Реакции ионного обмена егэ химия теория

Реакции ионного обмена – это реакции между сложными веществами в растворах, в результате которых реагирующие вещества обмениваются своими составными частями. Так как в этих реакциях происходит обмен ионами – они называются ионными.

Правило Бертолле: Реакции обмена в растворах электролитов протекают до конца (возможны) только тогда, когда в результате реакции образуется либо твердое малорастворимое вещество (осадок), либо газ, либо вода или любой другой слабый электролит.

Например, нитрат серебра взаимодействует с бромидом калия

AgNО3 + КВr = АgВr↓ + КNО3

Правила составления уравнений реакций ионного обмена

1. Записываем молекулярное уравнение реакции, не забывая расставить коэффициенты:    

3KOH +FeCl3 = Fe(OH)3 + 3KCl

2. С помощью таблицы растворимости определяем растворимость каждого вещества. Подчеркнем вещества, которые мы не будем представлять в виде ионов.

                                                                              р           р             н                р

3KOH + FeCl3 = Fe(OH)3 +  3KCl

3. Составляем полное ионное уравнение. Сильные электролиты записываем в виде ионов, а слабые электролиты, малорастворимые вещества и газообразные вещества записываем в виде молекул.

3K+ + 3OH + Fe3+ + 3Cl =   Fe(OH)3 + 3K+ + 3Cl

4. Находим одинаковые ионы (они не приняли участия в реакции в левой и правой частях уравнения реакции) и сокращаем их слева и справа.

3K+ + 3OH + Fe3+ + 3Cl =  Fe(OH)3 + 3K+ + 3Cl

5. Составляем итоговое сокращенное ионное уравнение (выписываем формулы ионов или веществ, которые приняли участие в реакции).

Fe3+ +  3OH = Fe(OH)3

На ионы мы не разбиваем:

  • Оксиды; осадки; газы; воду; слабые электролиты (кислоты и основания)
  • Анионы кислотных остатков кислых солей слабых кислот (НСО3, Н2РО4 и т.п.) и катионы основных солей слабых оснований Al(OH)2+
  • Комплексные катионы и анионы: [Al(OH)4]

Например, взаимодействие сульфида цинка и серной кислоты

Составляем уравнение реакции и проверяем растворимость всех веществ. Сульфид цинка нерастворим.

                                                                                н          р              р           р

ZnS + H2SO4 = ZnSO4 + H2S  

Реакция протекает до конца, т.к. выделяется газ сероводород, который является слабым электролитом. Полное ионно-молекулярное уравнение:

ZnS + 2H+ + SO42 = Zn2+ + SO42 + H2S

Сокращаем ионы, которые не изменились в процессе реакции – в данном случае это только сульфат-ионы, получаем сокращенное ионное уравнение:

      ZnS + 2H+ = Zn2+ + H2S

Например, взаимодействие гидрокарбоната натрия и гидроксида натрия

Составляем уравнение реакции и проверяем растворимость всех веществ:

                                                                              р               р              р

NaHCO3 + NaOH = Na2CO3 + H2O

Кислые анионы слабых кислот являются слабыми электролитами и на ионы не разбиваются:

Na+ + НСО3 + Na+ + ОН = 2Na+ + CO32- + H2O

Сокращаем одинаковые ионы, получаем сокращенное ионное уравнение:

НСО3+ ОН = CO32- + H2O

Например, взаимодействие тетрагидроксоалюмината натрия и соляной кислоты

Составляем уравнение реакции и проверяем растворимость всех веществ:

                                                                             р               р          р           р

Na[Al(OH)4] + 4HCl = NaCl + AlCl3 + H2O

Комплексные ионы являются слабыми электролитами и на ионы не разбиваются:

Na+ + [Al(OH)4] + 4H+ + 4Cl = Na+ + Cl + Al3+ + 3Cl + H2O

Сокращаем одинаковые ионы, получаем сокращенное ионное уравнение:

[Al(OH)4] + 4H+ =  Al3+ + 4H2O

1.4.6. Реакции ионного обмена.

Реакции ионного обмена — реакции в водных растворах между электролитами, протекающие без изменений степеней окисления образующих их элементов.

Необходимым условием протекания реакции между электролитами (солями, кислотами и основаниями) является образование малодиссоциирующего вещества (вода, слабая кислота, гидроксид аммония), осадка или газа.

Расcмотрим реакцию, в результате которой образуется вода. К таким реакциям относятся все реакции между любой кислотой и любым основанием. Например, взаимодействие азотной кислоты с гидроксидом калия:

HNO3 + KOH = KNO3 + H2O (1)

Исходные вещества, т.е. азотная кислота и гидроксид калия, а также один из продуктов, а именно нитрат калия, являются сильными электролитами, т.е. в водном растворе они существуют практически только в виде ионов. Образовавшаяся вода относится к слабым электролитам, т.е. практически не распадается на ионы. Таким образом, более точно переписать уравнение выше можно, указав реальное состояние веществ в водном растворе, т.е. в виде ионов:

H+ + NO3 + K+ + OH = K+ + NO3 + H2O (2)

Как можно заметить из уравнения (2), что до реакции, что после в растворе находятся ионы NO3 и K+ . Другими словами, по сути, нитрат-ионы  и ионы калия никак не участвовали в реакции. Реакция произошла только благодаря объединению частиц H+ и OH в молекулы воды. Таким образом, произведя алгебраически сокращение одинаковых ионов в уравнении (2):

H+ + NO3 + K+ + OH = K+ + NO3 + H2O

мы получим:

H+ + OH = H2O (3)

Уравнения вида (3) называют сокращенными ионными уравнениями, вида (2) — полными ионными уравнениями, а вида (1) — молекулярными уравнениями реакций.

Фактически ионное уравнение реакции максимально отражает ее суть, именно то, благодаря чему становится возможным ее протекание. Следует отметить, что одному сокращенному ионному уравнению могут соответствовать множество различных реакций. Действительно, если взять, к примеру, не азотную кислоту, а соляную, а вместо гидроксида калия использовать, скажем, гидроксид бария, мы имеем следующее молекулярное уравнение реакции:

2HCl+ Ba(OH)2 = BaCl2 + 2H2O

Соляная кислота, гидроксид бария и хлорид бария являются сильными электролитами, то есть существуют в растворе преимущественно в виде ионов. Вода, как уже обсуждалось выше, – слабый электролит, то есть существует в растворе практически только в виде молекул. Таким образом, полное ионное уравнение данной реакции будет выглядеть следующим образом:

2H+ + 2Cl + Ba2+ + 2OH = Ba2+ + 2Cl + 2H2O

Сократим одинаковые ионы слева и справа и получим:

2H+ + 2OH = 2H2O

Разделив и левую и правую часть на 2, получим:

H+ + OH = H2O,

Полученное сокращенное ионное уравнение полностью совпадает с сокращенными ионным уравнением взаимодействия азотной кислоты и гидроксида калия.

При составлении ионных уравнений в виде ионов записывают только формулы:

1) сильных кислот  (HCl, HBr, HI, H2SO4, HNO3, HClO4 ) (список сильных кислот надо выучить!)
2) сильных оснований (гидроксиды щелочных (ЩМ) и щелочно-земельных металлов(ЩЗМ))
3) растворимых солей

В молекулярном виде записывают формулы:

1) Воды H2O
2) Слабых кислот (H2S, H2CO3, HF, HCN, CH3COOH (и др. практически все органические)).
3) Слабых оcнований («NH4OH»  и практически все гидроксиды металлов кроме ЩМ и ЩЗМ.
4) Малорастворимых солей (↓) («М» или «Н» в таблице растворимости).
5) Оксидов (и др. веществ, не являющихся электролитами).

Попробуем записать уравнение между гидроксидом железа (III) и серной кислотой. В молекулярном виде уравнение их взаимодействия записывается следующим образом:

2Fe(OH)3+ 3H2SO4 = Fe2(SO4)3 + 6H2O

Гидроксиду железа (III) соответствует в таблице растворимости обозначение «Н», что говорит нам о его нерастворимости, т.е. в ионном уравнении его надо записывать целиком, т.е. как Fe(OH)3 . Серная кислота растворима и относится к сильным электролитам, то есть существует в растворе преимущественно в продиссоциированном состоянии. Сульфат железа (III), как и практически все другие соли, относится к сильным электролитам, и, поскольку он растворим в воде, в ионном уравнении его нужно писать в виде ионов. Учитывая все вышесказанное, получаем полное ионное уравнение следующего вида:

2Fe(OH)3 + 6H+ + 3SO42- = 2Fe3+ + 3SO42- + 6H2O

Сократив сульфат-ионы слева и справа, получаем:

2Fe(OH)3 + 6H+ = 2Fe3+ + 6H2O

разделив обе части уравнения на 2 получаем сокращенное ионное уравнение:

Fe(OH)3 + 3H+ = Fe3+ + 3H2O

Теперь давайте рассмотрим реакцию ионного обмена, в  результате которой образуется осадок. Например, взаимодействие двух растворимых солей :

Na2CO3 +  CaCl2 = CaCO3↓+  2NaCl

Все три соли – карбонат натрия, хлорид кальция, хлорид натрия и карбонат кальция (да-да, и он тоже) – относятся к сильным электролитам и все, кроме карбоната кальция, растворимы в воде, т.е. есть участвуют в данной реакции в виде ионов:

2Na+ + CO32- +  Ca2+ + 2Cl = CaCO3↓+  2Na+ + 2Cl

Сократив одинаковые ионы слева и справа в данном уравнении, получим сокращенное ионное:

CO32- + Ca2+  = CaCO3

Последнее уравнение отображает причину взаимодействия растворов карбоната натрия и хлорида кальция. Ионы кальция и карбонат-ионы объединяются в нейтральные молекулы карбоната кальция, которые, соединяясь друг с другом, порождают мелкие кристаллы осадка CaCO3 ионного строения.

Примечание важное для сдачи ЕГЭ по химии

Чтобы реакция соли1 с солью2 протекала, помимо базовых требований к протеканиям ионных реакций (газ, осадок или вода в продуктах реакции), на такие реакции накладывается еще одно требование – исходные соли должны быть растворимы.  То есть, например,

CuS + Fe(NO3)2 ≠ FeS + Cu(NO3)2

реакция не идет, хотя FeS – потенциально мог бы дать осадок, т.к. нерастворим. Причина того что реакция не идет – нерастворимость одной из исходных солей (CuS).

А вот, например,

Na2CO3 +  CaCl2 = CaCO3↓+  2NaCl

протекает, так как карбонат кальция нерастворим и исходные соли растворимы.

То же самое касается взаимодействия солей с основаниями. Помимо базовых требований к протеканию реакций ионного обмена, для того чтобы соль с основанием реагировали необходима растворимость их обоих. Таким образом:

Cu(OH)2 + Na2Sне протекает,

т.к. Cu(OH)2 нерастворим, хотя потенциальный продукт CuS был бы осадком.

А вот реакция между NaOH и Cu(NO3)2 протекает, так оба исходных вещества растворимы и дают осадок Cu(OH)2:

2NaOH + Cu(NO3)2 = Cu(OH)2 ↓+ 2NaNO3

Внимание! Ни в коем случае не распространяйте требование растворимости исходных веществ дальше реакций соль1+ соль2   и   соль + основание.

Например, с кислотами выполнение этого требования не обязательно. В частности, все растворимые кислоты прекрасно реагируют со всеми карбонатами, в том числе нерастворимыми.

Другими словами:

1) Соль1+ соль2 — реакция идет если исходные соли растворимы, а в продуктах есть осадок
2) Соль + гидроксид металла – реакция идет, если в исходные вещества растворимы и в продуктах есть осадок или гидроксид аммония.

Рассмотрим третье условие протекания реакций ионного обмена – образование газа. Строго говоря, только в результате ионного обмена образование газа возможно лишь в редких случаях, например, при образовании газообразного сероводорода:

K2S + 2HBr = 2KBr + H2S↑

В большинстве же остальных случаев газ образуется в результате разложения одного из продуктов реакции ионного обмена. Например, нужно точно знать в рамках ЕГЭ, что с образованием газа в виду неустойчивости разлагаются такие продукты, как H2CO3, «NH4OH» и H2SO3:

H2CO3 = H2O + CO2
«NH4OH» = H2O + NH3
H2SO3 = H2O + SO2

(«NH4OH» — такая запись формулы в кавычках подразумевает, что в реальности вещества с такой формулой не существует. Формула используется для большей простоты промежуточных записей. В реальности вместо «гидроксида аммония» правильнее писать формулу гидрата аммиака NH3·H2O).

Другими словами, если в результате ионного обмена образуются угольная кислота, гидроксид аммония или сернистая кислота, реакция ионного обмена протекает благодаря образованию газообразного продукта:

Na2CO3 + H2SO4 = Na2SO4 + H2O + CO2
NH4NO3 + KOH = KNO3 + H2O + NH3
Na2SO3 + 2HCl = 2NaCl + H2O + SO2

Запишем ионные уравнения для всех указанных выше реакций, приводящих к образованию газов. 1) Для реакции:

K2S + 2HBr = 2KBr + H2S↑

В ионном виде будут записываться сульфид калия и бромид калия, т.к. являются растворимыми солями, а также бромоводородная кислота, т.к. относится к сильным кислотам. Сероводород же, являясь малорастворимым и плохо диссоциирцющим на ионы газом, запишется в молекулярном виде:

2K+ + S2- + 2H+  + 2Br = 2K+ + 2Br + H2S↑

Сократив одинаковые ионы получаем:

S2- + 2H+ = H2S↑

2) Для уравнения:

Na2CO3 + H2SO4 = Na2SO4 + H2O + CO2

В ионном виде запишутся Na2CO3, Na2SO4 как хорошо растворимые соли и H2SO4 как сильная кислота. Вода является малодиссоциирующим веществом, а CO2 и вовсе неэлектролит, поэтому их формулы будут записываться в молекулярном виде:

2Na+ + CO32- + 2H + + SO42- = 2Na+ + SO42 + H2O + CO2
CO32- + 2H + = H2O + CO2

3) для уравнения:

NH4NO3 + KOH = KNO3 + H2O + NH3

Молекулы воды и аммиака запишутся целиком, а NH4NO3, KNO3 и KOH запишутся в ионном виде , т.к. все нитраты являются хорошо растворимыми солями, а KOH является гидроксидом щелочного металла, т.е. сильным основанием:

NH4+ + NO3+ K+ + OH = K+ + NO3 + H2O + NH3
NH4+ + OH = H2O + NH3

Для уравнения:

Na2SO3 + 2HCl = 2NaCl + H2O + SO2

Полное и сокращенное уравнение будут иметь вид:

2Na+ + SO32- + 2H+ + 2Cl = 2Na+ + 2Cl + H2O + SO2
SO32- + 2H+ = H2O + SO2

Тонкости взаимодействия кислых солей (в частности, гидрокарбонатов, дигидрофосфатов и гидрофосфатов) со щелочами рассмотрены в данной публикации. 

Реакции ионного обмена

Автор статьи — профессиональный репетитор И. Давыдова (Юдина).

Реакции ионного обмена – наиболее знакомая для большинства людей тема из курса химии. H2O, H2SO4, C2H5OH и то, что реакция идет, если выделяется газ, осадок или вода – вот «багаж знаний», которым обладает среднестатистический выпускник.
На самом деле все, конечно, несколько сложнее. Рассмотрим вопрос подробнее.
Реакции обмена – это процессы вида AB + CD → AD + CB, в которых участвуют оксиды и гидроксиды, обладающие кислотными или основными свойствами (амфотерные соединения могут выступать как в роли кислоты, так и в роди основания), а так же соли.
1) Взаимодействие основного или амфотерного (оксида или гидроксида) с кислотным называется реакцией нейтрализации. Но не каждая пара кислота + основание вступают в реакцию друг с другом.
а) Растворимые гидроксиды – щелочи и гидроксид аммония – взаимодействуют с любой кислотой и кислотным оксидом. Для нерастворимой кремниевой кислоты реакция возможна только при нагревании.
NaOH + HCl → NaCl + H2O
LiOH + CH3COOH → CH3COOLi + H2O
Ba(OH)2 + CO2 → BaCO3↓ + H2O .
Также щелочи взаимодействуют с амфотерными оксидами и гидрокидами с образованием комплексных солей (в растворе) и смешанных оксидов, которые можно отнести и к классу солей (при сплавлении):
NaOH_{TB}+ZnO_{TB}overset{t}{rightarrow}Na_{2}ZnO_{2}+H_{2}O uparrow
Sr(OH)_{2 TB}+2Cr(OH)_{3 TB}overset{t}{rightarrow}Na_{2}Sr(CrO_{2})_{2}+ 4H_{2}O uparrow
2KOH+ZnO+H_{2}O rightarrow K_{2}[ZnOH_{4}]
Ba(OH)_{2}+2Al(OH)_{3} rightarrow Ba[Al(OH)_{4}]_{2}
NaOH+Al(OH)_{3} rightarrow Na[Al(OH)_{4}]

б) Нерастворимые основания и амфотерные гидроксиды не взаимодействуют со слабыми кислотами. Правило, действующее в большинстве случаев: реакция протекает, если предполагаемый продукт растворим. Исключение – взаимодействие с фосфорной кислотой, с ней реагируют даже оксиды и гидроксиды металлов, образующих нерастворимые ортофосфаты.

Mg(OH)2 + 2HCL → MgCl2 + 2H2O
Ag2 O+2CH3COOH → 2CH3COOAg+H2O

CuO + H2S реакция не идет, так как H2S – слабая кислота и сульфид меди нерастворим.

2) Обменные процессы с участием солей:
а) Растворимые соли взаимодействуют с другими растворимыми солями и гидроксидами, если в результате образуется газ или осадок:

2Na3PO4+3CuSO4 → 3Na2SO4+Cu3(PO4)2
FeCl3+3NaOH → 3NaCl+Fe(OH)3

BaSO4 + K2CO3 реакция не идет, так как реагент сульфат бария нерастворим
MnSO4 + KNO3 реакция не идет, так как не образуется ни газа, ни осадка, ни малодиссоциирующего вещества.

б) Соли взаимодействуют с кислотами, если в результате сильная кислота может вытеснить из соли слабую или нелетучая ‑ летучую:

CH3COONa + HCl → NaCl+CH3COOH
CaCO3 + H2SO4 → CaSO4 + H2O + CO2
CaSO4 + HCl реакция не идет, так как серная кислота – сильная и вытеснить ее из соли другой кислотой нельзя.

в) Соли многоосновных кислот взаимодейсвуют с той же кислотой с образованием кислых солей:

CaCO3 + H2O + CO2 → Ca(HCO3 )2

г) Растворимые кислые соли нейтрализуются щелочами:
KHCO3 + KOH → K2CO3 + H2O

Итого:
если вещество растворимо, оно легко вступает в реакцию обмена.
Если же нерастворимо, то оно вступает в обменный процесс только в агрессивной среде: сильная кислота или щелочь (только для амфотерных соединений).
Потренируйтесь:
Закончить уравнения реакций ионного обмена (внимание, идут не все реакции!)

MgCl2 + AgNO3

ZnSO4 + Ba(NO3)2

K2SO3 + H3PO4

CaSO4 + BaCl2

NaOH + ZnCl2

Li2SO4 + CuCl2

NH4NO3 + KOH →

MgO+HCl →

Ba(OH)2 + SO3

BaCl2 + HCl →

NH4Br + AgNO3

Cu(NO3)2 + Rb2S →

(NH4)2SO4 + NaCl→

CaCO3 + H2O + CO2

HCl + NaOH →

H2SiO3 + NaOH →

MnHPO4 + NaOH →

Na2SO4 + H2SO4

Fe(NO3)2 + K2S→

NaHCO3 + NaOH →

KCl + ….. → KNO3 + ……

ZnSO4 + …… → ZnCl2 + …..

Ba(NO3)2 + ….. → KNO3 + …..

LiCl + ….. → NaCl + …..

HCl + ….. → CO2 + H2O + ….

Внимание! Идут не все реакции!

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Реакции ионного обмена» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.03.2023

Химические свойства оснований и амфотерных гидроксидов

Основания — это сложные вещества, состоящие из атомов металла и одной или нескольких гидроксогрупп ($–OH$).

Общая формула ${Me}↖{+y}(OH)_y$,где $y$ — число гидроксогрупп, равное степени окисления металла ${Me}↖{+y}$.

Классификация оснований.

Признаки классификации Группы оснований Примеры
Растворимость в воде растворимые (щелочи) $NaOH, KOH, Ca(OH)_2, Ba(OH)_2$
нерастворимые $Cu(OH)_2, Fe(OH)_2, Fe(OH)_3$
Степень электролитической диссоциации сильные ($α→1$) щелочи
слабые ($α→0$) нерастворимые основания, водный р-р аммиака $NH_3·H_2O$
Кислотность (число гидроксогрупп) однокислотные $NaOH, KOH$
двухкислотные $Fe(OH)_2, Cu(OH)_2$

Свойства щелочей — гидроксидов щелочных и щелочноземельных металлов

1. Водные растворы щелочей мылкие на ощупь, изменяют окраску индикаторов: лакмуса — в синий цвет, фенолфталеина — в малиновый.

2. Водные растворы диссоциируют:

$Ba(OH)_2=Ba_^{2+}+2OH^–$.

3. Взаимодействуют с кислотами, вступая в реакцию обмена:

$NaOH+HCl=NaCl+H_2O$ — реакция нейтрализации.

Многокислотные основания могут давать средние и основные соли:

$Ca(OH)_2+HCl=CaOHCl+H_2O$.

4. Взаимодействуют с кислотными оксидами, образуя средние и кислые соли в зависимости от основности кислоты, соответствующей этому оксиду:

$Ca(OH)_2+CO_2=CaCO_3↓+H_2O$,

$NaOH+CO_{2(изб.)}=NaHCO_3$.

5. Взаимодействуют с амфотерными оксидами и гидроксидами:

а) сплавление:

$2NaOH+ZnO=Na_2ZnO_2+H_2O$,

$2NaOH+Zn(OH)_2=Na_2ZnO_2+2H_2O;$

б) в растворах:

$2KOH+H_2O=ZnO+K_2[Zn(OH)_4]$,

$2KOH+Zn(OH)_2=K_2[Zn(OH)_4]$.

6. Взаимодействуют с растворимыми в воде солями, если образуется осадок или газ:

$2NaOH+CuSO_4=Cu(OH)_2↓+Na_2SO_4$,

$NaOH+NH_4Cl=NH_3↑+H_2O+NaCl$.

Нерастворимые основания ($Cr(OH)_3, Mn(OH)_2$ и др.) взаимодействуют с кислотами и разлагаются при нагревании:

$Mn(OH)_2+2HCl=MnCl_2+2H_2O$,

$Mn(OH)_2{→}↖{t}MnO+H_2O$.

Амфотерные оксиды и гидроксиды.

$H_2ЭO_2$
Кислотная форма
—-$ЭO$—-
$BeO, ZnO, GeO, SnO, PbO, …$
$Э(OH)_2$
Основная форма
$H_3ЭO_3$
Кислотная ортоформа
$НЭO_2$
Кислотная метаформа
—-$Э_2O_3$—-
$Al_2O_3, Ga_2O_3, In_2O_3, Tl_2O_3,$
$Cr_2O_3, Fe_2O_3, Sb_2O_3, …$
$Э(OH)_3,$ чаще
$Э_2O_3·nH_2O,ЭO(OH)$ Основная форма
$H_4ЭO_4$
Кислотная ортоформа
$Н_2ЭO_3$
Кислотная метаформа
—-$ЭO_2$—-
$GeO_2,SnO_2, PbO_2, VO_2, TiO_2, …$
$Э(OH)_4,$ чаще
$ЭO·nH_2O,ЭO(OH)_2$ Основная форма

Химические свойства амфотерных соединений

1. Взаимодействуя с сильными кислотами, они обнаруживают основные свойства:

$Zn(OH)_2+2HCl=ZnCl_2+2H_2O$.

2. Взаимодействуя со щелочами — сильными основаниями, они обнаруживают кислотные свойства:

$Zn(OH)_2+2NaOH=Na_2[Zn(OH)_4]$ — комплексная соль;

$Al(OH)_3+NaOH=Na[Al(OH)_4]$ — комплексная соль.

Комплексными называют соединения, в которых хотя бы одна ковалентная связь образовалась по донорно-акцепторному механизму.

Химические свойства кислот

Кислотами называются сложные вещества, молекулы которых состоят из атомов водорода, способных замещаться на атомы металла, и кислотных остатков.

Классификация кислот.

В обычных условиях кислоты могут быть твердыми (фосфорная $H_3PO_4$; кремниевая $H_2SiO_3$) и жидкими (в чистом виде жидкостью является серная кислота $H_2SO_4$).

Такие газы, как хлороводород $HCl$, бромоводород $HBr$, сероводород $H_2S$, в водных растворах образуют соответствующие кислоты.

Разделение кислот на группы по различным признакам представлено в таблице.

Классификация кислот.

Признаки классификации Группы кислот Примеры
Наличие кислорода в кислотном остатке а) кислородные
б) бескислородные
$H_3PO_4, HNO_3$
$H_2S, HCl, HBr$
Основность а) одноосновные
б) двухосновные
в) трехосновные
$HCl, HNO_3$
$H_2S, H_2SO_4$
$H_3PO_4$
Растворимость в воде а) растворимые
б) нерастворимые
$H_2SO_4, H_2S, HNO_3$
$H_2SiO_3$
Летучесть а) летучие
б) нелетучие
$H_2S, HCl, HNO_3$
$H_2SO_4, H_2SiO_3, H_3PO_4$
Степень электролитической диссоциации а) сильные
б) слабые
$H_2SO_4, HCl, HNO_3$
$H_2S, H_2SO_3, H_2CO_3$
Стабильность а) стабильные
б) нестабильные
$H_2SO_4, H_3PO_4, HCl$
$H_2SO_3, H_2CO_3, H_2SiO_3$

Часто путают понятия летучесть и устойчивость (стабильность). Летучими называют кислоты, молекулы которых легко переходят в газообразное состояние, т.е. испаряются. Например, соляная кислота является летучей, но устойчивой, стабильной кислотой. О летучести нестабильных кислот судить нельзя. Например, нелетучая нерастворимая кремниевая кислота разлагается на воду и $SiO_2$.

Водные растворы соляной, азотной, серной, фосфорной и ряда других кислот не имеют окраски. Водный раствор хромовой кислоты $H_2CrO_4$ имеет желтую окраску, марганцевой кислоты $HMnO_4$ — малиновую.

Свойства кислот

Кислый вкус, воздействие на индикаторы, электрическая проводимость, взаимодействие с металлами, основными и амфотерными оксидами, основаниями и солями, образование сложных эфиров со спиртами — эти свойства являются общими для неорганических и органических кислот.

1. В воде кислоты диссоциируют на катионы водорода и анионы кислотных остатков, например:

$HCl=H^{+}+Cl^–$,

$HNO_3=H^{+}+NO_3^{-}$,

$H_2SO_4=H^{+}+HSO_4^{-}⇄2H^{+}+SO_4^{2-}$.

Растворы кислот изменяют цвет индикаторов: лакмуса — в красный, метилового оранжевого — в розовый, цвет фенолфталеина не изменяют.

2. Растворы кислот реагируют с металлами, стоящими в электрохимическом ряду напряжений левее водорода, при соблюдении ряда условий, важнейшим из которых является образование в результате реакции растворимой соли:

$2HCl+Zn=ZnCl_2+H_2↑$,

$2H^{+}+Zn=Zn^{2+}+H_2↑$.

3. Неорганические и органические кислоты взаимодействуют с основными и амфотерными оксидами при условии, что образуется растворимая соль:

$2HCl+ZnO=ZnCl_2+H_2O$,

$2H^{+}+ZnO=Zn^{2+}+H_2O$.

4. И те, и другие кислоты вступают в реакцию с основаниями. Многоосновные кислоты могут образовывать как средние, так и кислые соли (это реакции нейтрализации):

а) $H^{+}+OH^{–}=H_2O$.

Например, $HCl+NaOH=H_2O+NaCl;$

б) $H_2SO_4+NaOH={NaHSO_4}↙{text»кислая соль»}+H_2O$.

5. Реакция между кислотами и солями идет только в том случае, если образуется осадок или газ:

$2H^{+}+CaCO_3=Ca^{2+}+H_2O+CO_2↑,$

$SO_4^{2-}+Ba^{2+}=BaSO_4↓$.

Взаимодействие $H_3PO_4$ с известняком прекратится из-за образования на поверхности последнего нерастворимого осадка $Ca_3(PO_4)_2$.

Особенности свойств азотной $HNO_3$ и концентрированной серной $H_2SO_4$(конц.) кислот обусловлены тем, что при их взаимодействии с простыми веществами (металлами и неметаллами) окислителями будут выступать не катионы $H^+$, а нитрат- и сульфат-ионы. Логично ожидать, что в результате таких реакций образуется не водород $H_2$, а другие вещества: обязательно соль и вода, а также один из продуктов восстановления нитрат- или сульфат-ионов в зависимости от концентрации кислот, положения металла в ряду напряжений и условий реакции (температуры).

Следует отметить, что третий продукт реакции металлов с этими кислотами образуется в «букете » — смеси с другими продуктами. Эти особенности химического поведения $HNO_3$ и $H_2SO_4$(конц.) наглядно иллюстрируют тезис теории химического строения о взаимном влиянии атомов в молекулах веществ.

Продукты взаимодействия простых веществ с азотной и серной кислотами.

${text»Простые вещества»}/{text»Кислоты»}$ $Mg$ $Al$ $Zn$ $Fe$
$HNO_3$
разбавленная
$Mg(NO_3)_2$
$NH_4NO_3$
$N_2$
$Al(NO_3)_3$
$NH_4NO_3$
$N_2$
$Zn(NO_3)_2$
$NH_4NO_3$
$N_2$
$Fe(NO_3)_3$
$NH_4NO_3$
$N_2$
$HNO_3$
концентрированная
$Mg(NO_3)_2$
$N_2O$
пассивирует $Zn(NO_3)_2$
$N_2O$
пассивирует
$H_2SO_4$
разбавленная
$MgSO_4$
$H_2$
$Al_2(SO_4)_3$
$H_2$
$ZnSO_4$
$H_2$
$FeSO_4$
$H_2$
$H_2SO_4$
концентрированная
горячая
$MgSO_4$
$H_2S$
$Al_2(SO_4)_3$
$H_2S$
$ZnSO_4$
$H_2S$
$S$
$Fe_2(SO_4)_3$
$SO_2$
$S$
${text»Простые вещества»}/{text»Кислоты»}$ $Cr$ $Cu$ $P$ $S$
$Fe(NO_3)_3$
$NH_4NO_3$
$N_2$
$Cr(NO_3)_3$
$NO$
$Cu(NO_3)_2$
$NO$
$H_3PO_4$
$NO$
$H_2SO_4$
$NO$
пассивирует пассивирует $Cu(NO_3)_2$
$N_2O$
$H_3PO_4$
$N_2O$
$H_2SO_4$
$N_2O$
$FeSO_4$
$H_2$
$CrSO_4$
$H_2$
$Fe_2(SO_4)_3$
$SO_2$
$S$
$Fe_2(SO_4)_3$
$SO_2$
$CuSO_4$
$SO_2$
$H_3PO_4$
$SO_2$
$SO_2$
$H_2O$

Химические свойства солей: средних, кислых, основных, комплексных

Соли — это класс химических соединений, состоящих из ионов металла и ионов кислотного остатка.

Номенклатура солей

Названия солей кислородсодержащих кислот состоят из двух слов: названия иона, образованного кислотным остатком, в именительном падеже и названия иона металла — в родительном. Названия ионов кислотных остатков составляются, в свою очередь, из корней названий элементов с суффиксами -ат для высшей степени окисления и -ит для низшей степени окисления атомов элемен — та-неметалла, образующего сложный ион остатка кислородсодержащей кислоты. Например, соли азотной кислоты $HNO_3$ называются нитратами: $KNO_3$ — нитрат калия, а соли азотистой кислоты $HNO_2$ — нитритами: $Ca(NO_2)_2$ — нитрит кальция. Если же металл проявляет различные степени окисления, то они указываются в скобках римской цифрой, например: $Fe^{2+}SO_4$ — сульфат железа (II) и $Fe_2^{3+}(SO_4)_3$ — сульфат железа (III).

Номенклатура солей.

Название кислоты Формула Название солей Формула (пример)
Азотистая $HNO_2$ Нитриты $KNO_2$
Азотная $HNO_3$ Нитраты $Al(NO_3)_3$
Хлороводородная (соляная) $ HCl$ Хлориды $FeCl_3$
Сернистая $ H_2SO_3$ Сульфиты $K_2SO_3$
Серная $H_2SO_4$ Сульфаты $Na_2SO_4$
Сероводородная $H_2S$ Сульфиды $FeS$
Фосфорная $H_3PO_4$ Фосфаты $Ca_3(PO_4)_2$
Угольная $H_2CO_3$ Карбонаты $CaCO_3$
Кремниевая $H_2SiO_3$ Силикаты $Na_2SiO_3$

Растворимость солей

По растворимости в воде соли делятся на растворимые ($Р$), нерастворимые ($Н$) и малорастворимые ($М$). Для определения растворимости солей пользуются таблицей растворимости кислот, оснований и солей в воде. Если таблицы под рукой нет, то можно воспользоваться правилами. Их легко запомнить.

  1. Растворимы все соли азотной кислоты — нитраты.
  2. Растворимы все соли соляной кислоты — хлориды, кроме $AgCl (Н), PbCl_2 (М)$.
  3. Растворимы все соли серной кислоты — сульфаты, кроме $BaSO_4 (Н), PbSO_4 (Н)$.
  4. Растворимы соли натрия и калия.
  5. Не растворяются все фосфаты, карбонаты, силикаты и сульфиды, кроме солей для $Na^{+}$ и $K^{+}$.

Классификация солей

Из всех химических соединений соли являются наиболее многочисленным классом веществ. Это твердые вещества, они отличаются друг от друга по цвету и растворимости в воде.

В начале XIX в. шведский химик И. Берцелиус сформулировал определение солей как продуктов реакций кислот с основаниями или соединений, полученных заменой атомов водорода в кислоте металлом. По этому признаку различают соли средние, кислые и основные.

Средние, или нормальные, соли — это продукты полного замещения атомов водорода в кислоте на металл.

Именно с этими солями вы уже знакомы и знаете их номенклатуру. Например:

$Na_2CO_3$ — карбонат натрия,

$CuSO_4$ — сульфат меди (II) и т. д.

Диссоциируют такие соли на катионы металла и анионы кислотного остатка:

$Na_2CO_3=2Na^{+}+CO_2^{2-}$.

Кислые соли — это продукты неполного замещения атомов водорода в кислоте на металл.

К кислым солям относят, например, питьевую соду $NaHCO_3$, которая состоит из катиона металла $Na^{+}$ и кислотного однозарядного остатка $HCO_3^{−}$. Для кислой кальциевой соли формула записывается так: $Ca(HCO_3)_2$.

Названия этих солей складываются из названий средних солей с прибавлением приставки гидро-, например:

$Mg(HSO_4)_2$ — гидросульфат магния.

Диссоциируют кислые соли следующим образом:

$NaHCO_3=Na^{+}+HCO_3^{-}$,

$Mg(HSO_4)_2=Mg^{2+}+2HSO_4^{-}$.

Основные соли — это продукты неполного замещения гидроксогрупп в основании на кислотный остаток.

Например, к таким солям относится знаменитый малахит $(CuOH)_2CO_3$, о котором вы читали в сказках П. Бажова. Он состоит из двух основных катионов $CuOH^{+}$ и двухзарядного аниона кислотного остатка $CO_3^{2−}$.

Катион $CuOH^{+}$ имеет заряд $+1$, поэтому в молекуле два таких катиона и один двухзарядный анион $CO_3^{2−}$ объединены в электронейтральную соль.

Названия этих солей такие же, как и у нормальных солей, но с прибавлением приставки гидроксо-, $(CuOH)_2CO_3$ — гидро ксокарбонат меди (II) или $AlOHCl_2$ — гидроксо хлорид алюминия. Большинство основных солей нерастворимы или малорастворимы.

Последние диссоциируют так:

$AlOHCl_2=AlOH^{2+}+2Cl^{–}$.

Свойства солей

Типичные реакции солей.

1. Соль + кислота ${→}↙{text»(реакция обмена)»}$ другая соль + другая кислота.

2. Соль + щелочь ${→}↙{text»(реакция обмена)»}$ другая соль + другое основание.

3. ${Соль_1 + соль_2 → соль_3 + соль_4}↙{text»(реакция обмена: в реакцию вступают две соли, в результате ее получаются две другие соли)»}$.

4. Соль + металл ${→}↙{text»(реакция замещения)»}$ другая соль + другой металл.

Первые две реакции обмена были подробно рассмотрены ранее.

Третья реакция также является реакцией обмена. Она протекает между растворами солей и сопровождается образованием осадка, например:

а) $Ca(NO_3)_2+Na_2CO_3=CaCO_3↓+2NaNO_3$

или $Ca^{2+}+CO_2^{2-}=CaCO_3↓$;

б) $K_2SO_4+BaCl_2=2KCl+BaSO_4↓$

или $SO_4^{2-}+Ba^{2+}=BaSO_4↓$.

Четвертая реакция солей связана с положением металла в электрохимическом ряду напряжений металлов.

Второе правило ряда напряжений: каждый металл вытесняет из растворов солей все другие металлы, расположенные правее его в ряду напряжений. Это правило соблюдается при выполнении следующих условий:

а) обе соли (и реагирующая, и образующаяся в результате реакции) должны быть растворимыми;

б) металлы не должны взаимодействовать с водой, по этому металлы главных подгрупп I и II групп (для последней начиная с $Са$) не вытесняют другие металлы из растворов солей.

Комплексные соединения

При взаимодействии со щелочами амфотерных оксидов и гидроксидов в растворе образуются комплексные соли, состав которых может быть отражен формулой

${Na[Al(OH)_4^{–}]}↙{text»тетрагидроксоалюминат натрия»}$.

Комплексными называют соединения, в которых хотя бы одна ковалентная связь образовывалась по донорно-акцепторному механизму.

В переводе с латинского complexus означает «сочетание». Действительно, очень многие комплексные соединения получают из двух или трех веществ, например:

$NH_3 + HCl = {[NH_4]Cl}↙{text»соль аммония»}$,

$C_6H_5NH_2 + HCl = {[C_6H_5NH_3]}↙{text»соль амина»}$.

Малорастворимый гидроксид алюминия под воздействием гидроксид-ионов $ОН^{–}$ переходит в раствор в виде иона $[Al(OH)_4]^{–}$:

$Al(OH)_3 + OH^{–} = [Al(OH)_4]^{–}$.

Комплексные, или, как их еще называют, координационные соединения, построены так: в центре находится атом или ион (он называется комплексообразователем), а вокруг него — атомы, молекулы или ионы, образовавшие с ним ковалентные связи по донорно-акцепторному механизму (называются лигандами). Это могут быть анионы кислот, молекулы небольшого размера ($H_2O, NH_3, CO$), имеющие атомы с неподеленными электронными парами.

Общее число лигандов, непосредственно связанных с центральным атомом, называется координационным числом. Последнее изменяется от $1$ до $12$ (но чаще атом образует внутреннюю сферу комплекса (ее заключают в квадратные скобки). Внешняя сфера состоит из ионов, не связанных непосредственно с комплексообразователем. Внутренняя сфера участвует в химических реакциях как один многоатомный ион, внешняя сфера — как обычные ионы.

Например, строение тетрагидроксоалюмината натрия:

и уравнение его диссоциации:

$Na_2[Zn(OH)_4]→2Na^{+}+[Zn(OH)_4]^{2–}$.

Комплексные соединения играют большую роль в жизнедеятельности живых организмов. Почти все ферменты, гормоны, хлорофилл растений и гемоглобин животных, лекарства представляют собой комплексные соединения.

Электролитическая диссоциация в водных растворах. Слабые и сильные электролиты

Электролиты и неэлектролиты

Из уроков физики известно, что растворы одних веществ способны проводить электрический ток, а других — нет.

Вещества, растворы которых проводят электрический ток, называются электролитами.

Растворы сахара, спирта, глюкозы и некоторых других веществ не проводят электрический ток.

Вещества, растворы которых не проводят электрический ток, называются неэлектролитами.

Электролитические диссоциация и ассоциация

Почему же растворы электролитов проводят электрический ток?

Шведский ученый Сванте Аррениус, изучая электропроводность различных веществ, пришел в 1877 г. к выводу, что причиной электропроводности является наличие в растворе ионов, которые образуются при растворении электролита в воде.

Процесс распада электролита на ионы называется электролитической диссоциацией.

С. Аррениус, который придерживался физической теории растворов, не учитывал взаимодействия электролита с водой и считал, что в растворах находятся свободные ионы. В отличие от него, русские химики И. А. Каблуков и В. А. Кистяковский применили к объяснению электролитической диссоциации химическую теорию Д. И. Менделеева и доказали, что при растворении электролита происходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы. Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, т.е. «одетые в шубку» из молекул воды.

Молекулы воды представляют собой диполи (два полюса), так как атомы водорода расположены под углом $104.5°$, благодаря чему молекула имеет угловую форму. Молекула воды схематически представлена ниже.

Как правило, легче всего диссоциируют вещества с ионной связью и соответственно с ионной кристаллической решеткой, так как они уже состоят из готовых ионов. При их растворении диполи воды ориентируются противоположно заряженными концами вокруг положительных и отрицательных ионов электролита.

Между ионами электролита и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, и происходит переход ионов из кристалла в раствор. Очевидно, что последовательность процессов, происходящих при диссоциации веществ с ионной связью (солей и щелочей), такова:

а) ориентация молекул (диполей) воды около ионов кристалла;

б) гидратация (взаимодействие) молекул воды с ионами поверхностного слоя кристалла;

в) диссоциация (распад) кристалла электролита на гидратированные ионы.

Упрощенно происходящие процессы можно отразить с по мощью следующего уравнения:

$NaCl=Na^{+}+Cl^{–}$.

Аналогично диссоциируют и электролиты, в молекулах которых — ковалентная связь (например, молекулы хлороводорода $HCl$); только в этом случае под влиянием диполей воды происходит превращение ковалентной полярной связи в ионную и последовательность процессов, происходящих при этом, такова:

а) ориентация молекул воды вокруг полюсов молекул электролита;

б) гидратация (взаимодействие) молекул воды с молекулами электролита;

в) ионизация молекул электролита (превращение ковалентной полярной связи в ионную);

г) диссоциация (распад) молекул электролита на гидратированные ионы.

Упрощенно уравнение диссоциации соляной кислоты можно отразить с помощью следующего уравнения:

$HCl=H^{+}+Cl^{–}$.

Следует учитывать, что в растворах электролитов хаотически движущиеся гидратированные ионы могут столкнуться и вновь объединиться между собой. Этот обратный процесс называется ассоциацией. Свойства гидратированных ионов отличаются от свойств негидратированных. Например, негидратированный ион меди $Cu^{2+}$ — белый в безводных кристаллах сульфата меди (II) и имеет голубой цвет, когда гидратирован, т.е. связан с молекулами воды $Cu^{2+}·nH_2O$. Гидратированные ионы имеют как постоянное, так и переменное число молекул воды.

Степень электролитической диссоциации

В растворах электролитов наряду с ионами присутствуют и молекулы. Поэтому растворы электролитов характеризуются степенью диссоциации, которая обозначается греческой буквой $α$ (альфа).

Степень диссоциации — это отношение числа частиц, распавшихся на ионы ($N_g$), к общему числу растворенных частиц ($N_р$):

$α={N_g}/{N_p}$.

Степень диссоциации электролита определяется опытным путем и выражается в долях или процентах. Если $α=0$, то диссоциация отсутствует, а если $α=1$, или $100%$, то электролит полностью распадается на ионы. Различные электролиты имеют различную степень диссоциации, т.е. степень диссоциации зависит от природы электролита. Она также зависит и от концентрации: с разбавлением раствора степень диссоциации увеличивается.

По степени электролитической диссоциации электролиты делятся на сильные и слабые.

Сильные и слабые электролиты

Сильные электролиты — это электролиты, которые при растворении в воде практически полностью диссоциируют на ионы. У таких электролитов значение степени диссоциации стремится к единице.

К сильным электролитам относятся:

1) все растворимые соли;

2) сильные кислоты, например: $H_2SO_4, HCl, HNO_3$;

3) все щелочи, например: $NaOH, KOH$.

Слабые электролиты — это такие электролиты, которые при растворении в воде почти не диссоциируют на ионы. У таких электролитов значение степени диссоциации стремится к нулю.

К слабым электролитам относятся:

1) слабые кислоты — $H_2S, H_2CO_3, HNO_2$;

2) водный раствор аммиака $NH_3·H_2O$;

3) вода;

4) некоторые соли.

Константа диссоциации

В растворах слабых электролитов вследствие их неполной диссоциации устанавливается динамическое равновесие между недиссоциированными молекулами и ионами. Например, для уксусной кислоты:

$CH_3COOH⇄H^{+}+CH_3COO^{–}$,

Можно применить к этому равновесию закон действующих масс и записать выражение константы равновесия:

$K_{равн.}={[H^{+}]·[CH_3COO^{-}]}/{[CH_3COOH]}$

Константу равновесия, характеризующую процесс диссоциации слабого электролита, называют константой диссоциации.

Константа диссоциации характеризует способность электролита (кислоты, основания, воды) диссоциировать на ионы. Чем больше константа, тем легче электролит распадается на ионы, следовательно, тем он сильнее. Значения констант диссоциации для слабых электролитов приводятся в справочниках.

Основные положения теории электролитической диссоциации

1. При растворении в воде электролиты диссоциируют (распадаются) на положительные и отрицательные ионы.

Ионы — это одна из форм существования химического элемента. Например, атомы металла натрия $Na0$ энергично взаимодействуют с водой, образуя при этом щелочь ($NaOH$) и водород $Н_2$, в то время как ионы натрия $Na^{+}$ таких продуктов не образуют. Хлор $Cl_2$ имеет желто-зеленый цвет и резкий запах, ядовит, а ионы хлора $Cl^{–}$ бесцветны, не ядовиты, лишены запаха.

Ионы — это положительно или отрицательно заряженные частицы, в которые превращаются атомы или группы атомов одного или нескольких химических элементов в результате отдачи или присоединения электронов.

В растворах ионы беспорядочно передвигаются в различных направлениях.

По составу ионы делятся на простые — $Cl^{–}, Na^{+}$ и сложные — $NH_4^{+}, SO_4^{2−}$.

2. Причиной диссоциации электролита в водных растворах является его гидратация, т.е. взаимодействие электролита с молекулами воды и разрыв химической связи в нем.

В результате такого взаимодействия образуются гидратированные, т.е. связанные с молекулами воды, ионы.

Следовательно, по наличию водной оболочки ионы делятся на гидратированные (в растворах и кристаллогидратах) и негидратированные (в безводных солях).

3. Под действием электрического тока положительно заряженные ионы движутся к отрицательному полюсу источника тока — катоду и поэтому называются катионами, а отрицательно заряженные ионы движутся к положительному полюсу источника тока — аноду и поэтому называются анионами.

Следовательно, существует еще одна классификация ионов — по знаку их заряда. Сумма зарядов катионов ($Н^{+}, Na^{+}, NH_4^{+}, Cu^{2+}$) равна сумме зарядов анионов ($Cl^{–}, OH^{–}, SO_4^{2−}$), вследствие чего растворы электролитов ($HCl, (NH_4)_2SO_4, NaOH, CuSO_4$) остаются электронейтральными.

4. Электролитическая диссоциация — процесс обратимый для слабых электролитов.

Наряду с процессом диссоциации (распад электролита на ионы) протекает и обратный процесс — ассоциация (соединение ионов). Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости, например:

$HNO_2⇄H^{+}+NO_2^{-}$

5. Не все электролиты в одинаковой мере диссоциируют на ионы. Степень диссоциации зависит от природы электролита и его концентрации.

6. Химические свойства растворов электролитов определяются свойствами тех ионов, которые они образуют при диссоциации.

Реакции ионного обмена

Свойства растворов слабых электролитов обусловлены молекулами и ионами, образовавшимися в процессе диссоциации, которые находятся в динамическом равновесии друг с другом.

Запах уксусной кислоты обусловлен наличием молекул $CH_3COOH$, кислый вкус и изменение окраски индикаторов связаны с наличием в растворе ионов $H^{+}$.

Свойства растворов сильных электролитов определяются свойствами ионов, которые образуются при их диссоциации.

При растворении в воде кислоты диссоциируют с образованием катионов водорода $Н^{+}$ (точнее, ионов оксония $Н_3О^{–}$), которые определяют общие свойства кислот, такие как кислый вкус, изменение окраски индикатора и др., и отрицательно заряженных ионов, соответствующих кислотным остаткам. При ионной необратимой диссоциации, когда в растворе молекул нет, кислота называется сильной. При обратимой диссоциации, когда в растворе кислоты, наряду с соответствующими ионами, остаются и молекулы, кислота называется слабой. К сильным кислотам относятся азотная, серная, соляная и некоторые другие. Слабые кислоты — фтороводородная (плавиковая), угольная, сероводородная, фосфорная, органические кислоты и др.

Свойства кислот можно разделить на три группы.

Первая группа объединяет общие свойства кислот, определяемые наличием в их растворах ионов водорода. Это вкус, окраска индикаторов, взаимодействие с металлами, основными оксидами, щелочами, основаниями. Приведем соответствующие сокращенные ионные уравнения:

— с металлами, стоящими в ряду напряжений металлов левее водорода:

$Zn + 2H^{+} = Zn^{2+} + H_2↑;$

— с основными оксидами:

$CuO + 2H^{+} = Cu^{2+} + H_2O;$

— с щелочами:

$H^{+} + OH^{–} = H_2O;$

— с нерастворимыми основаниями:

$Fe(OH)_3 + 2H^{+} + 2H_2O$.

Ко второй группе относятся реакции, определяемые свойствами кислотных остатков. Это специфические для каждой кислоты реакции: образование малорастворимых, иногда окрашенных солей.

Для серной кислоты $H_2SO_4$:

$Ba^{2+} + SO_4^{2–}={BaSO_4↓}↙{белый}$,

для угольной кислоты $H_2CO_3$:

$Ca+CO_3^{2-}={CaCO_3↓}↙{белый}$,

Третью группу составляют реакции, протекание которых обусловлено такими свойствами кислот, как сила кислоты, ее растворимость в воде, прочность молекулы, летучесть. Сильная кислота вытесняет слабую:

${3H_2SO_4}↙{сильная}+Ca_3(PO_4)_2={2H_3PO_4}↙{слабая}+3CaSO_4$

При растворении в воде основания образуют гидроксид-ионы ОН– и положительно заряженные ионы аммония $NH_4^{+}$). Растворимые в воде щелочи являются сильными электролитами, в их растворах молекул гидроксидов нет. Нерастворимые основания — слабые электролиты. Слабым электролитом является и гидроксид аммония $NH_4OH$, который представляет собой соединение молекулы аммиака с молекулой воды $NH_3·H_2O$. Специфические свойства оснований определяются свойствами иона металла.

Соли при растворении в воде диссоциируют с образованием положительно заряженных ионов металла (или аммония $NH_4^{+}$) и отрицательно заряженных кислотных остатков. Эти молекулы определяют поведение солей в растворах.

Например, общие свойства кислот, такие как кислый вкус, изменение окраски индикаторов, обусловлены наличием в их растворах катионов водорода (точнее, ионов оксония $H_3O^{–}$). Общие свойства щелочей, такие, как мылкость на ощупь, изменение окраски индикаторов и др., связаны с присутствием в их растворах гидроксид-ионов $OH^{–}$, а свойства солей — с распадом их в растворе на катионы металла (или аммония) и анионы кислотных остатков.

Как известно, высокая скорость многих химических реакций в растворах электролитов объясняется тем, что они протекают не между молекулами, а между ионами.

Реакции, протекающие между ионами, называют ионными реакциями.

Реакции ионного обмена в водных растворах могут протекать:

1) необратимо, до конца;

2) обратимо, т.е. протекать одновременно в двух противоположных направлениях.

Как вам известно, реакции обмена между сильными электролитами в растворах протекают до конца или практически необратимы, когда ионы, соединяясь друг с другом, образуют вещества:

а) нерастворимые;

б) малодиссоциирующие (слабые электролиты);

в) газообразные.

Приведем несколько примеров молекулярных и сокращенных ионных уравнений:

a) $AgNO_3+HCl=AgCl↓+HNO_3$

$Ag^{+}+Cl^{–}=AgCl↓$

Реакция необратима, потому что один из ее продуктов уходит из сферы реакции в виде нерастворимого вещества.

б) $Ba(OH)_2+2HNO_3=Ba(NO_3)_2+2H_2O$

$H^{+}+OH^{–}=H_2O$

Реакция нейтрализации необратима, т.к. образуется малодиссоциирующее вещество — вода.

в) $H_2SO_4+Na_2CO_3=Na_2SO_4+H_2O+CO_2↑$

$2H^{+}+CO_3^{2-}=H_2O+CO_2↑$

Реакция необратима, т.к. образуется углекислый газ $CO_2$ и малодиссоциирующее вещество — вода.

Если среди исходных веществ и среди продуктов реакции имеются слабые электролиты или малорастворимые вещества, то такие реакции являются обратимыми, т.е. до конца не протекают. В обратимых реакциях равновесие смещается в сторону образования наименее растворимых или наименее диссоциированных веществ.

Например:

${CH_3COOH}↙{text»слабый электролит»}+NaOH⇄CH_3COONa+{H_2O}↙{text»слабый электролит»}$

$CH_3COOH+OH^{-}⇄CH_3COO^{-}+H_2O$

Равновесие смещается в сторону образования более слабого электролита — $H_2O$. Однако до конца такая реакция протекать не будет: в растворе остаются недиссоциированные молекулы уксусной кислоты и гидроксид-ионы.

Если исходные вещества — сильные электролиты, которые при взаимодействии не образуют нерастворимых или малодиссоциирующих веществ или газов, то такие реакции не протекают: при смешивании растворов образуется смесь ионов.

31 августа 2022

В закладки

Обсудить

Жалоба

Методичка по реакциям ионного обмена

Реакциями ионного обмена называют химические реакции, которые протекают между ионами без изменения степеней окисления элементов и приводят к обмену составных частей реагентов.

met-rio.pdf

Источник: vk.com/makovand

Под электролитической диссоциацией понимается распад молекул электролита в растворе с образованием положительно и отрицательно заряженных ионов – катионов и анионов.

И все вещества по способности проводить электрический ток можно разделить на 2 группы: электролиты и не электролиты.

В зависимости от значения степени диссоциации, электролиты можно разделить на сильные, средние и слабые:

Сила электролита

Класс соединений

Примеры

Сильные (степень диссоциации от 30% до 100%)

1. Растворимые соли

2. Щелочи

3. Сильные кислоты

NaCl, KCl, CuSO4, Сa(OH)2, HCl, HBr, HI, H2SO4, HNO3, HClO4, HclO3, H2CrO4, HMnO4, CH3COONa

Средней силы (Степень диссоциации от 2% до 30 %

Некоторые кислоты

H3PO4, H2SO3, HNO2

Слабые (степень диссоциации меньше 2%)

1. Нерастворимые соли

2. Нерастворимые основания

3. Слабые кислоты

4. Органические кислоты

H2SiO3, HCN, CH3COOH,

Степень диссоциации, где n-число распавшихся (диссоциированных) молекул, N-общее число молекул.

При написании уравнений диссоциации помните, что суммарный заряд катионов и анионов должен быть равен нулю.

В случае сильных электролитов распад на ионы протекают необратимо (только в одну сторону), ионы обратно не соединяются в кристаллическую решетку, этому препятствуют молекулы воды, окружающие эти ионы (гидратные оболочки).

Диссоциация слабых электролитов ― обратимый процесс. Это значит, что в растворе присутствуют как ионы, так и недиссоциированные молекулы.

Все электролиты можно разделить на 3 группы: кислоты, основания и соли.

Кислоты ― это электролиты, которые при диссоциации поставляют в водный раствор катионы водорода и никаких других положительных ионов не образуют.

Многоосновные кислоты диссоциируют ступенчато.

H3PO4 ⇄ H+ + H2PO4, α = 23,5%

H2PO4 ⇄ H+ + HPO2-4, α = 3 ∙ 10-4 %

HPO2-4 ⇄ H+ + PO3-4, α = 2 ∙ 10-9 %

Основания ― это электролиты, которые при диссоциации поставляют в водный раствор гидроксид-ионы и никаких других отрицательных ионов не образуют. Диссоциация нерастворимых оснований не происходит, нет ионов в растворе.

К сильным основаниям относят все щелочи, т. е. все растворимые основания, кроме гидроксида аммония.

KOH = K+ + OH, Ca(OH)2 = Ca2+ + 2OH.

Средние соли ― это электролиты, которые при диссоциации поставляют в водный раствор любые катионы, кроме Н+, и любые анионы, кроме ОН.

Все растворимые соли ― сильные электролиты.

Cu(NO3)2 = Cu2+ + 2NO3;

Al2(SO4)3 + 2Al3+ + 3SO2-4;

Na(CH3COO) = Na+ + CH3COO.

Реакции между электролитами ― это реакции между ионами, которые образовались при их диссоциации, поэтому их записывают и в молекулярном, и в ионном виде. Протекают всегда в сторону наиболее полного связывания ионов.

Молекулярное

Полное ионное

Краткое ионное

H2SO4+ 2KOH=K2SO4+2H2O

2H+ + SO42- + 2K+ + 2OH = 2K+ + SO42- + 2H2O

H+ + OH = H2O

K2CO3+ 2HNO3=2KNO3+ CO2+H2O

2K++ CO2-3 + 2H+ +2NO3 = 2K+ + 2NO3 + CO2 + H2O

2H+ + CO2-3 = CO2 ↑+ H2O

2Al3+ + 3SO42- + 3Ba2+ + 6Cl = 3BaSO4 + 2Al3+ + 6Cl

SO42- + Ba2+ = BaSO4

Ионные реакции протекают практически необратимо, если образуются:

  1. малорастворимые вещества (они выпадают в осадок),
  2. легколетучие вещества (они выделяются в виде газов)
  3. слабые электролиты (в том числе и вода).

В ионных уравнениях:

  • электролиты записывают в ионном виде;
  • неэлектролиты и слабые электролиты ― в молекулярном виде;
  • в ионном уравнении сумма зарядов ионов в левой части и правой части равны.

Реакции ионного обмена — реакции в водных растворах между электролитами, протекающие без изменений степеней окисления образующих их элементов.

Необходимым условием протекания реакции между электролитами (солями, кислотами и основаниями) является образование малодиссоциирующего вещества (вода, слабая кислота, гидроксид аммония), осадка или газа.

Расcмотрим реакцию, в результате которой образуется вода. К таким реакциям относятся все реакции между любой кислотой и любым основанием. Например, взаимодействие азотной кислоты с гидроксидом калия:

HNO3 + KOH = KNO3 + H2O (1)

Исходные вещества, т.е. азотная кислота и гидроксид калия, а также один из продуктов, а именно нитрат калия, являются сильными электролитами, т.е. в водном растворе они существуют практически только в виде ионов. Образовавшаяся вода относится к слабым электролитам, т.е. практически не распадается на ионы. Таким образом, более точно переписать уравнение выше можно, указав реальное состояние веществ в водном растворе, т.е. в виде ионов:

H+ + NO3 + K+ + OH = K+ + NO3 + H2O (2)

Как можно заметить из уравнения (2), что до реакции, что после в растворе находятся ионы NO3 и K+ . Другими словами, по сути, нитрат-ионы  и ионы калия никак не участвовали в реакции. Реакция произошла только благодаря объединению частиц H+ и OH в молекулы воды. Таким образом, произведя алгебраически сокращение одинаковых ионов в уравнении (2):

H+ + NO3 + K+ + OH = K+ + NO3 + H2O

мы получим:

H+ + OH = H2O (3)

Уравнения вида (3) называют сокращенными ионными уравнениями, вида (2) — полными ионными уравнениями, а вида (1) — молекулярными уравнениями реакций.

Фактически ионное уравнение реакции максимально отражает ее суть, именно то, благодаря чему становится возможным ее протекание. Следует отметить, что одному сокращенному ионному уравнению могут соответствовать множество различных реакций. Действительно, если взять, к примеру, не азотную кислоту, а соляную, а вместо гидроксида калия использовать, скажем, гидроксид бария, мы имеем следующее молекулярное уравнение реакции:

2HCl+ Ba(OH)2 = BaCl2 + 2H2O

Соляная кислота, гидроксид бария и хлорид бария являются сильными электролитами, то есть существуют в растворе преимущественно в виде ионов. Вода, как уже обсуждалось выше, – слабый электролит, то есть существует в растворе практически только в виде молекул. Таким образом, полное ионное уравнение данной реакции будет выглядеть следующим образом:

2H+ + 2Cl + Ba2+ + 2OH = Ba2+ + 2Cl + 2H2O

Сократим одинаковые ионы слева и справа и получим:

2H+ + 2OH = 2H2O

Разделив и левую и правую часть на 2, получим:

H+ + OH = H2O,

Полученное сокращенное ионное уравнение полностью совпадает с сокращенными ионным уравнением взаимодействия азотной кислоты и гидроксида калия.

При составлении ионных уравнений в виде ионов записывают только формулы:

1) сильных кислот  (HCl, HBr, HI, H2SO4, HNO3, HClO4 ) (список сильных кислот надо выучить!)

2) сильных оснований (гидроксиды щелочных (ЩМ) и щелочно-земельных металлов(ЩЗМ))

3) растворимых солей

В молекулярном виде записывают формулы:

1) Воды H2O

2) Слабых кислот (H2S, H2CO3, HF, HCN, CH3COOH (и др. практически все органические)).

3) Слабых оcнований (NH4OH  и практически все гидроксиды металлов кроме ЩМ и ЩЗМ.

4) Малорастворимых солей (↓) («М» или «Н» в таблице растворимости).

5) Оксидов (и др. веществ, не являющихся электролитами).

Попробуем записать уравнение между гидроксидом железа (III) и серной кислотой. В молекулярном виде уравнение их взаимодействия записывается следующим образом:

2Fe(OH)3+ 3H2SO4 = Fe2(SO4)3 + 6H2O

Гидроксиду железа (III) соответствует в таблице растворимости обозначение «Н», что говорит нам о его нерастворимости, т.е. в ионном уравнении его надо записывать целиком, т.е. как Fe(OH)3 . Серная кислота растворима и относится к сильным электролитам, то есть существует в растворе преимущественно в продиссоциированном состоянии. Сульфат железа (III), как и практически все другие соли, относится к сильным электролитам, и, поскольку он растворим в воде, в ионном уравнении его нужно писать в виде ионов. Учитывая все вышесказанное, получаем полное ионное уравнение следующего вида:

2Fe(OH)3 + 6H+ + 3SO42- = 2Fe3+ + 3SO42- + 6H2O

Сократив сульфат-ионы слева и справа, получаем:

2Fe(OH)3 + 6H+ = 2Fe3+ + 6H2O

разделив обе части уравнения на 2 получаем сокращенное ионное уравнение:

Fe(OH)3 + 3H+ = Fe3+ + 3H2O

Теперь давайте рассмотрим реакцию ионного обмена, в  результате которой образуется осадок. Например, взаимодействие двух растворимых солей :

Na2CO3 +  CaCl2 = CaCO3↓+  2NaCl

Все три соли – карбонат натрия, хлорид кальция, хлорид натрия и карбонат кальция (да-да, и он тоже) – относятся к сильным электролитам и все, кроме карбоната кальция, растворимы в воде, т.е. есть участвуют в данной реакции в виде ионов:

2Na+ + CO32- +  Ca2+ + 2Cl = CaCO3↓+  2Na+ + 2Cl

Сократив одинаковые ионы слева и справа в данном уравнении, получим сокращенное ионное:

CO32- + Ca2+  = CaCO3

Последнее уравнение отображает причину взаимодействия растворов карбоната натрия и хлорида кальция. Ионы кальция и карбонат-ионы объединяются в нейтральные молекулы карбоната кальция, которые, соединяясь друг с другом, порождают мелкие кристаллы осадка CaCO3 ионного строения.

Примечание важное для сдачи ЕГЭ по химии

Чтобы реакция соли1 с солью2 протекала, помимо базовых требований к протеканиям ионных реакций (газ, осадок или вода в продуктах реакции), на такие реакции накладывается еще одно требование – исходные соли должны быть растворимы.  То есть, например,

CuS + Fe(NO3)2 ≠ FeS + Cu(NO3)2

реакция не идет, хотя FeS – потенциально мог бы дать осадок, т.к. нерастворим. Причина того что реакция не идет – нерастворимость одной из исходных солей (CuS).

А вот, например,

Na2CO3 +  CaCl2 = CaCO3↓+  2NaCl

протекает, так как карбонат кальция нерастворим и исходные соли растворимы.

То же самое касается взаимодействия солей с основаниями. Помимо базовых требований к протеканию реакций ионного обмена, для того чтобы соль с основанием реагировали необходима растворимость их обоих. Таким образом:

Cu(OH)2 + Na2Sне протекает,

т.к. Cu(OH)2 нерастворим, хотя потенциальный продукт CuS был бы осадком.

А вот реакция между NaOH и Cu(NO3)2 протекает, так оба исходных вещества растворимы и дают осадок Cu(OH)2:

2NaOH + Cu(NO3)2 = Cu(OH)2 ↓+ 2NaNO3

Внимание! Ни в коем случае не распространяйте требование растворимости исходных веществ дальше реакций соль1+ соль2   и   соль + основание.

Например, с кислотами выполнение этого требования не обязательно. В частности, все растворимые кислоты прекрасно реагируют со всеми карбонатами, в том числе нерастворимыми.

Другими словами:

1) Соль1+ соль2 — реакция идет если исходные соли растворимы, а в продуктах есть осадок

2) Соль + гидроксид металла – реакция идет, если в исходные вещества растворимы и в продуктах есть осадок или гидроксид аммония.

Рассмотрим третье условие протекания реакций ионного обмена – образование газа. Строго говоря, только в результате ионного обмена образование газа возможно лишь в редких случаях, например, при образовании газообразного сероводорода:

K2S + 2HBr = 2KBr + H2S↑

В большинстве же остальных случаев газ образуется в результате разложения одного из продуктов реакции ионного обмена. Например, нужно точно знать в рамках ЕГЭ, что с образованием газа в виду неустойчивости разлагаются такие продукты, как H2CO3, NH4OH и H2SO3:

H2CO3 = H2O + CO2

NH4OH = H2O + NH3

H2SO3 = H2O + SO2

Другими словами, если в результате ионного обмена образуются угольная кислота, гидроксид аммония или сернистая кислота, реакция ионного обмена протекает благодаря образованию газообразного продукта:

Na2CO3 + H2SO4 = Na2SO4 + H2O + CO2

NH4NO3 + KOH = KNO3 + H2O + NH3

Na2SO3 + 2HCl = 2NaCl + H2O + SO2

Запишем ионные уравнения для всех указанных выше реакций, приводящих к образованию газов. 1) Для реакции:

K2S + 2HBr = 2KBr + H2S↑

В ионном виде будут записываться сульфид калия и бромид калия, т.к. являются растворимыми солями, а также бромоводородная кислота, т.к. относится к сильным кислотам. Сероводород же, являясь малорастворимым и плохо диссоциирцющим на ионы газом, запишется в молекулярном виде:

2K+ + S2- + 2H+  + 2Br = 2K+ + 2Br + H2S↑

Сократив одинаковые ионы получаем:

S2- + 2H+ = H2S↑

2) Для уравнения:

Na2CO3 + H2SO4 = Na2SO4 + H2O + CO2

В ионном виде запишутся Na2CO3, Na2SO4 как хорошо растворимые соли и H2SO4 как сильная кислота. Вода является малодиссоциирующим веществом, а CO2 и вовсе неэлектролит, поэтому их формулы будут записываться в молекулярном виде:

2Na+ + CO32- + 2H + + SO42- = 2Na+ + SO42 + H2O + CO2

CO32- + 2H + = H2O + CO2

3) для уравнения:

NH4NO3 + KOH = KNO3 + H2O + NH3

Молекулы воды и аммиака запишутся целиком, а NH4NO3, KNO3 и KOH запишутся в ионном виде , т.к. все нитраты являются хорошо растворимыми солями, а KOH является гидроксидом щелочного металла, т.е. сильным основанием:

NH4+ + NO3+ K+ + OH = K+ + NO3 + H2O + NH3

NH4+ + OH = H2O + NH3

Для уравнения:

Na2SO3 + 2HCl = 2NaCl + H2O + SO2

Полное и сокращенное уравнение будут иметь вид:

2Na+ + SO32- + 2H+ + 2Cl = 2Na+ + 2Cl + H2O + SO2

SO32- + 2H+ = H2O + SO2

Автор: С.И. Широкопояс https://scienceforyou.ru/

Понравилась статья? Поделить с друзьями:
  • Реакции ионного обмена егэ химия 2023
  • Реально ли сдать егэ на 100 баллов за год
  • Реакции ионного обмена 11 класс егэ
  • Реально ли сдать егэ на 100 баллов без репетиторов
  • Реакции замещения в органической химии егэ