- О сайте
- Карта сайта
- Пользовательское соглашение
- Политика конфиденциальности
© 2020-2023, ege314.ru, ОГЭ и ЕГЭ по математике | Генератор вариантов ЕГЭ 2023.
Частичное или полное копирование решений (включая графические элементы) с данного сайта для распространения на других ресурсах, в том числе и бумажных, строго запрещено. Все решения являются собственностью сайта.
3655 | Площадь трапеции ABCD равна 30. Точка Р – середина боковой стороны АВ. Точка R на боковой стороне CD выбрана так, что 2CD=3RD. Прямые AR и PD пересекаются в точке Q , AD=2BC. a) Докажите, что точка Q – середина отрезка AR б) Найдите площадь треугольника APQ Решение |
Площадь трапеции ABCD равна 30. Точка Р – середина боковой стороны АВ. Точка R на боковой стороне CD выбрана так, что 2CD=3RD ! Тренировочный вариант 221 от Ларина Задание 16 # Решение пункта Б | |
3471 | а) Решите уравнение cos(3x)/(2sin(x)+sqrt(2))=sin(x)/(2sin(x)+sqrt(2)) б) Найдите все корни уравнения, принадлежащие отрезку [0; pi]. Решение График |
а) Решите уравнение cos3x /(2sinx + sqrt2 = sinx /2sinx +sqrt2 ! Тренировочный вариант 399 от Ларина Задание 12 | |
3470 | В основании пирамиды лежит параллелограмм со сторонами 8 и 10, а его большая диагональ равна 2sqrt73. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 4. а) Докажите, что две боковые грани являются прямоугольными треугольниками. б) Найдите площади двух других боковых граней Решение |
В основании пирамиды лежит параллелограмм со сторонами 8 и 10, а его большая диагональ равна 2sqrt73 ! Тренировочный вариант 399 от Ларина Задание 13 | |
3469 | Решите неравенство 64^x/(36^x-27^x)+(4(16^x-12^x))/(16^x-2*12^x+9^x). <= 16^(x+0.5)/(12^x-9^x). Решение График |
Решите неравенство 64^x / 36^x -27^x +4(16^x-12^x) /16^x -2*12^x+9^x <= 16^ x+0,5 / 12^x-9^x ! Тренировочный вариант 399 от Ларина Задание 14 |
|
3468 | На сторонах АВ, ВС и АD квадрата ABCD взяты соответственно точки М, К и N, такие, что АМ : МВ = 3 : 1, ВК : КС = 2 : 1 и АN : ND = 1 : 2. а) Докажите, что площадь четырехугольника МКСN составляет 11/24 площади квадрата ABCD. б) Найдите синус угла между диагоналями четырехугольника МКCN Решение |
На сторонах АВ, ВС и АD квадрата ABCD взяты соответственно точки М, К и N, такие, что АМ : МВ = 3 : 1, ВК : КС = 2 : 1 и АN : ND = 1 : 2 ! Тренировочный вариант 399 от Ларина Задание 16 | |
3467 | В трапеции АВСD боковая сторона CD перпендикулярна основаниям AD и ВС. В эту трапецию вписали окружность с центром О. Прямая АО пересекает продолжение отрезка ВС в точке Е а) Докажите, что AD=CE+CD б) Найдите площадь трапеции ABCD, если АЕ=10, /_BAD=60^@ Решение |
В трапеции АВСD боковая сторона CD перпендикулярна основаниям AD и ВС ! Тренировочный вариант 398 от Ларина Задание 16 | |
3466 | Найдите значение выражения ((root(4)(3)-root(4)(27))^2+7)((root(4)(3)+root(4)(27))^2-7) Решение |
Найдите значение выражения ((root(4)(3) -root(4)(27))2 +7 ((root(4)(3)+root(4)(27))2 -7) ! Тренировочный вариант 398 от Ларина Задание 6 | |
3465 | Имеются два сплава, состоящие из цинка, меди и олова. Известно, что первый сплав содержит 40% олова, а второй ‐ 25% меди. Процентное содержание цинка в первом и втором сплавах одинаково. Соединив 150 кг первого сплава и 250 кг второго, получили новый сплав, в котором оказалось 30% цинка. Сколько килограммов олова содержится в получившемся сплаве? Решение |
Имеются два сплава, состоящие из цинка, меди и олова ! Тренировочный вариант 398 от Ларина Задание 9 | |
3464 | а) Решите уравнение sqrt(2sin(x)+sqrt(2))*log_{4}(2cos(x))=0 б) Найдите все корни уравнения, принадлежащие отрезку [-(5pi)/2; -pi]. Решение График |
а) Решите уравнение sqrt(2sinx +sqrt2) log4 2cosx = 0 ! Тренировочный вариант 398 от Ларина Задание 12 | |
3463 | SMNK – правильный тетраэдр. На ребре SK отмечена точка Р такая, что КР:PS=1:3, точка L – середина ребра MN. а) Доказать, что плоскости SLK и MPN перпендикулярны б) Найдите длину отрезка PL, если длина ребра MN равна 4 Решение |
SMNK – правильный тетраэдр ! Тренировочный вариант 398 от Ларина Задание 13 | |
Показать ещё…
Показана страница 1 из 89
Задание №01 Найдите значение выражения: Решение Ответ: -2.25. Задание №02. Решение варианта №207 ОГЭ по математике Отправление от ст. Нара Прибытие на Киевский вокзал 06:37 07:59 07:02 08:06
Планиметрия (сложный уровень) Продолжение высоты ВН пересекает описанную вокруг треугольника АВС окружность w в точке D, при этом BD=BC.На луче BD за точку D отмечена точка Е такая, что
Неравенства (вторая часть) Показательные неравенства Решите неравенство: Решение Ответ: x∈0∪(log32;1)
Стереометрия (средний уровень) В окружность нижнего основания цилиндра с высотой 2 вписан правильный треугольник АВС со стороной √3 . В окружность верхнего основания вписан правильный треугольник А1В1С1 так, что он
Какие из следующих утверждений верны? Смежные углы всегда равны. Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой. Любые два равносторонних треугольника подобны. В
Год 2018 2019 2020 2021 Долг, тыс. руб. S 0,7S 0,4S 0 В июле планируется взять кредит в банке в размере S тыс. рублей (S – натуральное число)
Четырехугольник ABCD таков, что около него можно описать окружность и в него можно вписать окружность. Разность длин сторон AD и BC равна разности сторон АВ и СD. Докажите,
Вещество Дети от 1 года до 14 лет Мужчины Женщины Жиры 40—97 70—154 60—102 Белки 36—87 65—117 58—87 Углеводы 170—420 257—586 В таблице даны рекомендуемые суточные нормы потребления
На сторонах AB, BC, CD и DA параллелограмма ABCD взяты соответственно точки M, N, K и L, причём AM : MB = CK : KD = ½, а
В треугольнике ABC на стороне AC как на диаметре построена окружность, которая пересекает сторону AB в точке M, а сторону BC – в точке N. Известно, что AC=2,