активным металлом.

Частный случай катодной защиты, при котором металлическая конструкция приводится в контакт с более активным металлом, называют протекторной защитой.

4) Изменение химических свойств среды, в которой эксплуатируется металлическое изделие, в частности:

— добавление в среду веществ, замедляющих коррозию (ингибиторов коррозии).

— дегазация среды (удаление растворенных в ней газов, в частности, кислорода). Например, такой метод работает для защиты от ржавления железа, поскольку в процессе ржавления железа активное участие принимает не только вода, но и кислород:

4Fe + 6H2O + 3O2 = 4Fe(OH)3

Основные правила составления окислительно-восстановительных реакций 

(скачать pdf файл)

Существует несколько основных правил, которые сильно упрощают составление окислительно-восстановительных реакций. Более подробно эти и другие правила рассматривается на других страницах этого раздела, но для ЕГЭ достаточно знать правила из этого списка.

Правило 1. Реакции простых веществ: металлов и неметаллов с щелочами, кислотами и солями:

1.1) Из металлов только Al, Zn и Be взаимодействуют со щелочами с выделением водорода:
Zn + 2NaOH + 2H2O → Na2[Zn(OH)4] + H2­
Be + 2NaOH + 2H2O → Na2[Be(OH)4] + H2
2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

1.2) Из неметаллов только S, P, Si и галогены реагируют с щелочами:

3S + 6NaOH → Na2SO3 + 2Na2S + 3H2O
P4 + 3NaOH + 3H2O → PH3­ + 3NaH2PO2 (t°, гипофосфит натрия)
Si + 2NaOH + H2O → Na2SiO3 + 2H2
Cl2 + 2NaOH → NaCl + NaClO + H2O (аналогично для Br2, I2)                  
3Cl2 + 6NaOH → 5NaCl + NaClO3 + 3H2O (при нагревании, аналогично для Br2, I2)

2.1) Металлы (стоящие в ряду активности металлов до H2) реагируют с кислотами-неокислителями с выделением водорода:

2HCl + Fe → FeCl2 + H2
H2SO4(р) + Fe → FeSO4 + H2

2.2) Все металлы, кроме Pt и Au, реагируют с кислотами-окислителями без выделения водорода:
2H2SO4(к) + 2Ag → Ag2SO4 + SO2 + 2H2O
6H2SO4(к) + 2Fe  →  Fe2(SO4)3 + 3SO2 + 6H2O

2.3) Более сильные металлы вытесняют более слабые из растворов их солей:

Fe + CuSO4 → FeSO4 + Cu

3) Неметаллы не реагируют с кислотами-неокислителями:
C + HCl → реакция не идет

4) Такие неметаллы, как S, C, P могут реагировать с солями, проявляющими окислительные свойства (KClO3, KNO3 в расплавленном состоянии):

6P + 5KClO3 → 3P2O5 + 5KCl
C + 2KNO3 (расплав) → CO2 + 2KNO2
S + 2KNO3 (расплав) → SO2 + 2KNO2

5) Важная реакция получения фосфора:

5C + 3SiO2 + Ca3(PO4)2 → 5CO + 2P + 3CaSiO3

6) Из неметаллов только S, C, и P реагируют с кислотами-окислителями (в рамках ЕГЭ), а также I2 с HNO3(к):

Правило 2. Фосфор

1) Наиболее устойчивая степень окисления фосфора +5, следовательно, любые другие соединения фосфора окисляются сильными окислителями до этой степени окисления (с образованием P2O5 или фосфат-иона):

PH3 + 8KMnO4 + 11KOH →  K3PO4 + 8K2MnO4 + 7H2O   
6P + 5KClO3 →  5KCl + 3P2O5        
3P2O3 + 4HNO3 + 7H2O → 6H3PO4 + 4NO

Правило 3. Азот

1) Аммиак, как правило, окисляется до азота N2:

8NH3 + 3KBrO4 → 3KBr + 4N2 + 12H2O
2NH3 + 3CuO →  3Cu + N2­ + 6H2O

Исключением является каталитическое окисление аммиака:
4NH3 + 5O2 → 4NO + 6H2O (катализатор)

Обычное горение аммиака протекает с образованием N2 (как и горение любых органических азотсодержащих соединений):
4NH3 + 3O2 → 2N2 + 6H2O

2) Нитрит-ионы окисляются до нитрат-ионов:

3KNO2 + K2Cr2O7 + 4H2SO4 → 3KNO3 + Cr2(SO4)3 + K2SO4 + 4H2O
3KNO2 + 2KMnO4 + H2O → 3KNO3 + 2MnO2 + 2KOH

3) Нитрит-ионы восстанавливаются до азота в реакциях с солями аммония:

NaNO2 + NH4Cl →  N2­­ + NaCl + 2H2O
Ca(NO2)2 + (NH4)2SO4 →  2N2­­ + CaSO4 + 4H2O

4) Нитрит-ионы восстанавливаются до оксида азота (II) в реакциях с типичными восстановителями: HI, йодидами, солями Fe+2 и др.:

2KNO2 + 2KI + 2H2SO4 →  2NO­­ + I2 + 2K2SO4 + 2H2O
HNO2 + 2HI →  2NO­­ + I2 + 2H2O

Следующий тип реакций встречается в вариантах Ю.Н. Медведева.

5) Нитрат-ионы являются сильными окислителями при сплавлении с соединениями Cr, Mn, Fe в щелочной среде и с некоторыми неметаллами (восстанавливаются до нитритов):

3NaNO3 + Cr2O3 + 4KOH → 3NaNO2 + 2K2CrO4 + 2H2O
KNO3 + MnO2 + K2CO3 → KNO2 + K2MnO4 + CO2
2NaNO3 + FeSO4 + 4NaOH → 2NaNO2 + Na2FeO4 + Na2SO4 + 2H2O

2KNO3(расплав) + C → 2KNO2 + CO2
2KNO3(расплав) + S → 2KNO2 + SO2

6) Нитрат-ионы являются сильными окислителями в кислотной среде:

2KNO3 + Cu + 2H2SO4 → CuSO4 + 2NO2 + K2SO4 + 2H2O

7) Восстановление нитратов до аммиака в реакциях с такими металлами, как Al, Zn, Mg (встречается очень редко):

3NaNO3 + 8Al + 5NaOH +18H2O → 3NH3 + 8Na[Al(OH)4]
NaNO3 + 4Zn + 7NaOH + 6H2O → NH3 + 4Na2[Zn(OH)4]
KNO3 + 4Mg + 6H2O → NH3 + 4Mg(OH)2 + KOH

8) Взаимодействие азотной кислоты с простыми и сложными веществами

Правило 4. Кислород

1) Перекись водорода окисляется до кислорода O2 типичными окислителями:
KMnO4, K2Cr2O7, галогены, соли кислородсодержащих кислот хлора (например, KClO3) и некоторыми другими.

5H2O2 + KMnO4 + 3H2SO4 → 2MnSO4 + K2SO4 + 5O2 + 8H2O
3H2O2 + 2KNO3 + H2SO4 →  K2SO4 + 2NO + 3O2­ + 4H2O

2) Перекись водорода восстанавливается до H2O типичными восстановителями:
KI (HI, йодиды), K2SO3 (SO2, сульфиты), KNO2 (нитриты), PbS (H2S, сульфиды), соединения Cr+3 в щелочной среде, соединения Fe+2, NH3 и некоторыми другими.

H2O2 + Na2SO3 → Na2SO4 + H2O
H2O2 + KNO2 →  KNO3 + H2O
3H2O2 + 2NaCrO2 + 2NaOH →  2Na2CrO4 + 4H2O

Свойства пероксида водорода с примерами

Правило 5. Галогены

1) Галогены диспропорционируют в щелочах:

Cl2 + 2NaOH → NaCl + NaClO + H2O (аналогично для Br2, I2)                  
3Cl2 + 6NaOH → 5NaCl + NaClO3 + 3H2O (при нагревании, аналогично для Br2, I2)

2) Простые вещества галогены и соединения галогенов в любой положительной степени окисления восстанавливаются, как правило, до галогенид-ионов (т.е. до ст. ок. -1) в реакциях с типичными восстановителями:

5HClO3 + 6P + 9H2O → 5HCl + 6H3PO4
KClO3 + 6Fe(OH)2 + 18HCl → 6FeCl3 + KCl + 15H2O
2Cl2 + H3PO2 + 7KOH → K3PO4 + 4KCl + 5H2O
2Br2 + CrCl2 + 8NaOH →  Na2CrO4 + 2NaCl + 4NaBr + 4H2O

Исключение: соединения йода в высоких степенях окисления могут восстанавливаться до I2, а не до йодид-иона
KIO3 + 5KI + 3H2SO4 → 3I2 + 3K2SO4 + 3H2O.

3) Галогенид-ионы окисляются, как правило, до простых веществ: Cl2, Br2, I2:

14HCl + K2Cr2O7 → 3Cl2 + 2CrCl3 + 2KCl + 7H2O
16HCl + 2KMnO4  → 5Cl2 + 2MnCl2 + 2KCl + 8H2O

4) Йодид меди восстанавливает серную кислоту до SO2, тогда как йодиды активных металлов до H2S:

2CuI + 4H2SO4(конц.) → I2 + 2SO2 + 2CuSO4 + 4H2O
8KI + 5H2SO4(конц.) → 4I2 + H2S + 4K2SO4 + 4H2O

5) Концентрированной серной кислотой окисляются только бромид- и йодид-ионы. В первом случае образуется SO2, во втором H2S.

2KBr + 2H2SO4(конц.) → Br2 + SO2 + K2SO4 + 2H2O
8KI + 5H2SO4(конц.) → 4I2 + H2S + 4K2SO4 + 4H2O.

6) Более сильные галогены вытесняют менее сильные из галогенидов. В ряду F2, Cl2, Br2, I2 окислительные свойства ослабевают.

Cl2 + 2NaI → I2 + 2NaCl
Cl2 + NaF → реакция не идет, так как Cl2 — более слабый окислитель чем F2.

Все галогены вытесняют серу из сульфидов:
(NH4)2S + Br2 → S + 2NH4Br.

Правило 6. Сера

1) Сульфид-ионы обычно окисляются до S типичными окислителями: Br2, I2, растворами солей K2Cr2O7, KMnO4 и др.:

3Na2S + K2Cr2O7 + 7H2SO4 → 3S + Cr2(SO4)3 + K2SO4 + 3Na2SO4 + 7H2O
5Na2S + 2KMnO4 + 16HCl →  5S + 2MnCl2 + 10NaCl + 2KCl + 8H2O

H2S + Br2 → S + 2HBr
H2S + H2O2 →  S + 2H2O (образование H2SO4 возможно, зависит от условий задания)

2) С H2SO4(к) сероводород и сульфиды реагируют с образованием SO2, аналогично реакции кислоты с серой:

S + H2SO4(конц.) → 3SO2 + 2H2O (t)
H2S + 3H2SO4(конц.) → 4SO2 + 4H2O (t)

K2S + 4H2SO4(конц.) → K2SO4 + 4SO2 + 4H2O
В этой реакции сульфид-ион окисляется до SO2: S–2 -6e → S+4.
Часть сульфат-ионов восстанавливается также до SO2 и часть остается для образования соли K2SO4.

3) Окисление H2S и сульфидов до сульфат-ионов протекает в реакциях с такими окислителями, как Cl2 в воде, H2O2, HNO3(конц.) при нагревании:

H2S + 4Cl2 + 4H2O → H2SO4 + 8HCl
H2S + 8HNO3(конц.) →  H2SO4 + 8NO2 + 4H2O (образование S будет считаться ошибкой!)
PbS + 4H2O2 → PbSO4 + 4H2O (черный сульфид свинца превращается в белый сульфат)

4) Сульфит-ионы любыми окислителями окисляются до сульфат-иона:

3Na2SO3 + 2KMnO4 + H2O → 2MnO2 + 2Na2SO4 + 2KOH
3K2SO3 + 2K2CrO4 + 5H2O → 2Cr(OH)3 + 3K2SO4 + 4KOH.

5) Взаимодействие серной кислоты с простыми и сложными веществами

Правило 7. Медь

1) Соединения Cu+2 окисляют соединения S+4 и I (восстанавливаясь до Cu+1):

2CuCl2 + SO2 + 2H2O → 2CuCl + 2HCl + H2SO4
2Cu(NO3)2 + 4KI → 2CuI + I2 + 4KNO3

В реакции с аммиаком выделяется металлическая медь:
3CuO + 2NH3 → N2 + 3Cu + 3H2O

2) Йодиды меди реагируют с H2SO4(к) с образованием SO2, тогда как йодиды щелочных металлов с образованием H2S:

2CuI + 4H2SO4 → 2CuSO4 + I2 + 2SO2 + 4H2O
8KI + 5H2SO4(конц.) → 4K2SO4 + 4I2 + H2S + 4H2O

3) Медь  по-разному реагирует с галогенами:

Cu + Cl2 → CuCl2
Cu + Br2 → CuBr2
2Cu + I2 → 2CuI (соль меди +1)

4) Медь в степени окисления +2 восстанавливается самой медью:
CuO + Cu → Cu2O (t)
CuCl2 + Cu → 2CuCl (t).

Правило 8. Железо

1) Соединения Fe+3 окисляют соединения S–2, S+4, I и некоторые слабые металлы (восстанавливаясь до Fe+2):

Fe2O3 + 6HI → 2FeI2 + I2 + 3H2O
2FeCl3 + 3Na2S → 2FeS + S + 6NaCl
2FeCl3 + H2S → 2FeCl2 + S + 2HCl
2FeCl3 + Na2SO3 +H2O → 2FeCl2 + Na2SO4 + 2HCl

2FeCl3 + Cu → CuCl2 + 2FeCl2 (соль железа +2)
Fe2(SO4)3 + Cu → CuSO4 + 2FeSO4 (соль железа +2)
2Fe(NO3)3 + Fe → 3Fe(NO3)2 (соль железа +2)

2) В кислой среде соединения Fe+2 окисляются такими окислителями, как KMnO4, K2Cr2O7, Na2O2, HNO3, H2SO4(к) и др. до солей Fe+3:

6FeCl2 + Na2Cr2O7 + 14HCl → 6FeCl3 + 2CrCl3 + 2NaCl + 7H2O
2FeSO4 + Na2O2 + 2H2SO4 → Fe2(SO4)3 + Na2SO4 + 2H2O

3) В щелочной среде образуется гидроксид железа (III):

FeCl2 + KMnO4 + 3KOH →  K2MnO4 + Fe(OH)3 + 2KCl
2FeSO4 + 2KMnO4 + 6NaOH →  K2MnO4 + 2Fe(OH)3 + Na2MnO4 + 2Na2SO4

4) Железо  по-разному реагирует с галогенами:

2Fe + 3F2 → 2FeF3
2Fe + 3Cl2 → 2FeCl3
2Fe + 3Br2 → 2FeBr3
Fe + I2 → FeI2 (соль железа +2)

5) Соединения Fe+2, Fe+3 также могут быть окислены до степени окисления +6 (до ферратов, например, Na2FeO4) очень сильными окислителями, но на ЕГЭ знание этих реакций не проверяется (источник: вебинары от разработчиков экзамена):
3FeSO4 + 2NaClO3 + 12NaOH → 3Na2FeO4 + 2NaCl + 3Na2SO4 + 6H2O.

Правило 9. Марганец

1) В кислой среде образуются соли Mn+2:
K2MnO4 + 8HBr → MnBr2 + 2Br2 + 2KBr + 4H2O
2KMnO4 + 5SO2 + 2H2O →  2MnSO4 + K2SO4 + 2H2SO4

2) В щелочной среде образуется манганат-ион MnO42– (зеленого цвета):
MnSO4 + 2Br2 + 8KOH → K2MnO4 + 4KBr + Na2SO4 + 4H2O
2KMnO4 + 2FeSO4 + 6NaOH →  K2MnO4 + 2Fe(OH)3 + Na2MnO4 + 2Na2SO4

3) В нейтральной среде образуется осадок бурого цвета MnO2:
3MnSO4 + 2KMnO4 + 2H2O → 5MnO2 + K2SO4 + 2H2SO4
2KMnO4 + 3K2S + 4H2O →  2MnO2 + 3S + 8KOH
K2MnO4 + Na2S + 2H2O → S + MnO2 + 2NaOH + 2KOH

 Правило 10. Хром

1) Восстановление дихроматов в кислой среде протекает с образованием солей Cr+3:
Na2Cr2O7 + 6NaI + 7H2SO4 → Cr2(SO4)3 + 3I2 + 4Na2SO4 + 7H2O
K2Cr2O7 + 6FeSO4 + 7H2SO4 →  Cr2(SO4)3 + 3Fe2(SO4)3 + K2SO4 + 7H2O
K2Cr2O7 + 3KNO2 + 8HNO3 → 2Cr(NO3)3 + 5KNO3 + 4H2O

2) Окисление соединений Cr+2 в кислой среде протекает с образованием солей Cr+3:

6CrCl2 + K2Cr2O7 + 14HCl → 8CrCl3 + 2KCl + 7H2O
2CrCl2 + 4H2SO4(конц.) → Cr2(SO4)3 + SO2 + 4HCl + 2H2O

3) Окисление соединений Cr+3 очень сильными окислителями с щелочами или с карбонатами щелочных металлов протекает с образованием хроматов (типичные окислители: KNO3, Cl2, KClO3, H2O2 и др. в щел. среде):

Cr2O3 + 3KNO3 + 2K2CO3 → 2K2CrO4 + 3KNO2 + 2CO2
Cr2(SO4)3 + 3Cl2 + 16KOH → 2K2CrO4 + 6KCl + 3K2SO4 + 8H2O
2Cr(OH)3 + KClO3 + 4NaOH →  2Na2CrO4 + KCl + 5H2O
2Cr(OH)3 + 3H2O2 + 4KOH → 2K2CrO4 + 8H2O

4) Соединения Cr+6 в различных средах:
В щелочной среде устойчивы соли хромовой кислоты (хроматы, желтого цвета), например, Na2CrO4.
В кислой среде устойчивы соли дихромовой кислоты (дихроматы, оранжевого цвета), например, Na2Cr2O7.

CrO3 + 2KOH → K2CrO4 + H2O

2K2CrO4 + H2SO4 → K2Cr2O7 + K2SO4 + H2O (в кислотной среде желтая окраска переходит в оранжевую).
Na2Cr2O7 + 2NaOH → 2Na2CrO4 + H2O (в щелочной среде оранжевая окраска переходит в желтую).

Правило 11. Среда раствора

1) С карбонатами щелочных металлов реакции протекают аналогично щелочной среде реакции:

Cr2O3 + 3KNO3 + 2K2CO3 → 2K2CrO4 + 3KNO2 + 2CO2
MnO2 + KNO3 + K2CO3 → K2MnO4 + KNO2 + CO2­

2) Если в реакцию вступает оксид серы (IV) SO2 в нейтральном растворе, то реакция протекает аналогично кислой среде раствора:

2KMnO4 + 5SO2 + 2H2O →  2MnSO4 + K2SO4 + 2H2SO4.

 Поэтому очень важно не зубрить окислительно-восстановительные реакции, а знать какие соединения проявляют окислительные, а какие восстановительные свойства, и знать основные правила, приведенные выше.

Существует несколько классификаций реакций, протекающих в неорганической и органической химии.

По характеру процесса
  • Соединения
  • Так называют химические реакции, где из нескольких простых или сложных веществ получается одно
    сложное вещество. Примеры:

    4Na + O2 = 2Na2O

    P2O5 + 3H2O = 2H3PO4

  • Разложения
  • В результате реакции разложения сложное вещество распадается на несколько сложных или простых веществ. Примеры:

    2KMnO4 = K2MnO4 + MnO2 + 2O2

    Сa(OH)2 = CaO + H2O

  • Замещения
  • В ходе реакций замещения атом или группа атомов в молекуле замещаются на другой атом или группу атомов. Примеры:

    CuSO4 + Fe = FeSO4 + Cu

    2KI + Cl2 = 2KCl + I2

  • Обмена
  • К реакциям обмена относятся те, которые протекают без изменения степеней окисления и выражаются в обмене компонентов между веществами.
    Часто обмен происходит анионами/катионами:

    2KOH + MgCl2 = Mg(OH)2↓ + 2KCl

    AgF + NaCl = AgCl↓ + NaF

    Реакция нейтрализации — реакция обмена между основанием и кислотой, в ходе которой получаются соль и вода:

    KOH + H2SO4 = K2SO4 + H2O

Классификация химических реакций

Окислительно-восстановительные реакции (ОВР)

Это те химические реакции, в процессе которых происходит изменение степеней окисления химических элементов, входящих в состав
исходных веществ. ОВР подразделяются на:

  • Межмолекулярные — атомы окислителя и восстановителя входят в состав разных молекул. Примеры:
  • KMnO4 + HCl → KCl + MnCl2 + Cl2 + H2O

    K2SO3 + K2Cr2O7 + H2SO4 → K2SO4
    + Cr2(SO4)3 + H2O

  • Внутримолекулярные — атомы окислителя и восстановителя в составе одного сложного вещества. Примеры:
  • KMnO4 → K2MnO4 + MnO2 + O2

    KClO3 → KCl + O2

  • Диспропорционирование — один и тот же атом является и окислителем, и восстановителем
  • KOH + Cl2 → (t) KCl + KClO3 + H2O

    KOH + Cl2 → KCl + KClO + H2O

Окислительно-восстановительные реакции

Замечу, что окислителем и восстановителем могут являться только исходные вещества (а не продукты!) Окислитель всегда понижает свою СО,
принимая электроны в процессе восстановления. Восстановитель всегда повышает свою СО, отдавая электроны в процессе окисления.

От обилия информации можно запутаться. Я рекомендую сформулировать четко: «Окислитель — понижает СО, восстановитель — повышает СО». Запомнив
эту информацию таким образом, вы не будете путаться.

Окислитель и восстановитель

ОВР уравнивают методом электронного баланса, с которым мы подробно познакомимся в разделе «Решения задач».

Обратимые и необратимые реакции

Обратимые реакции — такие химические реакции, которые протекают одновременно в двух противоположных направлениях: прямом и обратном.
При записи реакции в таких случаях вместо знака «=» ставят знак обратимости «⇆».

Классическим примером обратимой реакции является синтез аммиака и реакция этерификации (из органической химии):

N2 + 3H2 ⇆ 2NH3

CH3COOH + C2H5OH ⇆ CH3COOC2H5 + H2O

Необратимые реакции протекают только в одном направлении, до полного расходования одного из исходных веществ. Главное отличие их от
обратимых реакций в том, что образовавшиеся продукты реакции не взаимодействуют между собой с образованием исходных веществ.

Иногда сложно бывает отличить обратимую реакцию от необратимой, однако я дам несколько советов, которые советую взять на вооружение.
В результате необратимых реакций:

  • Образуются малодиссоциирующие вещества (например — вода, однако есть исключения — реакция этерификации)
  • Реакция сопровождается выделение большого количества тепла
  • В ходе реакции образуется газ или выпадает осадок

Примеры необратимых реакций:

BaCl2 + H2SO4 = BaSO4↓ + 2HCl (выпадает осадок)

NaOH + HCl = NaCl + H2O (образуется вода)

2Na + 2H2O = 2NaOH + H2 (сопровождается выделением большого количества тепла)

Обратимые и необратимые реакции

Реакции и агрегатное состояние фаз

Фазой в химии называют часть объема равновесной системы, однородную во всех своих точках по химическому
составу и физическим свойствам и отделенную от других частей того же объема поверхностью раздела. Фаза бывает жидкой,
твердой и газообразной.

Все реакции можно разделить на гетеро- и гомогенные. Гетерогенные реакции (греч. heterogenes — разнородный) — реакции, протекающие на
границе раздела фаз, в неоднородной среде. Скорость таких реакций зависит от площади соприкосновения реагирующих веществ.

К гетерогенным реакциям относятся следующие реакции (примеры): жидкость + газ, газ + твердое вещество,
твердое вещество + жидкость. Примером такой реакции может послужить взаимодействие твердого цинка и раствора соляной кислоты:

Zn(тв.) + 2HCl(р-р.) = ZnCl2(р-р.) + H2(газ.)

Гетерогенная реакция

Гомогенные реакции (греч. homogenes — однородный) — реакции, протекающие между веществами, находящимися в одной фазе.

К гомогенным реакциям относятся (примеры): жидкость + жидкость, газ + газ. Примером
такой реакции может служить взаимодействие между растворами уксусной кислоты и едкого натра.

NaOH(р-р.) + CH3COOH(р-р.) = CH3COONa(р-р.) + H2O(р-р.)

Гомогенная реакция

Реакции и их тепловой эффект

Все реакции можно разделить на те, в ходе которых тепло поглощается, или, наоборот, тепло выделяется. Представьте пробирку, охлаждающуюся
или нагревающуюся в вашей руке — это и есть тот самый тепловой эффект. Иногда тепла выделяется так много, что реакции сопровождаются
воспламенением или взрывом (натрий с водой).

  • Экзотермические реакции
  • Экзотермические реакции (греч. exo — вне) — химические реакции, сопровождающиеся потерей энергии системой и выделением тепла (той самой
    энергии) во внешнюю среду. При написании химических реакций в конце экзотермических ставят «+ Q» (Q — тепло), иногда бывает указано точное
    количество выделяющегося тепла. Например:

    2Mg + O2 = 2MgO + Q

    Большинство реакций нейтрализации относятся к экзотермическим:

    NaOH + HCl = NaCl + H2O + 56 кДж

    Экзотермические реакции

    К экзотермическим реакциям часто относятся реакции горения, соединения.

    4NH3 + 5O2 = 4NO + 6H2O + Q

    Исключением является взаимодействие азота и кислорода, при
    котором тепло поглощается:

    N2 + O2 ⇄ 2NO — Q

    Как уже было отмечено выше, если тепло выделяется во внешнюю среду, значит, система реагирующих веществ потеряло это тепло. Поэтому
    не должно казаться противоречием, что внутренняя энергия веществ в результате экзотермической реакции уменьшается.

    Энтальпией называют (обозначение Н), количество термодинамической (тепловой) энергии, содержащееся в веществе. Иногда с целью «запутывания»
    в реакции вместо явного +Q при экзотермической реакции могут написать ΔH < 0. Например:

    2Na + 2H2O = 2NaOH + H2; ΔH < 0 (это значит, что тепло выделяется — реакция экзотермическая)

    Экзотермические реакции

  • Эндотермические реакции
  • Эндотермические реакции (греч. ἔνδον — внутри) — химические реакции, сопровождающиеся поглощением тепла, в результате которых образуются
    вещества с более высоким энергетическим уровнем (их внутренняя энергия увеличивается).

    К таким реакциям наиболее часто относятся реакции разложения. При написании эндотермических реакций в конце ставят «-Q», либо указывают точное
    количество поглощенной энергии. Примеры таких реакций:

    2HgO = Hg + O2 — Q

    CaCO3 = CaO + CO2↑ — Q

    С целью «запутывания» может быть дана энтальпия, она при таких реакциях всегда: ΔH > 0, так как внутренняя
    энергия веществ увеличивается. Например:

    CaCO3 = CaO + CO2↑ ; ΔH > 0 (значит реакция эндотермическая, так как внутренняя энергия увеличивается)

    Эндотермические реакции

    Замечу, что не все реакции разложения являются эндотермическими. Широко известная реакция разложения дихромата аммония («вулканчик»)
    является примером экзотермического разложения, при котором тепло выделяется.

    Экзотермические реакции

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

     Мы продолжаем вместе постигать тонкости ЕГЭ по химии, и на очереди сегодня одна из ключевых тем. Разбираемся в том, что такое окислительно-восстановительные реакции и где это знание встретится в КИМах. Поехали! 

ОВР – это?

     Что же такое овр? Окислительно-восстановительные реакции – это химические реакции, сопровождающиеся изменением степени окисления у атомов реагирующих веществ, при этом некоторые частицы отдают электроны, а некоторые получают.

     Еще немного теории. Разберемся, что такое окислитель и восстановитель

Окислители – это частицы (атомы, молекулы или ионы), которые принимают электроны в ходе химической реакции. При этом степень окисления окислителя понижается, а сами окислители восстанавливаются.

Восстановители – это частицы (атомы, молекулы или ионы), которые отдают электроны в ходе химической реакции. При этом степень окисления восстановителя повышается, а сами восстановители окисляются.

     Примеры типичных окислителей:

  • простые вещества-неметаллы с наиболее сильными окислительными свойствами (фтор F2, кислород O2, хлор Cl2);
  • сложные вещества, в составе которых есть ионы металлов или неметаллов с высокими положительными (как правило, высшими) степенями окисления: кислоты (HN+5O3, HCl+7O4), соли (KN+5O3, KMn+7O4), оксиды (S+6O3,  Cr+6O3)
  • соединения, содержащие некоторые катионы металлов, имеющих  высокие степени окисления: Pb4+, Fe3+, Au3+ и др.

     Примеры типичных восстановителей:

  • простые вещества-металлы (восстановительные способности металлов определяются рядом электрохимической активности);
  • сложные вещества, в составе которых есть атомы или ионы неметаллов с отрицательной (как правило, низшей) степенью окисления: бинарные водородные соединения (H2S, HBr), соли бескислородных кислот (K2S, NaI);
  • некоторые соединения, содержащие катионы с минимальной положительной степенью окисления (Sn2+, Fe2+, Cr2+), которые, отдавая электроны, могут повышать свою степень окисления;
  • соединения, содержащие сложные ионы, состоящие из неметаллов с промежуточной положительной степенью окисления (S+4O3)2–, (НР+3O3)2–, в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления.

     Большинство остальных веществ способны проявлять как окислительные, так и восстановительные свойства. 

Классификация ОВР

     Окислительно-восстановительные реакции принято делить на четыре типа:

  1. Межмолекулярные реакции

Протекают с изменением степени окисления разных элементов из разных реагентов. При этом образуются разные продукты окисления и восстановления.

  1. Внутримолекулярные реакции

Разные элементы из одного реагента  переходят в разные продукты. 

  1. Реакции диспропорционирования (самоокисления-самовосстановления)

Окислитель и восстановитель – один  и тот же элемент одного реагента, который при этом переходит в разные продукты.

  1. Репропорционирование (конпропорционирование, контрдиспропорционирование)

Окислитель и восстановитель – это один и тот же элемент, который из разных реагентов переходит в один продукт. Реакция, обратная диспропорционированию.

ОВР в ЕГЭ по химии

     На самом деле очень важно понять, что в данной статье мы даем далеко не всю теорию, которую следует знать, чтобы успешно справиться с заданиями на овр, иначе нам не хватило бы ни то, что одной статьи, пожалуй, и серии материалов, посвященных этой теме. Настоятельно рекомендуем проштудировать интернет и учебники, чтобы обзавестись полноценными “конспектами” по окислительно-восстановительным реакциям. 

     Во второй части ЕГЭ по химии овр мы встречаем в 29 и 30 заданиях. Предлагаем, рассмотреть несколько вариаций заданий и их решения.

Задание 29:

Из предложенного перечня выберите вещества, между которыми протекает

окислительно-восстановительная реакция. В ходе этой реакции не образуются осадок или газ. Запишите уравнение реакции с участием выбранных веществ. Составьте электронный баланс, укажите окислитель и восстановитель.

Перечень веществ: соляная кислота, нитрат серебра, дихромат натрия, хлорид железа(II), гидрокарбонат кальция, сульфит бария. 

Допустимо использование водных растворов.

Решение:

6FeCl2 + Na2Cr2O7 + 14HCl = 2NaCl + 6FeCl3 + 2CrCl3 + 7H2O

Fe+2 – 1𝑒̅ = Fe+3    6

2Cr+6 + 6𝑒̅= 2Cr+3  1

Задание 30:

Из предложенного перечня выберите вещества, между которыми протекает реакция ионного обмена с растворением осадка. 

Запишите молекулярное, полное и сокращённое ионное уравнения реакции с использованием выбранных веществ. 

Перечень веществ: соляная кислота, нитрат серебра, дихромат натрия, хлорид железа (II), гидрокарбонат кальция, сульфит бария. Допустимо использование водных растворов.

Решение:

BaSO3 + 2HCl = BaCl2 + H2O + SO2

BaSO3 + 2H+ + 2Cl– = Ba2+ + 2Cl– + H2O + SO2

BaSO3 + 2H+ = Ba2+ + H2O + SO2

     Сегодня мы окунулись в мир окислительно-восстановительных реакций: немного познакомились с теорией и посмотрели задания из реальных КИМов ЕГЭ по химии. Еще раз напоминаем, что в данной теме при самостоятельном обучении разбираться следует куда глубже, ведь теории – непочатый край! 

     Но помните, какой бы каверзной ни была тема, у вас все получится, и решению поддастся любое химическое уравнение. Мы в вас верим, ваш Умскул!

1.  Расстановка степеней окисления

Необходимо помнить, что степень окисления — это  условный заряд атома. Он может быть целым, дробным или равным нулю.

Если это органическое соединение, помните, что нас интересуют степени окисления только тех атомов углерода, которые меняют своё окружение в процессе ОВР, при этом общий заряд атома углерода и его неуглеродного окружения принимается за 0. 

2.Проверьте, чтобы в реакции были и окислитель, и восстановитель
3. Двойки нельзя забыть при уравнивании,
ведь они указывают число атомов данного вида в уравнении. Самая частая проблема — с дихроматом калия K2Cr2O7, когда он в роли окислителя переходит в +3: 

4. Определите, в какой среде (кислой, нейтральной или щелочной) протекает реакция.

Это можно сделать либо про продуктам восстановления марганца и хрома, либо по типу соединений, которые получились в правой части реакции: например,  если в продуктах мы видим кислоту, кислотный оксид — значит, это точно не щелочная среда, 

а если выпадает гидроксид металла — точно не кислая. Ну и разумеется, если в левой части мы видим сульфаты металлов, а в правой — ничего похожего на соединения серы — видимо, реакция проводится в присутствии серной кислоты. 

5. Помните, что вода — вольный путешественник, она может как участвовать в реакции, так и образовываться

6. Иногда какой-либо продукт реакции можно определить, только составив электронный баланс и поняв, каких частиц у нас больше: 

7. Во что переходят реагенты в реакции?

Если ответ на этот вопрос не дают выученные нами схемы, то нужно проанализировать, какие в реакции окислитель и восстановитель — сильные или не очень? 

Если окислитель средней силы, вряд ли он может окислить, например, серу из −2 в +6, обычно окисление идёт только до S0. 

Если оба вещества могут проявлять свойства и восстановителя, и окислителя — надо продумать, какое из них более активный окислитель. Тогда второй будет восстановителем. 

Если же один из реагентов — типичный окислитель или восстановитель — тогда второй будет «выполнять его волю», либо отдавая электроны окислителю, либо принимая у восстановителя.

Последовательность расстановки коэффициентов в уравнении.

Сначала проставьте коэффициенты, полученные из электронного баланса. Помните, что удваивать или сокращать их можно только вместе. 

Если какое-либо вещество выступает и в роли среды, и в роли окислителя (восстановителя) — его надо будет уравнивать позднее, когда почти все коэффициенты расставлены.

Предпоследним уравнивается водород, а по кислороду мы только проверяем! 

1. Расстановка степеней окисления

Распространенные  ошибки:

а) степени окисления в водородных соединениях неметаллов: фосфин РН3 — степень окисления у фосфора — отрицательная;

б) в органических веществах — проверьте ещё раз, всё ли окружение атома С учтено;

в) аммиак и соли аммония — в них азот всегда имеет степень окисления −3;

г) кислородные соли и кислоты хлора — в них хлор может иметь степень окисления +1, +3, +5, +7;

д) пероксиды и надпероксиды — в них кислород не имеет степени окисления −2, бывает −1, а в КО2 — даже −(½)

е) двойные оксиды: Fe3O4, Pb3O4 — в них металлы имеют две разные степени окисления, обычно только одна из них участвует в переносе электронов.

2. Выбор продуктов без учёта переноса электронов.
Не может быть окислитель без восстановителя и наоборот.

3. Неверные с химической точки зрения продукты: не может получиться такое вещество, которое вступает во взаимодействие со средой.

а) в кислой среде не может получиться оксид металла, основание, аммиак;

б) в щелочной среде не получится кислота или кислотный оксид;

в) оксид или тем более металл, бурно реагирующие с водой, не образуются в водном растворе.

Окислительно-восстановительные реакции. Окислитель и восстановитель

Окислительно-восстановительными называют реакции, которые сопровождаются изменением степеней окисления химических элементов, входящих в состав реагентов.

Окислением называют процесс отдачи электронов атомом, молекулой или ионом, который сопровождается повышением степени окисления.

Восстановлением называют процесс присоединения электронов атомом, молекулой или ионом, который сопровождается понижением степени окисления.

Окислителем называют реагент, который принимает электроны в ходе окислительно-восстановительной реакции. (Легко запомнить: окислитель — грабитель.)

Восстановителем называют реагент, который отдаёт электроны в ходе окислительно-восстановительной реакции.

Окислительно-восстановительные реакции делят на реакции межмолекулярного окисления-восстановления, реакции внутримолекулярного окисления-восстановления, реакции диспропорционирования и реакции конмутации.

Для составления окислительно-восстановительных реакций используют метод электронного баланса.

Составление уравнения окислительно-восстановительной реакции осуществляют в несколько стадий.

  1. Записывают схему уравнения с указанием в левой и правой частях степеней окисления атомов элементов, участвующих в процессах окисления и восстановления.
  2. Определяют число электронов, приобретаемых или отдаваемых атомами или ионами.
  3. Уравнивают число присоединённых и отданных электронов введением множителей, исходя из наименьшего кратного для коэффициентов в процессах окисления и восстановления.
  4. Найденные коэффициенты (их называют основными) подставляют в уравнение реакции перед соответствующими формулами веществ в левой и правой частях.

Пример 1. Реакция алюминия с серой. Записываем схему реакции и указываем изменение степеней окисления:

Атом серы присоединяет два электрона, изменяя свою степень окисления от 0 до –2. Он является окислителем. Атом алюминия отдаёт три электрона, изменяя свою степень окисления от 0 до +3. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Подставляем найденные коэффициенты в уравнение реакции и окончательно получаем:

Пример 2. Окисление фосфора хлором. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления хлора изменяется от 0 до –1, при этом молекула хлора присоединяет два электрона. Хлор является окислителем.

Атом фосфора отдаёт пять электронов, изменяя свою степень окисления от 0 до +5. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Электронное уравнение для хлора записывают именно так, поскольку окислителем является молекула хлора, состоящая из двух атомов, и каждый из этих атомов изменяет свою степень окисления от 0 до –1. Коэффициент 5 относится к молекуле хлора в левой части уравнения, а количество атомов хлора в правой части уравнения 5 × 2 = 10.

Подставляем найденные коэффициенты в уравнение реакции и окончательно получаем:

Пример 3. Восстановление оксида железа (II, III) алюминием. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления железа изменяется от +8/3 до 0, при этом три иона железа (поскольку в исходном оксиде их содержится именно три) присоединяют восемь электронов (3 × 8/3 = 8). Железо является окислителем.

Алюминий отдаёт три электрона, изменяя свою степень окисления от 0 до +3. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединенных и отданных электронов:

Электронное уравнение для алюминия записывают именно так, поскольку в состав оксида алюминия входят два атома алюминия. Таким образом, в левой части уравнения основной коэффициент перед оксидом железа (II, III) будет равен 3, а перед алюминием 4 × 2 = 8.

Количество атомов железа в правой части уравнения реакции составит 3 × 3 = 9. Количество молекул оксида алюминия будет равно 8/2 = 4. Окончательно получаем:

Проверяем баланс по кислороду. В левой части уравнения 3 × 4 = 12. В правой части уравнения 4 × 3 = 12. Таким образом, число атомов каждого элемента в отдельности в левой и в правой части химического уравнения равны между собой, и реакция уравнена правильно.

Этот пример наглядно показывает, что дробная степень окисления хотя и не имеет физического смысла, но позволяет правильно уравнять окислительно-восстановительную реакцию.

Очень часто окислительно-восстановительные реакции проходят в растворах в нейтральной, кислой или щелочной среде. В этом случае химические элементы, входящие в состав вещества, образующего среду реакции, свою степень окисления не меняют.

Пример 4. Окисление йодида натрия перманганатом калия в среде серной кислоты. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Атом марганца принимает пять электронов, изменяя свою степень окисления от +7 до +2. Перманганат калия является окислителем.

Два йодид-иона отдают два электрона, образуя молекулу I20. Йодид натрия является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов введением множителей:

Найденные коэффициенты подставим в уравнение реакции перед соответствующими формулами веществ в левой и правой частях.

Серная кислота является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет, но сульфат-анион связывает выделяющиеся в результате реакции катионы калия, натрия и марганца. Подсчитаем число сульфат-ионов в правой части. Оно равно 2 + 1 + 5 = 8. Следовательно, перед серной кислотой следует поставить коэффициент 8. Число атомов водорода в левой части уравнения равно 8 × 2 = 16. Отсюда вычисляем коэффициент для воды: 16/2 = 8.

Таким образом, уравнение реакции будет иметь вид:

Правильность баланса проверяем по кислороду. В левой части его 2 × 4 = 8 (перманганат калия); в правой — 8 × 1 = 8 (вода). Следовательно, уравнение составлено правильно.

Пример 5. Окисление сульфида калия манганатом калия в водной среде. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Ион марганца принимает два электрона, изменяя свою степень окисления от +6 до +4. Манганат калия является окислителем.

Сульфид-ион отдаёт два электрона, образуя молекулу S0. Сульфид калия является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов введением множителей:

Основные коэффициенты в уравнении реакции равны единице:

Вода является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет.

Гидроксид-ионы связывают выделяющиеся в результате реакции катионы калия. Таких катионов четыре (2 × 2), число атомов водорода также 4 (4 × 1), поэтому перед молекулой воды ставим коэффициент два (4/2 = 2):

Пример 6. Окисление аммиака хлоратом калия в щелочной среде. Записываем схему реакции, указываем степени окисления элементов, участвующих в процессах окисления и восстановления:

Хлор принимает шесть электронов, изменяя свою степень окисления от +5 до –1. Хлорат калия является окислителем.

Азот отдаёт восемь электронов, изменяя свою степень окисления от –3 до +5. Аммиак является восстановителем.

Составляем уравнение электронного баланса, уравниваем число присоединённых и отданных электронов введением множителей, сокращаем кратные коэффициенты:

Проставляем найденные основные коэффициенты в уравнение реакции:

Гидроксид калия является средой реакции. Ни один из элементов, входящих в состав этого соединения, свою степень окисления не меняет.

Катионы калия связывают выделяющиеся в результате реакции нитрат-ионы. Таких анионов три. Следовательно, перед гидроксидом калия ставим коэффициент три:

Число атомов водорода в левой части уравнения равно девяти в аммиаке (3 × 3) = 9 и трём в гидроксиде калия (3 × 1), а их общее число 9 + 3 = 12. Следовательно, перед водой ставим коэффициент (12/2) = 6. Окончательно уравнение реакции будет иметь вид:

Убеждаемся ещё раз в правильности расстановки коэффициентов, сравнивая число атомов кислорода в левой и правой его частях. Оно равно 15.

Довольно часто одно и то же вещество одновременно является окислителем и создаёт среду реакции. Такие реакции характерны для концентрированной серной кислоты и азотной кислоты в любой концентрации. Кроме того, в подобные реакции, но в качестве восстановителя, вступают галогенводородные кислоты с сильными окислителями.

Пример 7. Окисление магния разбавленной азотной кислотой. Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления азота изменяется от +5 до +1, при этом два атома азота присоединяют восемь электронов. Азотная кислота является окислителем.

Магний отдаёт два электрона, изменяя свою степень окисления от 0 до +2. Он является восстановителем.

Составляем уравнение электронного баланса и уравниваем число присоединённых и отданных электронов:

Подставляем найденные коэффициенты перед окислителем и восстановителем в левой части уравнения реакции и перед продуктами окисления и восстановления в правой части уравнения реакции:

При этом в правой части уравнения реакции имеется 4 × 2 = 8 нитрат-ионов, не изменивших свою степень окисления. Очевидно, что для этого в правую часть уравнения реакции следует добавить ещё 8 молекул HNO3. Тогда общее количество молекул азотной кислоты в правой части уравнения составит 2 + 8 = 10.

В этих молекулах содержатся 10 × 1 = 10 атомов водорода. Такое же количество атомов водорода должно быть и в правой части уравнения. Следовательно, перед молекулой воды следует подставить коэффициент 10/2 = 5, и уравнение окончательно будет иметь вид:

Окончательно проверяем правильность баланса, подсчитывая число атомов кислорода в левой и правой частях уравнения. В левой части 10 × 3 = 30. В правой части (2 × 3) × 4 = 24 в нитрате магния, 1 в оксиде азота (I) и 5 × 1 = 5 в молекуле воды. Итого 24 + 1 + 5 = 30. Таким образом, реакция полностью уравнена.

Пример 8. Взаимодействие соляной кислоты с оксидом марганца (IV). Записываем схему реакции и указываем изменение степеней окисления:

Степень окисления марганца изменяется от +4 до +2, при этом марганец присоединяет два электрона. Оксид марганца (IV) является окислителем.

Два хлорид-иона отдают два электрона, образуя молекулу Cl20, хлористый водород является восстановителем.

Составляем электронное уравнение и уравниваем число присоединённых и отданных электронов, сокращаем кратные коэффициенты:

При этом коэффициент 1 изначально относится к двум хлорид-ионам и к одной молекуле Cl2. Подставляем найденные коэффициенты перед окислителем и восстановителем в левой части уравнения реакции и перед продуктами окисления и восстановления в правой части уравнения реакции:

При этом в правой части уравнения реакции имеется 1 × 2 = 2 хлорид-иона, не изменивших свою степень окисления. Эти хлорид-ионы в окислительно-восстановительной реакции не участвовали. Очевидно, что для этого в правую часть уравнения реакции следует добавить 2 молекулы HCl. Тогда общее количество молекул HCl в правой части уравнения составит 2 + 2 = 4. В этих молекулах будет содержаться 4 × 1 = 4 атома водорода. Такое же количество атомов водорода должно быть и в правой части уравнения. Тогда перед молекулой воды следует подставить коэффициент 4/2 = 2, и уравнение в окончательном виде будет иметь вид:

Проверяем правильность баланса, подсчитывая число атомов кислорода в левой и правой частях уравнения. В левой части оно составляет 1 × 2 = 2 в оксиде марганца (IV), а в правой части 2 × 1 = 2 в молекуле воды. Таким образом, реакция полностью уравнена.

В качестве окислителя могут выступать нейтральные атомы и молекулы, положительно заряженные ионы металлов, сложные ионы и молекулы, содержащие атомы металлов и неметаллов в состоянии положительной степени окисления и др.

Ниже приведены сведения о некоторых наиболее распространенных окислителях, имеющих важное практическое значение.

Кислород. Сильный окислитель, окислительная способность значительно возрастает при нагревании. Кислород взаимодействует непосредственно с большинством простых веществ, кроме галогенов, благородных металлов Ag, Au, Pt и благородных газов, с образованием оксидов:

Взаимодействие натрия с кислородом приводит к пероксиду натрия:

Более активные щелочные металлы (K, Rb, Cs) при взаимодействии с кислородом дают надпероксиды типа ЭО2:

В своих соединениях кислород, как правило, проявляет степень окисления –2. Применяется кислород в химической промышленности, в различных производственных процессах в металлургической промышленности, для получения высоких температур. С участием кислорода идут многочисленные чрезвычайно важные жизненные процессы: дыхание, окисление аминокислот, жиров, углеводов. Только немногие живые организмы, называемые анаэробными, могут обходиться без кислорода.

Реакции, иллюстрирующие окислительные свойства кислорода при его взаимодействии с различными неорганическими веществами, приведены в уроке 14.

Озон. Обладает ещё большей по сравнению с кислородом окислительной способностью. Озон окисляет все металлы, за исключением золота, платины и некоторых других, при этом, как правило, образуются соответствующие высшие оксиды элементов, реже — пероксиды и озониды, например:

Озон окисляет оксиды элементов с промежуточной степенью окисления в высшие оксиды.

Перманганат калия. Является сильным окислителем, широко применяется в лабораторной практике. Характер восстановления перманганата калия зависит от среды, в которой протекает реакция. В кислой среде перманганат калия восстанавливается до солей Mn2+, в нейтральной или слабощелочной — до MnO2, а в сильнощелочной он переходит в манганат-ион MnO42–. Данные переходы описываются следующими уравнениями

Перманганат калия способен окислять сульфиды в сульфаты, нитриты в нитраты, бромиды и йодиды — до брома и йода, соляную кислоту до хлора и т. д.:

Хромат и бихромат калия. Эти соединения широко применяют в качестве окислителей в неорганических и органических синтезах. Взаимные переходы хромат- и бихромат-ионов очень легко протекают в растворах, что можно описать следующим уравнением обратимой реакции:

Соединения хрома (VI) — сильные окислители. В окислительно-восстановительных процессах они переходят в производные Cr (III). В нейтральной среде образуется гидроксид хрома (III), например:

В кислой среде образуются ионы Cr3+:

В щелочной — производные анионного комплекса [Cr(OH)6]3–:

В качестве восстановителя могут выступать нейтральные атомы, отрицательно заряженные ионы неметаллов, положительно заряженные ионы металлов в низшей степени окисления, сложные ионы и молекулы, содержащие атомы в промежуточной степени окисления, электрический ток на катоде и др.

Ниже приведены сведения о некоторых наиболее распространённых восстановителях, имеющих важное практическое значение.

Углерод. Углерод широко применяют в качестве восстановителя в неорганических синтезах. При этом в качестве продуктов окисления может образовываться углекислый газ, или оксид углерода (II). При восстановлении оксидов металлов могут образовываться свободные металлы, реже — карбиды металлов.

Восстановительные свойства углерод проявляет также в реакции получения водяного газа:

Полученную смесь водорода и оксида углерода (II) широко применяют для синтеза органических соединений.

Оксид углерода (II). Широко применяют в металлургии при восстановлении металлов из их оксидов, например:

Водород. Широко применяют в качестве восстановителя в неорганических синтезах (водородотермия) для получения чистого вольфрама, молибдена, галлия, германия и т. д.:

Тренировочные задания

Используя метод электронного баланса, расставьте коэффициенты, определите окислитель и восстановитель в уравнении реакции, схема которой:

1. Al + H2O + KNO3 + KOH → K[Al(OH)4] + NH3↑.

2. KNO3 + Al → KAlO2 + Al2O3 + N2.

3. Na2O2 + H2SO4 + KMnO4 → O2↑ + MnSO4 + Na2SO4 + K2SO4 + H2O.

4. NaCl + H2SO4 + MnO2 → Cl2 + MnSO4 + Na2SO4 + H2O.

5. NaCl + H2SO4 + KMnO4 → Cl2 + MnSO4 + Na2SO4 + K2SO4 + H2O.

6. KNO2 + H2SO4 + MnO2 → MnSO4 + KNO + H2O.

7. KI + H2SO4 + KMnO4 → I2 + MnSO4 + K2SO4 + H2O.

8. KI + K2Cr2O7 + H2SO4 → I2 + Cr2(SO4)3 + K2SO4 + H2O.

9. C + K2Cr2O7 + H2SO4 → CO2 + Cr2(SO4)3 + K2SO4 + H2O.

10. PbO2 + HNO3 + KI → Pb(NO3)2 + I2 + KNO3 + H2O.

11. PbO2 + HNO3 + Mn(NO3)2 → Pb(NO3)2 + HMnO4 + H2O.

12. NaNO2 + KMnO4 + H2SO4 → NaNO3 + MnSO4 + K2SO4 + H2O.

13. KNO2 + KMnO4 + H2SO4 → KNO3 + MnSO4 + K2SO4 + H2O.

14. KNO2 + K2Cr2O7 + H2SO4 → KNO3 + Cr2(SO4)3 + K2SO4 + H2O.

15. KNO2 + KI + H2SO4 → NO + I2 + K2SO4 + H2O.

16. KNO2 + FeSO4 + H2SO4 → NO + Fe2(SO4)3 + K2SO4 + H2O.

17. Ca3(PO4)2 + C + SiO2 → CaSiO3 + P + CO.

18. Sb + HNO3 → Sb2O5 + NO2 + H2O.

19. H2O2 + H2SO4 + KMnO4 → MnSO4 + O2 + H2O + K2SO4.

20. S + HNO3 → H2SO4 + NO2 + H2O.

21. H2S + HNO3 → H2SO4 + NO2 + H2O.

22. H2S + KMnO4 → MnO2 + S + H2O + KOH.

23. H2S + K2Cr2O7 + H2SO4 → S + Cr2(SO4)3 + K2SO4 + H2O.

24. KMnO4 + Na2SO3 + H2SO4 → MnSO4 + Na2SO4 + K2SO4 + H2O.

25. KMnO4 + Na2SO3 + H2O → MnO2 + Na2SO4 + KOH.

26. KMnO4 + Na2SO3 + KOH → K2MnO4 + Na2SO4 + H2O.

27. K2Cr2O7 + K2SO3 + H2SO4 → Cr2(SO4)3 + K2SO4 + H2O.

28. H2SO4 + C → SO2 + CO2 + H2O.

29. H2SO4 + Zn → ZnSO4 + H2S + H2O.

30. H2SO4 + KBr → SO2 + Br2 + KHSO4 + H2O.

31. H2SO4 + KI → H2S + I2 + K2SO4 + H2O.

32. PbO2 + HCl → PbCl2 + Cl2 + H2O.

33. K2Cr2O7 + HCl → CrCl3 + Cl2 + KCl + H2O.

34. KMnO4 + HCl → MnCl2 + Cl2 + KCl + H2O.

35. KClO3 + HCl → KCl + Cl2 + H2O.

36. HClO3 + FeSO4 + H2SO4 → Fe2(SO4)3 + HCl + H2O.

37. NaBrO3 + NaBr + H2SO4 → Br2 + Na2SO4 + H2O.

38. HNO3 + I2 → HIO3 + NO2 + H2O.

39. HNO3 + I2 → HIO3 + NO + H2O.

40. H2SO4 + HI → I2 + H2S + S + H2O.

41. Fe2(SO4)3 + HI → FeSO4 + I2 + H2SO4.

42. HIO3 + FeSO4 + H2SO4 → Fe2(SO4)3 + I2 + H2O.

43. NaIO3 + NaI + H2SO4 → I2 + Na2SO4 + H2O.

44. KMnO4 + Cu2O + H2SO4 → MnSO4 + CuSO4 + K2SO4 + H2O.

45. HNO3 + Cu2S → CuSO4 + Cu(NO3)2 + NO2 + H2O.

46. H2SO4 + Cu2S → CuSO4 + SO2 + H2O.

47. Ag + HNO3 → AgNO3 + NO + H2O.

48. Zn + HNO3 → Zn(NO3)2 + N2O + H2O.

49. PH3 + KMnO4 + H2SO4 → H3PO4 + MnSO4 + K2SO4 + H2O.

50. FeSO4 + KMnO4 + H2SO4 → Fe2(SO4)3 + MnSO4 + K2SO4 + H2O.

51. H2S + KMnO4 + H2SO4 → S + MnSO4 + K2SO4 + H2O.

52. Ca3P2 + KMnO4 + H2SO4 → CaSO4 + H3PO4 + MnSO4 + K2SO4 + H2O.

Ответы

Понравилась статья? Поделить с друзьями:
  • Реактивы на белок химия егэ
  • Реально ли сдать английский язык егэ с нуля
  • Реактивы для егэ по химии
  • Реально ли с нуля подготовиться к егэ по профильной математике
  • Реактивным самолетам требуются бетонные взлетные полосы егэ