Решение 18 номера егэ математика профиль


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более  дробь: числитель: 4, знаменатель: 13 конец дроби от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более  дробь: числитель: 2, знаменатель: 5 конец дроби от общего числа учащихся группы, посетивших кино.

а)  Могло ли быть в группе 10 мальчиков, если дополнительно известно, что всего в группе было 20 учащихся?

б)  Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 20 учащихся?

в)  Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов а) и б)?

Источник: ЕГЭ по математике 07.06.2012 года, основная волна.


2

Два игрока ходят по очереди. Перед началом игры у них есть поровну горошин. Ход состоит в передаче сопернику любого числа горошин. Не разрешается передавать такое количество горошин, которое до этого уже кто‐то в этой партии передавал. Ноль горошин тоже передавать нельзя. Тот, кто не может сделать очередной ход по правилам,  — считается проигравшим. Начинающий или его соперник победит в этой игре, как бы ни играл партнёр?

Рассмотрите случаи:

а)  у каждого по две горошины;

б)  у каждого по три горошины;

в)  у каждого по N горошин.

Источник: А. Ларин: Тренировочный вариант № 41.


3

Трое друзей играли в шашки. Один из них сыграл 25 игр, а другой  — 17 игр. Мог ли третий участник сыграть  

а)  34;

б)  35;

в)  56 игр?

Источник: А. Ларин: Тренировочный вариант № 42.


4

Леша задумал двузначное число (от 10 до 99). Гриша пытается его отгадать, называя двузначные числа. Если Гриша правильно называет число, или же одну цифру называет правильно, а в другой ошибается не более чем на единицу, то Леша отвечает «тепло»; в остальных случаях Леша отвечает «холодно». (Например, если задумано число 65, то назвав 65, 64, 66, 55 или 75, Гриша услышит в ответ «тепло», а в остальных случаях услышит «холодно».)

а)  Покажите, что нет способа, при котором Гриша гарантированно узнает число, истратив 18 попыток.

б)  Придумайте способ, при котором Гриша гарантированно узнает число, истратив 24 попытки (какое бы число ни задумал Леша).

в)  А за 22 попытки получится?

Источник: А. Ларин: Тренировочный вариант № 45.


5

У Лены три набора, в каждом из которых одинаковое количество ручек (больше 1). У Юли несколько (больше 1) наборов ручек, по 5 штук в каждом.

а)  При каком количестве наборов у Юли, количество всех ручек у Лены нечетно, если всего у девочек 105 ручек?

б)  Можно ли разложить все ручки Юли и Лены в 12 наборов по 12 ручек в каждом?

в)  Можно ли разложить все ручки Юли и Лены в k наборов по k ручек в каждом (k > 3)?

Источник: А. Ларин: Тренировочный вариант № 4.

Пройти тестирование по этим заданиям

Вот она! Загадочная. Нестандартная. Задача 18 Профильного ЕГЭ по математике.

Эта задача оценивается в целых 4 первичных балла, и они пересчитываются в 9-10 тестовых.

Можно ничего не знать. И удачно подобрать пример. И получить 1 балл за пункт (а). Во всяком случае, попробовать это сделать.

А можно потратить 2 часа на перебор вариантов… и так ничего и не найти. Если не знаешь секретов решения этой задачи. ОК, некоторые из секретов мы расскажем.

Действительно, пункт (а) в задаче 18 почти всегда решается сразу. Пункт (б) тоже решается быстро, но только если повезет. Пункт (в) без специальной подготовки решить невозможно.

Необходимая теория для решения задач на числа и их свойства — это всего две страницы. Делимость чисел, наибольший общий делитель и наименьшее общее кратное, основная теорема арифметики, признаки делимости на 3, на 4, на 5, на 8, 9, 10 и 11. Ничего сложного.

Повторите также темы: Арифметическая прогрессия и Геометрическая прогрессия.

Начинать лучше всего с подготовительных задач.

Затем стоит освоить метод «Оценка плюс пример». Для того чтобы применить этот метод, от строгих оценок, которые даны в условии (со знаками > или < ), переходим к нестрогим (со знаками ≥ или ≤ ).

Узнать о секретах решения задания 18 Профильного ЕГЭ по математике.

Узнать больше о решении уравнений в целых числах. В школьных учебниках этого нет.

Один из необходимых навыков для решения пункта (в) – работа с неравенствами. В школьных учебниках этого тоже нет.

Многие считают, что если в этой задаче в пункте (а) ответ «да», то во втором обязательно должно быть «нет». Авторитетно заявляем: нет, необязательно! Может быть любое сочетание из «да» и «нет». И может быть «да» в обоих пунктах, и «нет» в обоих.

Если вопрос в этой задаче (неважно, в каком пункте) формулируется как «Может ли быть…» — и дальше некоторое утверждение, и ваш ответ: «Да», — то одного вашего «Да» недостаточно. Нужен пример. И если вы его подберете, вы не обязаны объяснять, как нашли его.

Если ответ на этот вопрос: «Нет», то вам нужно это доказать. «Нет, потому что…» — и приводите свое доказательство.

В общем, проще показать это на примерах:

1. За прохождение каждого уровня игры на планшете можно получить от одной до трёх звёзд. При этом заряд аккумулятора планшета уменьшается на 3 пункта при получении трёх звёзд, на 6 пунктов при получении двух звёзд и на 9 пунктов при получении одной звезды. Витя прошёл несколько уровней игры подряд.

а) Мог ли заряд аккумулятора уменьшиться ровно на 32 пункта?

б) Сколько уровней игры было пройдено, если заряд аккумулятора уменьшился на 33 пункта и суммарно было получено 17 звёзд?

в) За пройденный уровень начисляется 9000 очков при получении трёх звёзд, 5000 — при получении двух звёзд и 2000 — при получении одной звезды. Какое наибольшее количество очков мог получить Витя, если заряд аккумулятора уменьшился на 33 пункта и суммарно было получено 17 звёзд?

а) Заметим, что заряд аккумулятора при прохождении уровня уменьшается на 3, 6 или 9 пунктов, и все эти числа делится на 3. Поскольку 32 не делится на 3, заряд не мог уменьшиться на 32 пункта.

б) Да, на 33 пункта заряд мог уменьшиться.

Пусть на х уровнях получено по 3 звезды, на у уровнях — по 2 звезды и на z уровнях — по 1 звезде.

Тогда:

3x+2y+z=17;

3x+6y+9z=33, то есть x+2y+3z=11.

Сложив уравнения 3x+2y+z=17 и x+2y+3z=11, получим, что x+y+z=7 (пройдено 7 уровней).

Системе удовлетворяют z=1,;y=2,;x=4. При этом заряд аккумулятора уменьшился на 33 пункта.

в) Поскольку x+2y+3z=11 и x+y+z=7, получаем, что y+2z=4. Возможны варианты:

z=0, тогдаy=4,;x=3, получено 47 тысяч очков.

z=1, тогда y=2,;x=4, получено 48 тысяч очков.

z=2, тогда y=0,;x=5, получено 49 тысяч очков – это максимально возможное количество.

Это была простая задача №18. А вот сложная.

2. В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали по крайней мере два учащихся, а суммарно тест писал 51 учащийся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл был целым числом. После этого один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.

а) Мог ли средний балл в школе № 1 вырасти в два раза?

б) Средний балл в школе № 1 вырос на 10%, средний балл в школе № 2 также вырос на 10%. Мог ли первоначальный балл в школе № 2 равняться 1?

в) Средний балл в школе № 1 вырос на 10%, средний балл в школе № 2 также вырос на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.

Пусть в первой школе писали тест n учеников, а во второй m учеников, причем
m=51-n, ngeq 2,;mgeq 2.

Пусть учащиеся первой школы набрали в сумме S_{1} балл, а учащиеся второй S_{2} баллов.

Тогда средние баллы равны frac{S_{1}}{n} и frac{S_{2}}{m}.

Пусть из первой школы во вторую перешел ученик, набравший за тест k баллов.

а) Предположим, что средний балл в школе № 1 вырос в два раза. Тогда frac{2S_1}{n}= frac{S_1 - k}{n-1}.

Отсюда: S_{1}left ( n-2 right )=-kn.

Поскольку kn положительно, получаем, что  – противоречие с условием.

Ответ в пункте (а): нет.

б) Во втором пункте ответ тоже «нет». Предположим, что frac{S_{2}}{m}=1. Получим:

frac{S_{1}-k}{n-1}=1,1cdot frac{S_{1}}{n};

frac{S_{2}+k}{m+1}=1,1cdot frac{S_{2}}{m}.
Поскольку m=51-n,

frac{S_{2}+k}{52-n}=1,1cdot frac{S_{2}}{51-n}.

Если frac{S_{2}}{m}=1,то frac{S_{2}}{51-n}.

Тогда:

frac{51-n+k}{52-n}=1,1. Отсюда:

10k+n=62. Очевидно, kleq 6 и n=62-10k.

Что будет, если k=6? Тогда n=62-10k=2.

Подставив эти n и k в уравнение

frac{S_{1}-k}{n-1}=1,1cdot frac{S_{1}}{n} , получим: frac{S_{1}-6}{2-1}=1,1cdot frac{S_{1}}{2}, S_{1}=frac{40}{3}, противоречие с условием, поскольку S_{1} – целое. Значит, 

С другой стороны, из условия frac{S_{1}-k}{n-1}=1,1cdot frac{S_{1}}{n} получаем, что
10kn=S_{1}left ( 11-n right ), значит, 2leq nleq 10.

Но если n=62-10kleq 10, то 10kgeq 52 и kgeq 6 – получили противоречие.

в) По условию, и в первой, и во второй школах первоначально средний балл был целым числом. Он не может быть равен единице (из пункта (б)). Проверим, может ли он быть равен 2, 3, 4…

Пусть первоначально средний балл равен 2. Тогда

frac{S_{1}-k}{n-1}=1,1cdot frac{S_{1}}{n};

frac{S_{2}+k}{52-n}=frac{1,1cdot S_{2}}{51-n};

frac{S_{2}}{m}=2. Условие 2leq nleq 10 по-прежнему должно выполняться.

Преобразуя эти уравнения, получим:

S_{2}=2left ( 51-n right )=102-2n;

frac{102-2n+k}{52-n}=1,1cdot 2;

1020-20n+10k=22cdot 52-22n;

2n+10k=124;

n=62-5k;

2leq 62-5kleq 10.

Значит, kgeq frac{52}{5} и kleq 12. Подходит k = 11 и k = 12.

При таких значениях k уравнение n=62-5k имеет решения n = 7 или n = 2.

Подставим поочередно пары k = 11, n = 7 и k = 12, n = 2 в уравнение

frac{S_{1}-k}{n-1}=1,1cdot frac{S_{1}}{n} , получим, что целых решений S_{1} это уравнение не имеет.

Пусть первоначально средний балл равен 3. Тогда

frac{S_{1}-k}{n-1}=1,1cdot frac{S_{1}}{n};

frac{S_{2}+k}{52-n}=frac{1,1cdot S_{2}}{51-n};

frac{S_{2}}{m}=3,2leq nleq 10;

frac{153-3n+k}{52-n}=1,1cdot 3;

3n+10k=186, подходит n = 2, k = 18, тогда S_{1}=40.

Например, в первой школе тест писали 2 учащихся и набрали 22 и 18 баллов. В школе № 2 писали тест 49 учащихся и каждый набрал по три балла, а у перешедшего из одной школы в другую учащегося 18 баллов.

Да, непростая это задача, восемнадцатая задача из варинта ЕГЭ. Но если к ней привыкнуть, потренироваться, то вполне можно решить и заработать необходимые на ЕГЭ баллы. Мы учим решать эту задачу на наших интенсивах в ЕГЭ-Студии, а также на Онлайн-курсе. Многим нашим выпускникам она обеспечила поступление на бюджетные отделения ведущих вузов.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание 18. Числа и их свойства u0026#8212; профильный ЕГЭ по Математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Задание №18 – для олимпиадников?

Мы знаем, что в ЕГЭ по математике вторая часть кажется значительно сложнее первой. Но особенно много вопросов вызывает задание №18. Многие думают, что решить его под силам только олимпиадникам.

Но так ли это?

Задание №18 в ЕГЭ по математике: Как решать?
Давай попробуем разобраться, почему эта задача кажется такой необычной и сложной. А еще разберемся, как ее решать!

Формат задачи

По формату задача абсолютно стандартная. Она состоит из нескольких пунктов, за каждый из которых можно получить баллы. Давай посмотрим подробнее:

Пункт А

В этой части задачи в большинстве случаев надо дать ответ на вопрос о возможности или невозможности какой-то ситуации. Если ты отвечаешь, что ситуация возможна, значит, ты можешь подтвердить ее каким-то примером.
Кстати, чаще всего эта часть решается довольно легко. Найти пример не составит труда.
Главное — не торопиться и внимательно прочитать условие задачи!

Пункт Б

Этот пункт очень схож с пунктом А. Но очень часто решение пункта Б сводится к тому, что ситуация невозможна. И тебе остается только это доказать. Но не забудь, что невозможность ситуации доказывается в общем виде, а не на конкретном примере.
А как доказать? Обычно такое доказывается с помощью рассмотрения оценок, делимостей, ограничений и т.д.
Но это только звучит сложно и страшно. Если немного потренироваться, ты научишься очень быстро решать такие задачи.

Пункт В

Последний пункт чуть-чуть посложнее, но и получить за него можно 2 балла! С наибольшей вероятностью в пункте В нужно будет найти наименьшее или наибольшее значение величины, связанной с условием задачи.
Тебе нужно будет сделать оценку на искомую величину и привести пример, когда эта оценка выполняется. За каждый правильно выполненный шаг ты получишь по 1 баллу.

Алгоритм решения задачи

К сожалению, эту задачу не получится решить, подобрав типовой алгоритм. Тут придется поразмышлять. Но от этого интереснее!
Мы подготовили для тебя подборку тем, которые пригодятся тебе для решения №18.
Задание №18 в ЕГЭ по математике: Как решать?
Разбирая задание №18, ты потренируешь свой мозг и научишься решать нестандартные задачи.

Если ты переживаешь, оставь эту задачку напоследок. Решишь ее, когда останется время.

Ну а раз ты здесь, значит, ты хочешь получить высокие баллы и максимально в этом заинтересован!
И мы знаем, что у тебя все получится!


2022-03-21 17:59

ЕГЭ
Математика

Блок 1. Введение

1.1 Решите уравнения с параметром а:
а) ax = − 5;
б) (a−1)x = −3;
в) (a−2)x = 2−a
г) (a−2)x = (a−2)(a+3)
Смотреть видеоразбор
1.2 Определите при каких значениях параметра а:
а) уравнение |x| = a−3 имеет один корень;
б) уравнение |x| = a2−5 не имеет корней.
Смотреть видеоразбор
1.3 Функция задана формулой y=x^2+ax+b. Найдите a и b, если:
а) график функции проходит через точки (0;3) и (-1;8);
б) наименьшее значение, равное −4, функция принимает при x = 1
Смотреть видеоразбор

Блок 2. Координатно-параметрический метод

2.1 Найдите все значения параметра а, при каждом из которых уравнение frac{|3x|-2x-2-a}{x^2-2x-a}=0 имеет ровно два различных корня Смотреть видеоразбор
2.2 Найдите все значения а, при каждом из которых система уравнений begin{cases} frac{xy^2-3xy-3y+9}{sqrt{x+3}}=0 \ y=ax end{cases} имеет ровно два различных решения Смотреть видеоразбор
2.3 Найдите все значения параметра а, при каждом из которых уравнение frac{x^2-4x+a}{5x^2-6ax+a^2} = 0 имеет ровно два различных корня Смотреть видеоразбор
2.4 Найти все значения а, при каждом из которых уравнение sqrt{3x-2} cdot ln(x-a) = sqrt{3x-2} cdot ln(2x+a) имеет ровно один корень на отрезке [0; 1] Смотреть видеоразбор
2.5 Найти все значения а, при каждом из которых уравнение (4^x-3 cdot 2^x + 3a — a^2)cdotsqrt{2-x} = 0 имеет ровно два различных корня Смотреть видеоразбор
2.6 Найти все действительные значения величины h , при которых уравнение x(x+1)(x+h)(x+1+h) = h^2 имеет 4 действительных корня Смотреть видеоразбор

Блок 3. Преобразование графиков

3.1 Найдите все значения a, при каждом из которых наименьшее значение функции f(x) = 2ax+|x^2-8x+7| больше 1 Смотреть видеоразбор
3.2 Найти все значения параметра a, при каждом из которых уравнение (|x-2|+|x+a|)^2-7(|x-2|+|x+a|)-4a(4a-7) = 0 имеет ровно два корня Смотреть видеоразбор
3.3 Максимальное значение выражения x + 2y при условии log_{frac{x^2+y^2}{2}}ay ge 1 равно 4. Чему равно положительное значение параметра a? Смотреть видеоразбор
3.4 Найти все значения параметра a, при каждом из которых уравнение f(x) = |a+2|sqrt[3]{x} имеет 4 решения, где f — чётная периодическая функция с периодом T=frac{16}{3}, определённая на всей числовой прямой, причём f(x)=ax^2, если 0 le x le frac{8}{3} Смотреть видеоразбор

Блок 4. Системы с параметром

4.1 Найдите все положительные значения a, при каждом из которых система begin{cases} (|x|-5)^2+(y-4)^2=9 \ (x+2)^2+y^2=a^2 end{cases} имеет единственное решение Смотреть видеоразбор
4.2 Найдите все значения параметра a, при каждом из которых система уравнений begin{cases} frac{(y^2-xy-4y+2x+4)sqrt{x+4}}{sqrt{5-y}} \ a=x+y end{cases} имеет единственное решение Смотреть видеоразбор
4.3 Найдите все значения параметра a, при каждом из которых система уравнений begin{cases} (x-2a+3)^2+(y-4)^2=2,25 \ (x+3)^2+(y-a)^2=a^2+2a+1 end{cases} имеет единственное решение Смотреть видеоразбор
4.4 Найти все значения параметра a, при каждом из которых система begin{cases} ((x-5)^2+(y-3)^2-9)((x-2)^2+(y-1)^2) le 0 \ y=ax+a+3 end{cases} не имеет решений Смотреть видеоразбор

Блок 5. Квадратичная функция

5.1 Найти все значения параметра a, при каждом из которых неравенство |frac{x^2+ax+1}{x^2+x+1}| lt 3 выполняется при всех значениях x Смотреть видеоразбор
5.2 При каких значениях p вершины парабол y=-x^2+2px+3 и y=x^2-6px+p расположены по разные стороны от оси x? Смотреть видеоразбор
5.3 Найти все значения a, при каждом из которых f(x)=x^2-|x-a^2|-5x имеет хотя бы одну точку максимума Смотреть видеоразбор
5.4 Найдите все значения параметра a при каждом из которых множество значений функции y=frac{3x+3-2ax}{x^2+2(2a+1)x+4a^2+4a+2} содержит отрезок [0;1] Смотреть видеоразбор
5.5 Найти все значения параметра a, при каждом из которых множество значений функции y=frac{5a-15x+ax}{x^2-2ax+a^2+25} содержит отрезок [0;1] Смотреть видеоразбор
5.6 Найдите все значения параметра a, при каждом из которых неравенство |frac{x^2+x-2a}{x+a}-1| le 2 не имеет решений на интервале (1;2) Смотреть видеоразбор
5.7 Найдите все значения параметра a, при каждом из которых уравнение frac{a^3-(x+2)a^2+xa+x^2}{a+x} = 0 имеет ровно один корень Смотреть видеоразбор
5.8 Найдите все значения a, при каждом из которых множество значений функции y=frac{cos{x}-a}{cos{2x}-4}содержит число −2 Смотреть видеоразбор
5.9 Найти все значения параметра a, при каждом из которых уравнение (4cos{x}-3-a)cos{x}-2,5cos{2x}+1,5=0 имеет хотя бы один корень Смотреть видеоразбор
5.10 Найти все значения параметра a, при каждом из которых уравнение 4^{|x|}=frac{7a}{a-5}cdot 2^{|x|}-frac{12a+17}{a-5} имеет ровно два различных корня Смотреть видеоразбор
5.11 Найдите все значения а, при каждом из которых множество решений неравенства frac{a-(a^2-2a-3)cos{x}+4}{sin^2{x}+a^2+1} lt 1 содержит отрезок [-frac{pi}{3}; frac{pi}{2}] Смотреть видеоразбор

Блок 6. Расположение корней квадратного уравнения

6.1 Найти все значения параметра a, при которых разность между корнями уравнения x^2+3ax+a^4=0 максимальна Смотреть видеоразбор
6.2 Найти все значения параметра а, при каждом из которых уравнение log_{1-x}(a-x+2) = 2 имеет хотя бы один корень, принадлежащий промежутку (-1;1] Смотреть видеоразбор

Блок 7. Аналитический метод

7.1 При каких значениях а корни уравнения |x-a^2|=-a^2+2a+3 имеют одинаковые знаки? Смотреть видеоразбор
7.2 Найти все значения параметра а, при которых неравенство x^2+2|x-a| ge a^2 справедливо для всех действительных x Смотреть видеоразбор
7.3 Найти все значения параметра а, при каждом из которых уравнение |sin^2{x}+2cos{x}+a|=sin^2{x}+cos{x}-a имеет на промежутке (frac{pi}{2};pi] единственный корень Смотреть видеоразбор
7.4 Найти все значения параметра а, при каждом из которых уравнение (x^2-4ax+a(4a-1))^2-3(x^2-4ax+a(4a-1))-|a|(|a|-3)=0 имеет более двух корней Смотреть видеоразбор

Блок 8. Функциональные методы

8.1 Найти все значения параметра a, при каждом из которых уравнение x^2+(a+7)^2=|x-7-a|+|x+a+7| имеет единственный корень Смотреть видеоразбор
8.2 Найти все значения параметра a, при каждом из которых система begin{cases} ax^2+4ax-8y+6a+28 le 0 \ ax^2-6ay-8x+11a-12 le 0 end{cases} имеет ровно одно решение Смотреть видеоразбор
8.3 Найдите все значения параметра alpha из интервала (0; pi), при каждом из которых система begin{cases} x^2+y^2-4(x+y)sin{alpha}+8sin^2{alpha} = 2sin{alpha}-1 \ frac{x}{y}+frac{y}{x} = 2sin{alpha}+4sin^2{alpha} end{cases} имеет единственное решение Смотреть видеоразбор
8.4 Найдите все неотрицательные значения параметра a, при каждом из которых множество решений неравенства 1 le frac{2a+x^2-4log_{frac{1}{3}}(4a^2-4a+9)}{5sqrt{18x^4+7x^2}+2a+4+(log_{frac{1}{3}}(4a^2-4a+9))} состоит из одной точки и найти это решение. Смотреть видеоразбор
8.5 Найдите все значения a, для каждого из которых уравнение 8x^6+(a-|x|)^3+2x^2-|x|+a=0 имеет более трёх различных решений. Смотреть видеоразбор
8.6 Найти все значения параметра a, при каждом из которых уравнение x^10+(a-2|x|)^5+x^2-2|x|+a=0 имеет более трёх различных решений. Смотреть видеоразбор
8.7 Найти все значения параметра a, при каждом из которых уравнение 64x^6-(a-3x)^3+4x^2+3x=a имеет более одного корня. Смотреть видеоразбор
8.8 Найти все значения параметра a, для каждого из которых существует хотя бы одна пара чисел x и y , удовлетворяющих неравенству 5|x-2|+3|x+a| le sqrt{4-y^2}+7 Смотреть видеоразбор
8.9 Найти все значения параметра a, при каждом из которых уравнение (log_7(2x+2a)-log_7(2x-2a))^2-8a(log_7(2x+2a)-log_7(2x-2a))+12a^2+8a-4 имеет ровно два корня. Смотреть видеоразбор
8.10 Найти все значения параметра a, при каждом из которых уравнение a^2-10a+5sqrt{x^2+25}=4|x-5a|-8|x| имеет хотя бы один корень Смотреть видеоразбор
8.11 Найти все значения параметра a, при которых уравнение (a+2)^2 cdot log_3(2x-x^2)+(3x-1)^2 cdot log_{11}(1-frac{x^2}{2})=0 имеет решение Смотреть видеоразбор
8.12 При каких значениях параметра a уравнение ax^6=e^x имеет одно положительное решение? Смотреть видеоразбор

Блок 9. Разные задачи с параметром

9.1 Найти все значения параметра a, при которых уравнение sqrt{1-(x^2-4x-a^2+2a+3)^6}+sqrt{1+(x^2-4x-a^2+2a+3)^6} = 2 имеет только один положительный корень Смотреть видеоразбор
9.2 Найти все положительные значения параметра a, при каждом из которых наименьшее значение f(x)=2x^3-3ax^2+5 на отрезке, заданном неравенством |x-2| le 1, не меньше, чем −3 Смотреть видеоразбор
9.3 Найдите все значения параметра b , при каждом из которых для любого a неравенство (x-a-2b)^2+(y-3a-b)^2 lt frac{1}{2} имеет хотя бы одно целочисленное решение (x, y). Смотреть видеоразбор
9.4 Найти все a, при каждом из которых уравнение sqrt{a-9cos^4{x}}=sin^2{x} имеет решение Смотреть видеоразбор
9.5 Найдите наибольшее целое значение a, при котором уравнение 3x^2-12x+3a+9=4sin{frac{4x-x^2-a-3}{2}} cdot cos{frac{x^2-2x-a-1}{2}} имеет ровно два различных решения Смотреть видеоразбор
9.6 Найдите все целые отрицательные значения параметра a, при каждом из которых существует такое действительное число b>a, что неравенство 21b ge 6|a+b|-3|b-2|-|a-b|-9|a^2-b+2|+16 не выполнено Смотреть видеоразбор
Skip to content

Всё варианты 18 задания математика ЕГЭ Профиль 2022

Всё варианты 18 задания математика ЕГЭ Профиль 2022admin2022-08-08T10:55:02+03:00

Скачать задания в формате pdf.

Задания 18 ЕГЭ по математике профильного уровня 2022 год
(числа и их свойства)


1) (28.03.2022 досрочная волна)
Каждое из четырёх последовательных натуральных чисел разделили на свою первую цифру. Пусть S – сумма четырёх получившихся чисел.

а) Может ли  (S = 41frac{{11}}{{24}}?)

б) Может ли  (S = 569frac{{29}}{{72}}?)

в) Какое наибольшее целое значение может принимать S, если известно, что 4 исходных числа не меньше 400 и не больше 999?

ОТВЕТ:   а) да, например 89, 90, 91, 92;     б) нет;     в) 478.


2) (28.03.2022 досрочная волна) Даны четыре последовательных натуральных числа. Каждое из чисел поделили на одну из его цифр, не равную нулю, а затем четыре полученных результата сложили.

а) Может ли полученная сумма равняться 386?

б) Может ли полученная сумма равняться 9,125?

в) Какое наибольшее целое значение может принимать полученная сумма, если известно, что каждое из исходных чисел не меньше 200 и не больше 699?

ОТВЕТ:  а) Да, например, 109, 110, 111 и 112;    б) нет;    в) 2470.


3) (28.03.2022 досрочная волна) Каждое из четырех последовательных натуральных чисел, последняя цифра которых не равна нулю, разделили на его последнюю цифру. Полученные результаты сложили и назвали S.

а) Может ли  (S = 16frac{5}{6}?)

б) Может ли  (S = 369frac{{29}}{{126}}?)

в) Если числа были трехзначные, то какое наибольшее целое значение S могло получиться?

ОТВЕТ:  а) Да, например, 12, 13, 14 и 15;    б) нет;    в) 2004.


4) (02.06.2022 основная волна)  По кругу расставлено N различных натуральных чисел, каждое из которых не превосходит 425. Сумма любых четырёх идущих подряд чисел делится на 4, а сумма любых трёх идущих подряд чисел нечётна.

а) Может ли N быть равным 280?

б) Может ли N быть равным 149?

в) Найдите наибольшее значение N.

ОТВЕТ:  а) нет;    б) нет;    в) 212.


5) (02.06.2022 основная волна)  Есть четыре коробки: в первой коробке 101 камень, во второй — 102, в третьей — 103, а в четвёртой коробке камней нет. За один ход берут по одному камню из любых трёх коробок и кладут в оставшуюся. Сделали некоторое количество таких ходов.

а) Могло ли в первой коробке оказаться 97 камней, во второй — 102, в третье — 103, а в четвёртой — 4?

б) Могло ли в четвёртой коробке оказаться 306 камней?

в) Какое наибольшее число камней могло оказаться в первой коробке?

ОТВЕТ:  а) да;    б) нет;    в) 303.


6) (02.06.2022 основная волна)  Имеются три коробки: в первой — 97 камней, во второй — 104 камня, в третьей пусто. За один ход разрешается взять по камню из двух коробок и положить в оставшуюся.

а) Может ли в первой коробке оказаться 97 камней, во второй — 89, в третьей  — 15?

б) Может ли в третьей коробке оказаться 201 камень?

в) Найдите наибольшее возможное количество камней в третьей коробке.

ОТВЕТ:  а) да;    б) нет;    в) 200.


7) (02.06.2022 основная волна)  С трёхзначным числом производят следующую операцию: вычитают из него сумму его цифр, а затем получившуюся разность делят на 3.

а) Могло ли в результате такой операции получиться число 300?

б) Могло ли в результате такой операции получиться число 151?

в) Сколько различных чисел может получиться в результате такой операции из чисел от 100 до 600 включительно?

ОТВЕТ:  а) да;    б) нет;    в) 51.


8) (02.06.2022 основная волна)  На доске написано N различных натуральных чисел, каждое из которых не превосходит 99. Для любых двух написанных на доске чисел a и b, таких, что a < b, ни одно из написанных чисел не делится на b a, и ни одно из написанных чисел не является делителем числа b a.

а) Могли ли на доске быть написаны какие-то два числа из чисел 18, 19 и 20?

б) Среди написанных на доске чисел есть 17. Может ли N быть равно 25?

в) Найдите наибольшее значение N.

ОТВЕТ:  а) нет;    б) нет;    в) 33.


9) (27.06.2022 резервная волна)  У ювелира есть 47 полудрагоценных камней, масса каждого из которых — целое число граммов, не меньшее 100 (некоторые камни могут иметь равную массу). Эти камни распределили по трем кучам: в первой куче n1 камней, во второй — n2 камней, в третьей — n3 камней, причем n1 < n2 < n3. Суммарная масса (в граммах) камней в первой куче равна S1, во второй — S2, а в третьей — S3.

а) Может ли выполняться неравенство S1 > S2 > S3?

б) Может ли выполняться неравенство S1 > S2 > S3, если масса любого камня не превосходит 105 граммов?

в) Известно, что масса любого камня не превосходит k граммов. Найдите наименьшее целое значение k, для которого может выполняться неравенство S1 > S2 > S3.

ОТВЕТ:  а) да;    б) нет;    в) 122.


10) (27.06.2022 резервная волна)  На доске написано несколько различных натуральных чисел. Дробная часть среднего арифметического этих чисел равна 0,32 (то есть если вычесть из среднего арифметического этих чисел 0,32, то получится целое число).

а) Могло ли на доске быть написано меньше 100 чисел?

б) Могло ли на доске быть написано меньше 20 чисел?

в) Найдите наименьшее возможное значение среднего арифметического этих чисел.

ОТВЕТ:  а) да;    б) нет;    в) 13,32.

Параметрические уравнения

Уравнение, которое кроме неизвестной величины содержит также другую дополнительную величину, которая может принимать различные значения из некоторой области, называется параметрическим. Эта дополнительная величина в уравнении называется параметр. На самом деле с каждым параметрическим уравнением может быть написано множество уравнений.

Способ решения параметрических уравнений

  1. Находим область определения уравнения.
  2. Выражаем a как функцию от $х$.
  3. В системе координат $хОа$ строим график функции, $а=f(х)$ для тех значений $х$, которые входят в область определения данного уравнения.
  4. Находим точки пересечения прямой, $а=с$, где $с∈(-∞;+∞)$ с графиком функции $а=f(х)$. Если прямая, а=с пересекает график, $а=f(х)$, то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение вида, $а=f(х)$ относительно $х$.
  5. Записываем ответ.

Общий вид уравнения с одним параметром таков:

$F(x, a) = 0$

При различных значениях, а уравнение $F(x, a) = 0$ может иметь различные множества корней, задача состоит в том, чтобы изучить все случаи, выяснить, что будет при любом значении параметра. При решении уравнений с параметром обычно приходится рассматривать много различных вариантов. Своевременное обнаружение хотя бы части невозможных вариантов имеет большое значение, так как освобождает от лишней работы.

Поэтому при решении уравнения $F(x, a) = 0$ целесообразно под ОДЗ понимать область допустимых значений неизвестного и параметра, то есть множество всех пар чисел ($х, а$), при которых определена (имеет смысл) функция двух переменных $F(x, а)$. Отсюда естественная геометрическая иллюстрация ОДЗ в виде некоторой области плоскости $хОа$.

ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):

1. Выражение, стоящее в знаменателе, не должно равняться нулю.

${f(x)}/{g(x)}; g(x)≠0$

2. Подкоренное выражение должно быть неотрицательным.

$√{g(x)}; g(x)≥0$.

3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.

${f(x)}/{√{g(x)}}; g(x) > 0$

4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.

$log_{f(x)}g(x) {tableg(x) > 0; f(x) > 0; f(x)≠1;$

Алгебраический способ решения квадратных уравнений с параметром $ax^2+bx+c=0$

Квадратное уравнение $ax^2+bx+c=0, а≠0$ не имеет решений, если $D < 0$;

Квадратное уравнение имеет два различных корня, когда $D > 0$;

Квадратное уравнение имеет один корень, если $D=0$

Тригонометрические тождества

1. $tgα={sinα}/{cosα}$

2. $ctgα={cosα}/{sinα}$

3. $sin^{2}α+cos^{2}α=1$ (Основное тригонометрическое тождество)

Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса

$sinα=±√{1-cos^{2}α}$

$cosα=±√{1-sin^{2}α$

4. $tgα·ctgα=1$

5. $1+tg^{2}α={1}/{cos^{2}α}$

6. $1+ctg^{2}α={1}/{sin^{2}α}$

Формулы двойного угла

1. $sin2α=2sinα·cosα$

2. $cos2α=cos^{2}α-sin^{2}α=2cos^{2}α-1=1-2sin^{2}α$

3. $tg2α={2tgα}/{1-tg^{2}α}$

Формулы суммы и разности

$cosα+cosβ=2cos{α+β}/{2}·cos{α-β}/{2}$

$cosα-cosβ=2sin{α+β}/{2}·sin{β-α}/{2}$

$sinα+sinβ=2sin{α+β}/{2}·cos{α-β}/{2}$

$sinα-sinβ=2sin{α-β}/{2}·cos{α+β}/{2}$

Формулы произведения

$cosα·cosβ={cos{α-β}+cos{α+β}}/{2}$

$sinα·sinβ={cos{α-β}-cos{α+β}}/{2}$

$sinα·cosβ={sin{α+β}+sin{α-β}}/{2}$

Формулы сложения

$cos(α+β)=cosα·cosβ-sinα·sinβ$

$cos(α-β)=cosα·cosβ+sinα·sinβ$

$sin(α+β)=sinα·cosβ+cosα·sinβ$

$sin(α-β)=sinα·cosβ-cosα·sinβ$

Решение тригонометрического уравнения с параметром рассмотрим на примере.

Пример:

Найдите все значения параметра с, при каждом из которых уравнение $3cos⁡2x-2sin⁡2x=c$ имеет решение.

Решение:

Преобразуем данное уравнение к виду

$√{3^2+(-2)^2}(cos⁡2xcosφ-sin⁡2xsinφ)=c$

Воспользуемся тригонометрической формулой и свернем второй множитель как косинус суммы

$√{13}cos⁡(2x+φ)=c$, где $φ=arccos{3}/{√{13}}$

Уравнение $√{13}cos⁡(2x+φ)=c$ имеет решения тогда и только тогда, когда $-1≤ {c}/{√{13}} ≤ 1$, домножим полученное неравенство на $√{13}$ и получим

$-√{13} ≤ c ≤ √{13}$

Ответ: $-√{13} ≤ c ≤ √{13}$

Неравенства с параметром

Если имеется неравенство вида $F(a,x) ≤ G(a,x)$ то оно будет иметь одно решение, если $F'(a, x)=G'(a, x)$.

Системы уравнений:

Выделяют четыре основных метода решения систем уравнений:

  1. Метод подстановки: из какого-либо уравнения системы выражаем одно неизвестное через другое и подставляем во второе уравнение системы.
  2. Метод алгебраического сложения: путем сложения двух уравнений получить уравнение с одной переменной.
  3. Метод введения новых переменных: ищем в системе некоторые повторяющиеся выражения, которые обозначим новыми переменными, тем самым упрощая вид системы.
  4. Графический метод решения: из каждого уравнения выражается $«у»$, получаются функции, графики которых необходимо построить и посмотреть координаты точек пересечения.

Логарифмические уравнения и системы уравнений

Основное логарифмическое тождество:

$a^{log_{a}b}=b$

Это равенство справедливо при $b> 0, a> 0, a≠1$

Свойства логарифмов:

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любых действительных чисел $m$ и $n$ справедливы равенства:

$log_{а}b^m=mlog_{a}b$;

$log_{a^m}b={1}/{m}log_{a}b$.

$log_{a^n}b^m={m}/{n}log_{a}b$

2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.

$log_a(bc)=log_{a}b+log_{a}c$

3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию

$log_a{b}/{c}=log_{a}b-log_{a}c$

4. При умножении двух логарифмов можно поменять местами их основания

$log_{a}b·log_{c}d=log_{c}b·log_{a}d$, если $a, b, c, d >0, a≠1, b≠1$.

5. $c^{log_{a}b}=b^{log_{a}b}$, где $а, b, c > 0, a≠1$

6. Формула перехода к новому основанию

$log_{a}b={log_{c}b}/{log_{c}a}$

7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение

$log_{a}b={1}/{log_{b}a}$

При решении систем, содержащих логарифмические уравнения, часто удается, избавившись от логарифма, заменить одно или оба уравнения системы рациональными уравнениями. После этого надо выразить одну переменную через другую и после постановки получить уравнение с одной переменной. Кроме того, часто встречаются задачи на замену переменной в пределах одного или обоих уравнений системы и системы, требующие отбора решений.

Логарифмические неравенства:

1. Определить ОДЗ неравенства.

2. По свойствам логарифма преобразовать неравенство к простому виду, желательно получить с двух сторон логарифмы по одинаковому основанию.

3. Перейти к подлогарифмическим выражениям, при этом надо помнить, что:

а) если основание больше единицы, то при переходе к подлогарифмическим выражениям знак неравенства остается прежним;

b) если основание меньше единицы, то при переходе к подлогарифмическим выражениям знак неравенства меняется на противоположный;

с) если в основании находится переменная, надо рассмотреть оба варианта.

4. Решить неравенство.

5. Выбрать решения с учетом ОДЗ из п.1

При решении логарифмических неравенств с переменной в основании легче всего воспользоваться тождественными преобразованиями:

$log_{a}f > b ↔ {table (f-a^b)(a-1) > 0; f > 0; a > 0;$

$log_{a}f+log_{a}g > 0 ↔ {table(fg-1)(a-1)> 0; f > 0,g > 0; a > 0;$

$log_{a}f+b > 0 ↔ {table(fa^b-1)(a-1) > 0; f > 0; a > 0;$

Системы, содержащие показательные уравнения

Свойства степеней

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

$a^n·a^m=a^{n+m}$

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются

$a^n:a^m=a^{n-m}$

3. При возведении степени в степень основание остается прежним, а показатели перемножаются

$(a^n)^m=a^{n·m}$

4. При возведении в степень произведения в эту степень возводится каждый множитель

$(a·b)^n=a^n·b^n$

5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

$({a}/{b})^n={a^n}/{b^n}$

6. При возведении любого основания в нулевой показатель степени результат равен единице

$a^0=1$

Основные методы решения систем, содержащих показательные уравнения, ничем принципиально не отличаются от методов решения других систем: это метод алгебраического сложения, замена переменной в пределах одного уравнения или всей системы, подстановка. Единственная особенность – положительность выражения $a^{f(x)}$, которую полезно учитывать, вводя соответствующее ограничение при замене переменной.

Показательные неравенства, сводящиеся к виду $a^{f(x)} ≥ a^{g(x)}$:

1. Преобразовать показательное уравнение к виду $a^{f(x)} ≥ a^{g(x)}$

2. Перейти показателям степеней, при этом если основание степени меньше единицы, то знак неравенства меняется на противоположный, если основание больше единицы – знак неравенства остается прежним.

3. Решить полученное неравенство.

4. Записать результат.

Показательные неравенства, которые можно разложить на множители или сделать замену переменной.

1. Для данного метода во всем неравенстве по свойству степеней надо преобразовать степени к одному виду $a^{f(x)}$.

2. Сделать замену переменной $a^{f(x)}=t, t>0$.

3. Получаем рациональное неравенство, которое можно решить методом интервалов путем разложения на множители выражения.

4. Делаем обратную замену с учетом того, что $t>0$. Получаем простейшее показательное неравенство $a^{f(x)}=t$, решаем его и результат записываем в ответ.

Уравнения с многочленами

Многочлен может обозначаться записью $Р(х)$ — это означает, что многочлен зависит от «х», если записать $Р(х+1)$ — это означает, что в многочлене вместо «х» надо сделать замену на скобку $(х+1)$

Пример:

Найдите значение выражения: $4(p(2x)−2p(x+3))$, если $p(x)=x−6$

Решение:

В данном условии задан многочлен, зависящий от «х», как $p(x)=x−6$.

Чтобы было понятнее, назовем исходный многочлен основной формулой, тогда, чтобы записать $p(2x)$, в основной формуле заменим «х» на «2х».

$p(2x)=2х-6$

Аналогично $p(x+3)=(х+3)-6=х+3-6=х-3$

Соберем все выражение: $4(p(2x)−2p(x+3))=4((2х-6)-2(х-3))$

Далее осталось раскрыть скобки и привести подобные слагаемые

$4((2х-6)-2(х-3))=4(2х-6-2х+6)=4·0=0$

Ответ: $0$

Системы иррациональных уравнений

Основные методы решения систем, содержащих иррациональные уравнения, ничем принципиально не отличаются от методов решения других систем: это метод алгебраического сложения, замена переменной в пределах одного уравнения или всей системы, подстановка. Единственная особенность – надо расписать ОДЗ каждого уравнения, а в конце решения выбрать решение системы с учетом ОДЗ.

Чтобы решить иррациональное уравнение, необходимо:

1. Преобразовать заданное иррациональное уравнение к виду

$√{f(x)}=g(x)$ или $√{f(x)}=√{g(x)}$

2. Обе части уравнение возвести в квадрат

$√{f(x)}^2={g(x)}^2$ или $√{f(x)}^2=√{g(x)}^2$

3. Решить полученное рациональное уравнение.

4. Сделать проверку корней, так как возведение в четную степень может привести к появлению посторонних корней. (Проверку можно сделать при помощи подстановки найденных корней в исходное уравнение.)

Понравилась статья? Поделить с друзьями:
  • Решение 17 номера егэ по математике профиль
  • Решение 17 номера егэ информатика на питоне
  • Решение 17 задания егэ по информатике в экселе
  • Решение 16 задачи егэ планиметрия под редакцией ященко гордин
  • Решение 16 задания егэ по информатике 2022 на питоне