Решебник ященко егэ 2023 математика профиль 36 вариантов ответы с решением фипи скачать бесплатно

Решение 36 варианта ЕГЭ профильного уровня из сборника 36 вариантов Ященко 2023

Скачать сборник в pdf

Острые углы прямоугольного треугольника равны 80° и 10°. Найдите угол между биссектрисой и медианой, проведёнными из вершины прямого угла. Ответ дайте в градусах.

Объём треугольной призмы, отсекаемой от куба плоскостью, проходящей через середины двух рёбер, выходящих из одной вершины, и параллельной третьему ребру, выходящему из этой же вершины, равен 11. Найдите объём куба.

картинка

В сборнике билетов по философии всего 50 билетов, в 6 из них встречается вопрос по теме «Кант». Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по теме «Кант».

Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень даётся не более двух выстрелов. Известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,8. Во сколько раз вероятность события «стрелок поразит ровно четыре мишени» больше вероятности события «стрелок поразит ровно три мишени»?

Найдите корень уравнения (log_{5}{(x+7)}=log_{5}(5-x)-1).

Найдите значение выражения (dfrac{20}{(2sqrt{2})^2}).

Прямая (y=6x+7) параллельна касательной к графику функции (y=x^2-5x+6). Найдите абсциссу точки касания.

При адиабатическом процессе для идеального газа выполняется закон (pV^k=7{,}776cdot10^6,Паcdotм^4), где (p) – давление в газе в паскалях, (V) – объём газа в кубических метрах, (k=dfrac{4}{3}). Найдите, какой объём (V) (в куб. м) будет занимать газ при давлении (p), равном (3,75cdot10^6,Па)

Теплоход, скорость которого в неподвижной воде равна 16 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 2 км/ч, стоянка длится 5 часов, а в исходный пункт теплоход возвращается через 53 часа после отплытия из него. Сколько километров прошёл теплоход за весь рейс?

На рисунке изображены графики функций (f(x)=dfrac{k}{x}) и (g(x)=ax+b), которые пересекаются в точках А и В. Найдите ординту точки В.

картинка

Найдите точку минимума функции (y=-dfrac{x}{x^2+900}).

а) Решите уравнение (4sin^4x+7cos^2x-4=0)

б) Найдите все корни этого уравнения, принадлежащие отрезку ([-5pi; -4pi]).

Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.

а)

1. 2πn, n∈Z 2. π/6+2πn, n∈Z 3. π/4+2πn, n∈Z 4. π/3+2πn, n∈Z
5. π/2+2πn, n∈Z 6. 2π/3+2πn, n∈Z 7. 3π/4+2πn, n∈Z 8. 5π/6+2πn, n∈Z
9. π+2πn, n∈Z 10. -π/6+2πn, n∈Z 11. -π/4+2πn, n∈Z 12. -π/3+2πn, n∈Z
13. -π/2+2πn, n∈Z 14. -2π/3+2πn, n∈Z 15. -3π/4+2πn, n∈Z 16. -5π/6+2πn, n∈Z

б)

17. -5π 18. -29π/6 19. -19π/4 20. -14π/3
21. -9π/2 22. -13π/3 23. -17π/4 24. -25π/6
25. -4π 26. -23π/6 27. -15π/4 28. -11π/3
29. -7π/2

Основанием пирамиды (FABC) является правильный треугольник (ABC) со стороной (48). Все боковые рёбра пирамиды равны (40). На рёбрах (FB) и (FC) отмечены соответственно точки (K) и (N) так, что (FK=FN=10). Через точки (K) и (N) проведена плоскость (alpha), перпендикулярная плоскости (ABC).
а) Докажите, что плоскость (alpha) делит медиану (AM) в отношении (1:3).
б) Найдите расстояние от точки (C) до плоскости (alpha).

Решите неравенство (3log^2_{4}{(4-x)^8}+4log_{0{,}5}{(4-x)^6}geqslant72)

15 декабря планируется взять кредит в банке на сумму 1 000 000 рублей на (n+1) месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по n-й долг должен быть на 40 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— 15-го числа n-го месяца долг составит 200 тысяч рублей;
— к 15-му числу (n+1)-го месяца кредит должен быть полностью погашен.
Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1 378 тысяч рублей.

В треугольнике (ABC) известно, что (AC=26) и (AB=BC=38).
а) Докажите, что средняя линия треугольника, параллельная стороне (AC), пересекает окружность, вписанную в треугольник (ABC).
б) Найдите отношение длин отрезков, на которые окружность делит среднюю линию, параллельную стороне (AC).

Найдите все значения параметра (a), при каждом из которых любое значение из промежутка ([-1{,}5;-0{,}5]) является решением неравенства ((4|x|-a-3)(x^2-2x-2-a)geqslant0).

Группу детей можно перевезти автобусами модели А или автобусами модели Б. Известно, что в автобусе модели А количество мест больше 40, но меньше 50, а в автобусах модели Б — больше 50, но меньше 60. Если всех детей рассадить в автобусы модели А, то все места будут заняты. Если всех детей рассадить в автобусы модели Б, то все места также будут заняты, но потребуется на один автобус меньше.
а) Может ли потребоваться 4 автобуса модели Б?
б) Найдите наибольшее возможное количество детей в группе, если известно, что их меньше 300.
в) Найдите наибольшее возможное количество автобусов модели А.

Введите ответ в форме строки «да;123;1234». Где ответы на пункты разделены «;», и первый ответ с маленькой буквы.

Решение и ответы заданий Варианта №1 из сборника ЕГЭ 2023 по математике (профильный уровень) И.В. Ященко. ГДЗ профиль для 11 класса. Полный разбор.

❗Задания №13,16 долго оформлять, решу их позже, если будет время и желание.
Решены те задания, у которых кнопка «Смотреть решение» зелёная.

Задание 1.
Боковые стороны трапеции, описанной около окружности, равны 7 и 4. Найдите среднюю линию трапеции.

Боковые стороны трапеции, описанной около окружности, равны 7 и 4.

Задание 2.
Цилиндр вписан в прямоугольный параллелепипед. Радиус основания и высота цилиндра равны 8. Найдите объём параллелепипеда.

Цилиндр вписан в правильный параллелепипед.

Задание 3.
Вероятность того, что на тестировании по физике учащийся К. верно решит больше 9 задач, равна 0,79. Вероятность того, что К. верно решит больше 8 задач, равна 0,85. Найдите вероятность того, что К. верно решит ровно 9 задач.

Задание 4.
При выпечке хлеба производится контрольное взвешивание свежей буханки. Известно, что вероятность того, что масса окажется меньше 810 г, равна 0,96. Вероятность того, что масса окажется больше 790 г, равна 0,93. Найдите вероятность того, что масса буханки больше 790 г, но меньше 810 г.

Задание 5.
Найдите корень уравнения log3 (5 – 2x) = log3 (1 – 4x) + 1.

Задание 6.
Найдите значение выражения frac{sin126^{circ }}{4sin63^{circ }sin27^{circ }}.

Задание 7.
На рисунке изображён график y = f′(x) – производной функции f(x), определенной на интервале (−2; 20). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [1; 15].

На рисунке изображён график y = f′(x) – производной функции f(x), определенной на интервале (−2; 20).

Задание 8.
При адиабатическом процессе для идеального газа выполняется закон pVk = 1,3122·107 Па·м4, где p –давление в газе в паскалях, V – объём газа в кубических метрах, k = frac{4}{3}. Найдите, какой объём V (в куб. м) будет занимать газ при давлении p, равном 1,25·106 Па.

Задание 9.
Моторная лодка прошла против течения реки 96 км и вернулась в пункт отправления, затратив на обратный путь на 4 часа меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 10 км/ч. Ответ дайте в км/ч.

Задание 10.
На рисунке изображены части графиков функций f(x)=frac{k}{x} и g(x)=frac{c}{x}+d. Найдите ординату точки пересечения графиков этих функций.
Решение Ященко ЕГЭ 2023 (профиль) Вариант №1 (36 вариантов) Математика

Задание 11.
Найдите наименьшее значение функции y = xx − 27x + 6 на отрезке [1; 422].

Задание 12.
а) Решите уравнение 2sin2x – 3cos(–x) – 3 = 0.
б) Найдите все корни этого уравнения, принадлежащие отрезку [2pi;frac{7pi}{2}].

Задание 13.
В основании пирамиды SABCD лежит трапеция ABCD с большим основанием AD. Диагонали пересекаются в точке O. Точки M и N – середины боковых сторон AB и CD соответственно. Плоскость α проходит через точки M и N параллельно прямой SO.

а) Докажите, что сечение пирамиды SABCD плоскостью α является трапецией.
б) Найдите площадь сечения пирамиды SABCD плоскостью α, если AD = 9, BC = 7, SO = 6, а прямая SO перпендикулярна прямой AD.

Задание 14.
Решите неравенство 4^{x}+frac{112}{4^{x}–32}le 0.

Задание 15.
В июле 2027 года планируется взять кредит на три года в размере 1200 тыс. рублей. Условия его возврата таковы:
– каждый январь долг будет возрастать на 10% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
– платежи в 2028 и 2029 годах должны быть равными;
– к июлю 2030 года долг должен быть выплачен полностью.
Известно, что платёж в 2030 году составит 673,2 тыс. рублей. Сколько рублей составит платёж в 2028 году?

Задание 16.
В параллелограмме ABCD угол BAC вдвое больше угла CAD. Биссектриса угла BAC пересекает отрезок BC в точке L. На продолжении стороны CD за точку D выбрана такая точка E, что AE = CE.
а) Докажите, что AL·AC = AB·ВC.
б) Найдите EL, если AC = 21, tg∠BCA = 0,4.

Задание 17.
Найдите все значения a, при каждом из которых уравнение

(a – x)2 + 4a + 1 = (2x + 1)2 – 8|x|

имеет четыре различных корня.

Задание 18.
Есть три коробки: в первой коробке 112 камней, во второй – 99, в третья – пустая. За один ход берут по одному камню из любых двух коробок и кладут в оставшуюся. Сделали некоторое количество таких ходов.
а) Могло ли в первой коробке оказаться 103 камня, во второй – 99, в третьей – 9?
б) Могло ли в третьей коробке оказаться 211 камней?
в) Во второй коробке оказалось 4 камня. Какое наибольшее число камней могло оказаться в третьей коробке?

Источник варианта: Сборник ЕГЭ 2023. ФИПИ школе. Математика профильный уровень. Типовые экзаменационные варианты. Под редакцией И.В. Ященко. 36 вариантов.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4.9 / 5. Количество оценок: 20

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

Ответы к 36 вариантам профильного ЕГЭ по математике. Сборник ЕГЭ-2023 «Типовые экзаменационные варианты».

Вариант 1

1) 5,5
2) 2048
3) 0,06
4) 0,89
5) -0,2
6) 0,5
7) 5
8) 5,832
9) 2
10) -4
11) -2910

Ответы к сборнику Ященко ЕГЭ-2023 36 вариантов

Вариант 2

1) 7,5
2) 4
3) 0,12
4) 0,91
5) -0,9
6) 0,2
7) 1
8) 0,216
9) 16
10) -8
11) 12,25 

Вариант 3

1) 2,5
2) 30
3) 0,37
4) 0,375
5) -2,5
6) 4
7) 2
8) 51,2
9) 14
10) 32
11) 204 

Вариант 4

1) 1,5
2) 12
3) 0,24
4) 0,125.
5) 0,375
6) 125
7) 8
8) 281,25
9) 18
10) -56
11) -10,9 

Вариант 5

1) 99,5
2) 12
3) 0,004 /или/ -0,004
4) 0,9409
5) -0,5
6) 2
7) -19
8) 60
9) 17
10) 16
11) -52 

Вариант 6

1) 55
2) 18
3) 0,006 /или/ -0,006
4) 0,8464
5) -5,5
6) 3
7) -4
8) 30
9) 24
10) -1
11) -6 

Вариант 7

1) 0,2
2) 10
3) 0,2
4) 0,56
5) -0,4
6) -1
7) 9
8) 0,6
9) 55
10) 6
11) 0,5 

Вариант 8

1) 0,4
2) 5
3) 0,125
4) 0,46
5) -7
6) -1
7) 7
8) 1,8
9) 11
10) 0,25
11) 17 

Вариант 9

1) 3
2) 15 625
3) 0,01
4) 0,28
5) -12
6) 144
7) -1
8) 756
9) 20
10) -3
11) 9 

Вариант 10

1) 0,6
2) 150
3) 0,28
4) 0,17
5) -2,6
6) 625
7) -18
8) 220,5
9) 9
10) 253
11) -23,25 

Вариант 11

1) -0,7
2) 72
3) 0,25
4) 0,043
5) -0,2
6) -5
7) -1
8) 50
9) 17,5
10) 78
11) 6,75 

Вариант 12

1) 0,75
2) 24
3) 0,55
4) 0,02
5) -1,5
6) -4
7) 4
8) 40
9) 13,5
10) -23
11) 6,25 

Вариант 13

1) 8
2) 48
3) 0,4
4) 0,6
5) -9
6) 0,5
7) 4
8) 33
9) 9
10) -0,5
11) 77 

Вариант 14

1) 14
2) 40,5
3) 0,28
4) 0,78
5) -2
6) 0,04
7) 39
8) 23
9) 24
10) 0,4
11) 37 

Вариант 15

1) 11,55
2) 432
3) 0,014
4) 0,06
5) -9
6) 0,25
7) 2
8) 0,32
9) 3
10) 2,5
11) 208 

Вариант 16

1) 12
2) 192
3) 0,29
4) 0,02
5) -8
6) 0,125
7) 4
8) 1,16
9) 1
10) -15
11) 5 

Вариант 17

1) 10
2) 80
3) 0,08
4) 0,2
5) -2,5
6) 216
7) -2
8) 175
9) 18
10) 16
11) -24 

Вариант 18

1) 35
2) 10
3) 0,2
4) 0,24
5) -0,2
6) 3,5
7) 28
8) 43,75
9) 21
10) 2,25
11) -15 

Вариант 19

1) 2,5
2) 7,28
3) 0,25
4) 0,22
5) -1,5
6) 1
7) 0,2
8) 115
9) 135
10) 2
11) -34 

Вариант 20

1) 6
2) 7,68
3) 0,75
4) 0,27
5) -4,5
6) 10
7) -0,25
8) 220
9) 52
10) 27
11) 0 

Вариант 21

1) 113
2) 60
3) 0,2
4) 0,973
5) 5,5
6) 324
7) 2
8) 6250
9) 14
10) 15
11) 7 

Вариант 22

1) 0,75
2) 45
3) 0,3
4) 0,9744
5) 11
6) -7,5
7) 7
8) 1,3
9) 5
10) 3,4
11) 1,2 

Вариант 23

1) 62
2) 25
3) 0,25
4) 0,3
5) -2
6) 80
7) 6
8) 60
9) 75
10) 28
11) 18 

Вариант 24

1) 78
2) 20
3) 0,2
4) 0,82
5) 0
6) 28
7) 6
8) 30
9) 10
10) -28
11) -2 

Вариант 25

1) 37
2) 135
3) 0,18
4) 3
5) 0,8
6) 0,4
7) -0,2
8) 6
9) 1 35
10) -0,4
11) 14 

Вариант 26

1) 53
2) 72
3) 0,38
4) 5
5) -4
6) -0,3
7) -0,75
8) 96
9) 28
10) -13
11) 1 

Вариант 27

1) 29
2) 315
3) 0,14
4) 0,03
5) 4
6) 2,72
7) 6
8) 7
9) 77
10) 76
11) -3 

Вариант 28

1) 6
2) 176
3) 0,375
4) 0,012
5) -1
6) -3
7) -3
8) 28
9) 6
10) -5
11) 38 

Вариант 29

1) 60
2) 18
3) 0,24
4) 0,2
5) 3
6) 4
7) 4
8) 6,5
9) 6,4
10) 67
11) -21 

Вариант 30

1) 64
2) 4
3) 0,28
4) 0,6
5) 4
6) 8
7) 14
8) 9,6
9) 22
10) 3
11) -8 

Вариант 31

1) 6,5
2) 54
3) 0,98
4) 0,2
5) 2
6) -10
7) 2
8) 25
9) 54
10) -7
11) 8 

Вариант 32

1) 30
2) 27
3) 0,024
4) 0,15
5) -2
6) 91
7) 3
8) 17
9) 12
10) 13
11) -9 

Вариант 33

1) 72,5
2) 47
3) 0,28
4) 0,097
5) -5
6) 65
7) 3
8) 8
9) 48
10) -2,5
11) 26  

Вариант 34

1) 68
2) 76
3) 0,16
4) 0,068
5) 6
6) 16
7) 6
8) 633
9) 64
10) -0,25
11) -1 

Вариант 35

1) 21
2) 200
3) 0,56
4) 0,9
5) -2
6) 7,5
7) 0,5
8) 0,31
9) 20
10) 0,75
11) 9 

Вариант 36

1) 35
2) 88
3) 0,12
4) 12
5) -5
6) 2,5
7) 5,5
8) 1,728
9) 756
10) -0,5
11) 30

Задание 1

Боковые стороны трапеции, описанной около окружности, равны 7 и 4. Найдите среднюю линию трапеции.

Ответ: 5,5

Скрыть

Задание 2

Цилиндр вписан в прямоугольный параллелепипед. Радиус основания и высота цилиндра равны 8. Найдите объём параллелепипеда.

Ответ: 2048

Скрыть

Задание 3

Вероятность того, что на тестировании по физике учащийся К. верно решит больше 9 задач, равна 0,79. Вероятность того, что К. верно решит больше 8 задач, равна 0,85. Найдите вероятность того, что К. верно решит ровно 9 задач.

Ответ: 0,06

Скрыть

Задание 4

При выпечке хлеба производится контрольное взвешивание свежей буханки. Известно, что вероятность того, что масса окажется меньше, чем 810 г, равна 0,96. Вероятность того, что масса окажется больше, чем 790 г, равна 0,93. Найдите вероятность того, что масса буханки больше, чем 790 г, но меньше, чем 810 г.

Ответ: 0,89

Скрыть

Задание 5

Найдите корень уравнения $$log_3(5-2x)=log_3(1-4x)+1$$

Ответ: -0,2

Скрыть

Задание 6

Найдите значение выражения $$frac{sin 126^{circ}}{4sin 63^{circ}cdot sin 27^{circ}}$$

Ответ: 0,5

Скрыть

Задание 7

На рисунке изображён график $$y=f'(x)$$ — производной функции $$f(x)$$, определённой на интервале $$(-2;20)$$. Найдите количество точек экстремума функции $$f(x)$$, принадлежащих отрезку $$[1;15]$$.

Ответ: 5

Скрыть

Задание 8

При адиабатическом процессе для идеального газа выполняется закон $$pV^k=1,3122cdot 10^7$$ Па$$cdot$$м4, где $$p$$ — давление в газе в паскалях, $$V$$ — объём газа в в кубических метрах, $$k=frac{4}{3}$$. Найдите, какой объём $$V$$ (в куб. м) будет занимать газ при давлении $$p$$, равном $$1,25cdot 10^6$$ Па.

Ответ: 5,832

Скрыть

Задание 9

Моторная лодка прошла против течения реки 96 км и вернулась в. пункт отправления, затратив на обратный путь на 4 часа меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 10 км/ч. Ответ дайте в км/ч.

Ответ: 2

Скрыть

Задание 10

На рисунке изображены части графиков функций $$f(x)=frac{k}{x}$$ и $$g(x)=frac{c}{x}+d$$. Найдите ординату точки пересечения графиков этих функций.

Ответ: -4

Скрыть

Задание 11

Найдите наименьшее значение функции $$y=xsqrt{x}-27x+6$$ на отрезке $$[1;422]$$

Ответ: -2910

Скрыть

Задание 12

а) Решите уравнение $$2sin^{2}x-3cos(-x)-3=0$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $$[2pi;frac{7pi}{2}]$$

Ответ: а)$$pi+2pi k; pmfrac{2pi}{3}+2pi n, n,k in Z$$ б)$$frac{8pi}{3};3pi; frac{10pi}{3}$$

Скрыть

Задание 13

В основании пирамиды $$SABCD$$ лежит трапеция $$ABCD$$ с большим основанием $$AD$$. Диагонали трапеции пересекаются в точке $$O$$. Точки $$M$$ и $$$$ — середины боковых сторон $$AB$$ и $$CD$$ соответственно. Плоскость $$alpha$$ проходит через точки $$M$$ и $$N$$ параллельно прямой $$SO$$.

а) Докажите, что сечение пирамиды $$SABCD$$ плоскостью $$alpha$$ является трапецией.

б) Найдите площадь сечения пирамиды $$SABCD$$ плоскостью $$alpha$$, если $$AD=9$$, $$BC=7$$, $$SO=6$$, а прямая $$SO$$ перпендикулярна прямой $$AD$$.

Ответ: 24

Скрыть

Задание 14

Решите неравенство $$4^x+frac{112}{4^{x}-32}leq 0$$

Ответ: $$(-infty;1];[log_{4} 28;2,5)$$

Скрыть

Задание 15

В июле 2027 года планируется взять кредит на три года в размере 1200 тыс. рублей. Условия его возврата таковы:

— каждый январь долг будет возрастать на 10 % по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;

— платежи в 2028 и 2029 годах должны быть равными;

— к июлю 2030 года долг должен быть выплачен полностью.

Известно, что платёж в 2030 году составит 673,2 тыс. рублей. Сколько рублей составит платёж 2028 года?

Ответ: 400 тыс. руб.

Скрыть

Задание 16

В параллелограмме $$ABCD$$ угол $$BAC$$ вдвое больше угла $$CAD$$. Биссектриса угла $$BAC$$ пересекает отрезок $$BC$$ в точке $$L$$. На продолжении стороны $$CD$$ за точку $$D$$ выбрана такая точка $$E$$, что $$AE=CE$$.

а) Докажите, что $$AL:AC=AB:BC$$.

б) Найдите $$EL$$, если $$AC=21$$, $$tgangle BCA=0,4$$.

Ответ: 14,2

Скрыть

Задание 17

Найдите все значения $$a$$, при каждом из которых уравнение $$(a-x)^2+4a+1=(2x+1)^2-8|x|$$ имеет четыре различных корня.

Ответ: (-4;-3);(-3;-1);(-1;0)

Скрыть

Задание 18

Есть три коробки: в первой коробке 112 камней, во второй — 99, а третья — пустая. За один ход берут по одному камню из любых двух коробок и кладут в оставшуюся. Сделали некоторое количество таких ходов.

а) Могло ли в первой коробке оказаться 103 камня, во второй — 99, а в третьей — 9?

б) Могло ли в третьей коробке оказаться 211 камней?

в) Во второй коробке оказалось 4 камня. Какое наибольшее число камней могло оказаться в третьей коробке?

Ответ: а)да б)нет в)195

Скрыть

Сборник Ященко 2023 представляет собой 36 типовых экзаменационных вариантов по ЕГЭ и ответы. Скачать на этом сайте бесплатно. Так же есть все ответы Ященко

Ященко ЕГЭ 2023 математика 36 вариантов

Данный сборник включает в себя 36 вариантов экзаменационных вариантов, Которые были составлены С проектом КИМ ЕГЭ по математике профильного уровня 2023 года. Так же в этом учебнике есть инструкция по выполнению экзаменационной работы.

Скачать сборник Ященко ЕГЭ 2023 в формате PDF можно бесплатно на этом сайте. Для этого нажмите на ссылку Скачать сборник Ященко ЕГЭ 2023 математика 36 вариантов чуть ниже:

Скачать сборник Ященко ЕГЭ 2023 математика 36 вариантов

Ну и конечно же после скачивания и просмотра сборника Ященко ЕГЭ 2023 у вас могут возникнуть вопросы по решению 36 вариантов с задачами. Для того чтобы вы смогли проверить правильность своих решений я подготовил для вас ответы ко всем 36 вариантам билетов. В любое время вы сможете вернуться на сайт САМ УЗНАЛ, чтобы проверить правильность своих решений. Так же вы можете добавить сайт САМ УЗНАЛ в закладки своего браузера, чтобы в любое время время вы смогли вернуться и проверить полученные у вас ответы.

Полный список ответов на все 36 вариантов:

Ященко 1 вариант ответы

Вариант 1 огэ математика ященко 2023 ответы будут такие:

1) 5,5
2) 2048
3) 0,06
4) 0,89
5) -0,2
6) 0,5
7) 5
8) 5,832
9) 2
10) -4
11) -2910

Ященко 1 вариант ответы

Ященко вариант 2 ответы

1) 7,5
2) 4
3) 0,12
4) 0,91
5) -0,9
6) 0,2
7) 1
8) 0,216
9) 16
10) -8
11) 12,25 

Ященко вариант 2 ответы

Ященко вариант 3 ответы

1) 2,5
2) 30
3) 0,37
4) 0,375
5) -2,5
6) 4
7) 2
8) 51,2
9) 14
10) 32
11) 204 

Ященко вариант 3 ответы

Ященко вариант 4 ответы

1) 1,5
2) 12
3) 0,24
4) 0,125.
5) 0,375
6) 125
7) 8
8) 281,25
9) 18
10) -56
11) -10,9 

Ященко вариант 4 ответы

Ященко вариант 5 ответы

1) 99,5
2) 12
3) 0,004 /или/ -0,004
4) 0,9409
5) -0,5
6) 2
7) -19
8) 60
9) 17
10) 16
11) -52 

Ященко вариант 5 ответы

Ященко вариант 6 ответы

1) 55
2) 18
3) 0,006 /или/ -0,006
4) 0,8464
5) -5,5
6) 3
7) -4
8) 30
9) 24
10) -1
11) -6 

Ященко вариант 6 ответы

Ященко вариант 7 ответы

1) 0,2
2) 10
3) 0,2
4) 0,56
5) -0,4
6) -1
7) 9
8) 0,6
9) 55
10) 6
11) 0,5 

Ященко вариант 7 ответы

Ященко вариант 8 ответы

1) 0,4
2) 5
3) 0,125
4) 0,46
5) -7
6) -1
7) 7
8) 1,8
9) 11
10) 0,25
11) 17

Ященко вариант 8 ответы

Ященко вариант 9 ответы

1) 3
2) 15 625
3) 0,01
4) 0,28
5) -12
6) 144
7) -1
8) 756
9) 20
10) -3
11) 9 

Ященко вариант 9 ответы

Ященко вариант 10 ответы

1) 0,6
2) 150
3) 0,28
4) 0,17
5) -2,6
6) 625
7) -18
8) 220,5
9) 9
10) 253
11) -23,25 

Ященко вариант 10 ответы

Ященко вариант 11 ответы

1) -0,7
2) 72
3) 0,25
4) 0,043
5) -0,2
6) -5
7) -1
8) 50
9) 17,5
10) 78
11) 6,75 

Ященко вариант 11 ответы

Ященко вариант 12 ответы

1) 0,75
2) 24
3) 0,55
4) 0,02
5) -1,5
6) -4
7) 4
8) 40
9) 13,5
10) -23
11) 6,25 

Ященко вариант 12 ответы

Ященко вариант 13 ответы

1) 8
2) 48
3) 0,4
4) 0,6
5) -9
6) 0,5
7) 4
8) 33
9) 9
10) -0,5
11) 77 

Ященко вариант 13 ответы

Ященко вариант 14 ответы

1) 14
2) 40,5
3) 0,28
4) 0,78
5) -2
6) 0,04
7) 39
8) 23
9) 24
10) 0,4
11) 37 

Ященко вариант 14 ответы

Ященко вариант 15 ответы

1) 11,55
2) 432
3) 0,014
4) 0,06
5) -9
6) 0,25
7) 2
8) 0,32
9) 3
10) 2,5
11) 208

Ященко вариант 15 ответы

Ященко вариант 16 ответы

1) 12
2) 192
3) 0,29
4) 0,02
5) -8
6) 0,125
7) 4
8) 1,16
9) 1
10) -15
11) 5 

Ященко вариант 16 ответы

Ященко вариант 17 ответы

1) 10
2) 80
3) 0,08
4) 0,2
5) -2,5
6) 216
7) -2
8) 175
9) 18
10) 16
11) -24 

Ященко вариант 17 ответы

Ященко вариант 18 ответы

1) 35
2) 10
3) 0,2
4) 0,24
5) -0,2
6) 3,5
7) 28
8) 43,75
9) 21
10) 2,25
11) -15 

Ященко вариант 18 ответы

Ященко вариант 19 ответы

1) 2,5
2) 7,28
3) 0,25
4) 0,22
5) -1,5
6) 1
7) 0,2
8) 115
9) 135
10) 2
11) -34 

Ященко вариант 19 ответы

Ященко вариант 20 ответы

1) 6
2) 7,68
3) 0,75
4) 0,27
5) -4,5
6) 10
7) -0,25
8) 220
9) 52
10) 27
11) 0 

Ященко вариант 20 ответы

Ященко вариант 21 ответы

1) 113
2) 60
3) 0,2
4) 0,973
5) 5,5
6) 324
7) 2
8) 6250
9) 14
10) 15
11) 7 

Ященко вариант 21 ответы

Ященко вариант 22 ответы

1) 0,75
2) 45
3) 0,3
4) 0,9744
5) 11
6) -7,5
7) 7
8) 1,3
9) 5
10) 3,4
11) 1,2 

Ященко вариант 22 ответы

Ященко вариант 23 ответы

1) 62
2) 25
3) 0,25
4) 0,3
5) -2
6) 80
7) 6
8) 60
9) 75
10) 28
11) 18 

Ященко вариант 23 ответы

Ященко вариант 24 ответы

1) 78
2) 20
3) 0,2
4) 0,82
5) 0
6) 28
7) 6
8) 30
9) 10
10) -28
11) -2 

Ященко вариант 24 ответы

Ященко вариант 25 ответы

1) 37
2) 135
3) 0,18
4) 3
5) 0,8
6) 0,4
7) -0,2
8) 6
9) 1 35
10) -0,4
11) 14 

Ященко вариант 25 ответы

Ященко вариант 26 ответы

1) 53
2) 72
3) 0,38
4) 5
5) -4
6) -0,3
7) -0,75
8) 96
9) 28
10) -13
11) 1 

Ященко вариант 26 ответы

Ященко вариант 27 ответы

1) 29
2) 315
3) 0,14
4) 0,03
5) 4
6) 2,72
7) 6
8) 7
9) 77
10) 76
11) -3 

Ященко вариант 27 ответы

Ященко вариант 28 ответы

1) 6
2) 176
3) 0,375
4) 0,012
5) -1
6) -3
7) -3
8) 28
9) 6
10) -5
11) 38 

Ященко вариант 28 ответы

Ященко вариант 29 ответы

1) 60
2) 18
3) 0,24
4) 0,2
5) 3
6) 4
7) 4
8) 6,5
9) 6,4
10) 67
11) -21 

Ященко вариант 29 ответы

Ященко вариант 30 ответы

1) 64
2) 4
3) 0,28
4) 0,6
5) 4
6) 8
7) 14
8) 9,6
9) 22
10) 3
11) -8 

Ященко вариант 30 ответы

Ященко вариант 31 ответы

1) 6,5
2) 54
3) 0,98
4) 0,2
5) 2
6) -10
7) 2
8) 25
9) 54
10) -7
11) 8 

Ященко вариант 31 ответы

Ященко вариант 32 ответы

1) 30
2) 27
3) 0,024
4) 0,15
5) -2
6) 91
7) 3
8) 17
9) 12
10) 13
11) -9 

Ященко вариант 32 ответы

Ященко вариант 33 ответы

1) 72,5
2) 47
3) 0,28
4) 0,097
5) -5
6) 65
7) 3
8) 8
9) 48
10) -2,5
11) 26  

Ященко вариант 33 ответы

Ященко вариант 34 ответы

1) 68
2) 76
3) 0,16
4) 0,068
5) 6
6) 16
7) 6
8) 633
9) 64
10) -0,25
11) -1 

Ященко вариант 34 ответы

Ященко вариант 35 ответы

1) 21
2) 200
3) 0,56
4) 0,9
5) -2
6) 7,5
7) 0,5
8) 0,31
9) 20
10) 0,75
11) 9 

Ященко вариант 35 ответы

Ященко вариант 36 ответы

1) 35
2) 88
3) 0,12
4) 12
5) -5
6) 2,5
7) 5,5
8) 1,728
9) 756
10) -0,5
11) 30

Ященко вариант 36 ответы

Надеюсь данный материал был вам полезен друзья! До новых встреч на сайте САМ УЗНАЛ.

Понравилась статья? Поделить с друзьями:
  • Решебник экзамен 9 класс математика беларусь
  • Решебник по сборнику задач по математике 9 класс экзамен 2022
  • Решебник по сборник заданий для выпускного экзамена по учебному предмету математика ii ступень
  • Решебник по русскому языку егэ 2023 цыбулько ответы
  • Решебник по русскому языку егэ 11 класс