Каталог заданий.
Параболы
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 10 № 509253
На рисунке изображены графики функций и которые пересекаются в точках A и B. Найдите абсциссу точки B.
Аналоги к заданию № 509253: 509254 509255 509259 509262 509263 509264 509268 509256 509257 509258 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график
Решение
·
·
Сообщить об ошибке · Помощь
2
Тип 10 № 562060
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите значение
Аналоги к заданию № 562153: 562060 562154 562155 562156 562157 562158 562159 562160 562161 562162 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график
Решение
·
·
Сообщить об ошибке · Помощь
3
Тип 10 № 562061
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите значение дискриминанта уравнения
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график
Решение
·
·
1 комментарий · Сообщить об ошибке · Помощь
4
Тип 10 № 562153
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите значение
Аналоги к заданию № 562153: 562060 562154 562155 562156 562157 562158 562159 562160 562161 562162 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график
Решение
·
·
Сообщить об ошибке · Помощь
5
Тип 10 № 562154
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите значение
Аналоги к заданию № 562153: 562060 562154 562155 562156 562157 562158 562159 562160 562161 562162 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.3 Квадратичная функция, её график
Решение
·
·
Сообщить об ошибке · Помощь
Пройти тестирование по этим заданиям
В 2022 задание 9 по математике профильного уровня изменилось — появился новый формат, проверяющий знание свойств параболы. Номер вызывает вопросы у учеников, но на деле решается просто. В статье разберем правила выполнения задания 9 ЕГЭ по математике.
Способы решения номера
9 задание по математике профильного уровня 2022 получится решить четырьмя методами.
Первый вариант
Начнем с простого способа, не требующего глубокого понимания темы. Условие выглядит следующим образом:
Присмотревшись к картинке задания 9 по профильной математике, видим: график содержит целочисленные точки. Отметим их на изображении (экзамен разрешает использовать текст КИМа). Решение требует минимум три точки:
Видим: в точке «-4» ордината равна «-3». Запишем уравнение, подставив значения значения абсциссы и ординаты:
16a — 4b + c = -3
Аналогичным образом записываем выражение, используя две остальные точки:
9a — 3b + c = -2
4a — 2b + c = 1
Получаем систему трех уравнений с тремя неизвестными. Решить достаточно легко. Простейший вариант: вычесть последнюю строчку из первых двух, избавившись от коэффициента “c”. После первое уравнение сокращаем на «2», вычитаем из него второе. Находим: a = 1. Подставляем далее, получаем:
b = 8;
c = 13.
Имея коэффициенты, переписываем уравнение, подставляем значение абсциссы:
f(x) = x2 + 8x + 13
f(-12) = 144 — 96 + 13 = 61
Второй вариант
Мы решили 9 задание по математике профилю наиболее простым способом. Однако вычисления получится сократить. Построим локальную систему координат около вершины параболы:
Видим особенность параболы: в точке «1» ордината равна 1, в точке «2» — 4. Представленный график отражает классическое выражение: y = x2, сдвинутое в системе координат. Известно: преобразования не меняют старший коэффициент. Делаем вывод, “a” равно “1”. Теперь найдем “b”. Используем выражение вершины параболы: x0 = -b / 2a. По рисунку видно: x0 = -4. Поставляя это число, найденное значение “a”, находим: b = 8. Дальнейшее решение требует одного уравнения из первого способа. Теперь выполнить номер проще.
Третий вариант
9 задание по математике профильного уровня реально упростить еще сильнее. Изучим способ образования данной параболы. Она получилась путем смещения исходной на “4” налево и на “3” вниз. Запишем уравнения. Изначальный пример:
y = x2
Сдвиг влево записывается:
y = (x + 4)2
Сдвиг вниз:
y = (x + 4)2 — 3
Получаем готовое уравнение, достаточно подставить “-12”. Ответ аналогичный: 61.
Четвертый вариант
Рассмотрим последний способ выполнения задания 9 по профильной математике 2022, требующий логического мышления. Снова изучим локальную систему координат:
Сравнивая с изначальной, получим: абсцисса «-12» из условия представляет собой значение «-8» локальной системы. Это связано со сдвигом. Ордината соответственно равна “64”. Не забываем: парабола сдвинута также на три пункта вниз. Получается, итоговое значение будет на 3 меньше найденного. Ответ снова 61!
В статье мы разобрали способы решения нового 9 задания из ЕГЭ по математике. Хотите изучить принципы выполнения остальных номеров? Записывайтесь на курсы «Уникум» Российского университета дружбы народов. Обучение проходит под руководством опытных преподавателей, форматы — очный, дистанционный. Для закрепления материала существует учебный портал Unikum.
Содержание данной статьи носит ознакомительный характер. При подготовке к сдаче ЕГЭ пользуйтесь дополнительными источниками информации!
ЕГЭ Профиль №9. Парабола
Скачать файл в формате pdf.
ЕГЭ Профиль №9. Парабола
Задача 1. На рисунке изображён график функции (fleft( x right) = 2{x^2} + b,x + c.) Найдите (fleft( { — 5} right).)
Ответ
ОТВЕТ: 31. |
|
Задача 2. На рисунке изображён график функции (fleft( x right) = {x^2} + b,x + c.) Найдите (fleft( { — 1} right).)
Ответ
ОТВЕТ: 34. |
|
Задача 3. На рисунке изображён график функции (fleft( x right) = — 2{x^2} + b,x + c.) Найдите (fleft( 6 right).)
Ответ
ОТВЕТ: — 27. |
|
Задача 4. На рисунке изображён график функции (fleft( x right) = — {x^2} + b,x + c.) Найдите (fleft( { — 8} right).)
Ответ
ОТВЕТ: — 13. |
|
Задача 5. На рисунке изображён график функции (fleft( x right) = a,{x^2} — 4,x + c.) Найдите (fleft( { — 3} right).)
Ответ
ОТВЕТ: 26. |
|
Задача 6. На рисунке изображён график функции (fleft( x right) = a,{x^2} — 7,x + c.) Найдите (fleft( 7 right).)
Ответ
ОТВЕТ: 47. |
|
Задача 7. На рисунке изображён график функции (fleft( x right) = a,{x^2} — 3,x + c.) Найдите (fleft( { — 4} right).)
Ответ
ОТВЕТ: — 14. |
|
Задача 8. На рисунке изображён график функции (fleft( x right) = a,{x^2} + 10,x + c.) Найдите (fleft( { — 1} right).)
Ответ
ОТВЕТ: — 33. |
|
Задача 9. На рисунке изображён график функции (fleft( x right) = a,{x^2} + b,x — 6.) Найдите (fleft( { — 6} right).)
Ответ
ОТВЕТ: 48. |
|
Задача 10. На рисунке изображён график функции (fleft( x right) = a,{x^2} + b,x — 4.) Найдите (fleft( { — 4} right).)
Ответ
ОТВЕТ: 16. |
|
Задача 11. На рисунке изображён график функции (fleft( x right) = a,{x^2} + b,x + 2.) Найдите (fleft( { — 3} right).)
Ответ
ОТВЕТ: — 37. |
|
Задача 12. На рисунке изображён график функции (fleft( x right) = a,{x^2} + b,x — 3.) Найдите (fleft( 8 right).)
Ответ
ОТВЕТ: — 67. |
|
Задача 13. На рисунке изображён график функции (fleft( x right) = a,{x^2} + b,x + c.) Найдите (fleft( { — 7} right).)
Ответ
ОТВЕТ: 32. |
|
Задача 14. На рисунке изображён график функции (fleft( x right) = a,{x^2} + b,x + c.) Найдите (fleft( {10} right).)
Ответ
ОТВЕТ: 64. |
|
Задача 15. На рисунке изображён график функции (fleft( x right) = a,{x^2} + b,x + c.) Найдите (fleft( 2 right).)
Ответ
ОТВЕТ: — 33. |
|
Задача 16. На рисунке изображён график функции (fleft( x right) = a,{x^2} + b,x + c.) Найдите (fleft( { — 1} right).)
Ответ
ОТВЕТ: — 50. |
Задача 17. На рисунке изображены графики функций (fleft( x right) = a,{x^2} + b,x + c,) где a, b и c – целые. Найдите (fleft( 2 right).)
Ответ
ОТВЕТ: 41. |
|
Задача 18. На рисунке изображены графики функций (fleft( x right) = a,{x^2} + b,x + c,) где a, b и c – целые. Найдите (fleft( { — 1} right).)
Ответ
ОТВЕТ: 34. |
|
Задача 19. На рисунке изображены графики функций (fleft( x right) = a,{x^2} + b,x + c,) где a, b и c – целые. Найдите (fleft( { — 8} right).)
Ответ
ОТВЕТ: — 13. |
|
Задача 20. На рисунке изображены графики функций (fleft( x right) = a,{x^2} + b,x + c,) где a, b и c – целые. Найдите (fleft( { — 6} right).)
Ответ
ОТВЕТ: — 10. |
|
Задача 21. На рисунке изображены графики функций (fleft( x right) = 5x + 9) и (gleft( x right) = a,{x^2} + b,x + c,) которые пересекаются в точках A и B. Найдите абсциссу точки B.
Ответ
ОТВЕТ: 6. |
|
Задача 22. На рисунке изображены графики функций (fleft( x right) = — 3x + 13) и (gleft( x right) = a,{x^2} + b,x + c,) которые пересекаются в точках A и B. Найдите абсциссу точки B.
Ответ
ОТВЕТ: — 3. |
|
Задача 23. На рисунке изображены графики функций (fleft( x right) = 3x + 5) и (gleft( x right) = a,{x^2} + b,x + c,) которые пересекаются в точках A и B. Найдите абсциссу точки B.
Ответ
ОТВЕТ: — 7. |
|
Задача 24. На рисунке изображены графики функций (fleft( x right) = — 2x — 4) и (gleft( x right) = a,{x^2} + b,x + c,) которые пересекаются в точках A и B. Найдите абсциссу точки B.
Ответ
ОТВЕТ: 6. |
|
Задача 25. На рисунке изображены графики функций (fleft( x right) = — 3x + 13) и (gleft( x right) = a,{x^2} + b,x + c,) которые пересекаются в точках A и B. Найдите ординату точки B.
Ответ
ОТВЕТ: 22. |
|
Задача 26. На рисунке изображены графики функций (fleft( x right) = — 6x + 11) и (gleft( x right) = a,{x^2} + b,x + c,) которые пересекаются в точках A и B. Найдите ординату точки B.
Ответ
ОТВЕТ: 26. |
|
Задача 27. На рисунке изображены графики функций (fleft( x right) = 5x — 13) и (gleft( x right) = a,{x^2} + b,x + c,) которые пересекаются в точках A и B. Найдите ординату точки B.
Ответ
ОТВЕТ: — 23. |
|
Задача 28. На рисунке изображены графики функций (fleft( x right) = — 7x + 19) и (gleft( x right) = a,{x^2} + b,x + c,) которые пересекаются в точках A и B. Найдите ординату точки B.
Ответ
ОТВЕТ: — 16. |
|
Задача 29. На рисунке изображены графики функций (fleft( x right) = 4{x^2} + 17x + 14) и (gleft( x right) = a,{x^2} + b,x + c,) которые пересекаются в точках A и B. Найдите абсциссу точки B.
Ответ
ОТВЕТ: — 6. |
|
Задача 30. На рисунке изображены графики функций (fleft( x right) = — 4{x^2} — 23x — 31) и (gleft( x right) = a,{x^2} + b,x + c,) которые пересекаются в точках A и B. Найдите абсциссу точки B.
Ответ
ОТВЕТ: — 6. |
|
Задача 31. На рисунке изображены графики функций (fleft( x right) = 4{x^2} — 7x + 3) и (gleft( x right) = a,{x^2} + b,x + c,) которые пересекаются в точках A и B. Найдите ординату точки B.
Ответ
ОТВЕТ: 33. |
|
Задача 32. На рисунке изображены графики функций (fleft( x right) = — 4{x^2} + 17x — 14) и (gleft( x right) = a,{x^2} + b,x + c,) которые пересекаются в точках A и B. Найдите ординату точки B.
Ответ
ОТВЕТ: — 29. |
В 2022 году в вариантах ЕГЭ Профильного уровня появилась задание №10 по теме «Графики функций». Можно считать его подготовительным для освоения задач с параметрами.
Как формулируется задание 10 ЕГЭ по математике? По графику функции, который дается в условии, вам нужно определить неизвестные параметры в ее формуле. Возможно — найти значение функции в некоторой точке или координаты точки пересечения графиков функций.
Чтобы выполнить это задание, надо знать, как выглядят и какими свойствами обладают графики элементарных функций. Надо уметь читать графики, то есть получать из них необходимую информацию. Например, определять формулу функции по ее графику.
Вот необходимая теория для решения задания №10 ЕГЭ.
Что такое функция
Чтение графика функции
Четные и нечетные функции
Периодическая функция
Обратная функция
5 типов элементарных функций и их графики
Преобразование графиков функций
Построение графиков функций
Да, теоретического материала здесь много. Но он необходим — и для решения задания 10 ЕГЭ, и для понимания темы «Задачи с параметрами», а также для дальнейшего изучения математики на первом курсе вуза.
Рекомендации:
Запоминай, как выглядят графики основных элементарных функций. Замечай особенности графиков, чтобы не перепутать параболу с синусоидой : -)
Проверь себя: какие действия нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали, растянуть, перевернуть?
Разбирая решения задач, обращай внимание на то, как мы ищем точки пересечения графиков или неизвестные переменные в формуле функции. Такие элементы оформления встречаются также в задачах с параметрами.
Задание 10 в формате ЕГЭ-2021
Линейная функция
Необходимая теория
1. На рисунке изображён график функции . Найдите значение , при котором
Решение:
Найдем, чему равны k и b. График функции проходит через точки (3; 4) и (-1; -3). Подставив по очереди координаты этих точек в уравнение прямой y = kx + b, получим систему:
Вычтем из первого уравнения второе:
Уравнение прямой имеет вид:
Найдем, при каком значение функции равно -13,5.
Ответ: -7.
2. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.
Решение:
Запишем формулы функций.
Одна из них проходит через точку (0; 1) и ее угловой коэффициент равен -1. Это линейная функция
Другая проходит через точки (-1; -1) и (-2; 4). Подставим по очереди координаты этих точек в формулу линейной функции
Вычтем из первого уравнения второе.
тогда
Прямая задается формулой:
Найдем абсциссу точки пересечения прямых. Эта точка лежит на обеих прямых, поэтому:
Ответ: -1,75.
3. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.
Решение:
Прямая, расположенная на рисунке ниже, задается формулой так как ее угловой коэффициент равен 1 и она проходит через точку (-3; -2).
Для прямой, расположенной выше, угловой коэффициент равен
Эта прямая проходит через точку (-2; 4), поэтому: эта прямая задается формулой
Для точки пересечения прямых:
Ответ: -12.
Квадратичная функция. Необходимая теория
4. На рисунке изображен график функции Найдите b.
Решение:
На рисунке — квадратичная парабола полученная из графика функции сдвигом на 1 вправо, то есть
Получим:
Ответ: -2.
5. На рисунке изображен график функции . Найдите с.
Решение:
На рисунке изображена парабола, ветви которой направлены вверх, значит, коэффициент при положительный. График сдвинут относительно графика функции на 1 единицу вправо вдоль оси Ох. Формула функции имеет вид .
Значит, с = 1.
Ответ: 1
6. На рисунке изображён график функции Найдите
Решение:
График функции проходит через точки с координатами (1; 1) и (-2; -2). Подставляя координаты этих точек в формулу функции, получим:
отсюда
Формула функции имеет вид:
Ответ: 31.
7. На рисунке изображены графики функций и которые пересекаются в точках А и В. Найдите абсциссу точки В.
Решение:
Найдем a, b и c в формуле функции . График этой функции пересекает ось ординат в точке (0; -3), поэтому
График функции проходит через точки (-1; -3) и (2; 3). Подставим по очереди координаты этих точек в формулу функции:
отсюда
Найдем абсциссу точки B. Для точек A и B:
(это абсцисса точки A) или (это абсцисса точки B).
Ответ: 6.
Степенные функции. Необходимая теория
8. На рисунке изображены графики функций и , которые пересекаются в точках А и В. Найдите абсциссу точки В.
Решение:
График функции проходит через точку (2; 1); значит,
График функции проходит через точки (2; 1) и (1; -4), — угловой коэффициент прямой; (находим как тангенс угла наклона прямой и положительному направлению оси X); тогда
Для точек A и B имеем:
Отсюда (абсцисса точки A) или (абсцисса точки B).
Ответ: -0,2.
9. На рисунке изображён график функции . Найдите f (6,76).
Решение:
Функция задана формулой:
Ее график проходит через точку (4; 5); значит,
Тогда
Ответ: 6,5.
10. На рисунке изображен график функции . Найдите .
Решение:
График функции на рисунке симметричен графику функции относительно оси Y. Он проходит через точку (-1; 1). Значит, формула изображенной на рисунке функции: , а = — 1. Тогда = 5.
Ответ: 5.
Показательная функция. Необходимая теория
11. На рисунке изображён график функции Найдите
Решение:
График функции проходит через точки (-3; 1) и (1; 4). Подставив по очереди координаты этих точек в формулу функции получим:
Поделим второе уравнение на первое:
Подставим во второе уравнение:
Ответ: 0,25.
12. На рисунке изображен график функции . Найдите
Решение:
График функции проходит через точку Это значит, что
формула функции имеет вид: .
Ответ: 2.
Логарифмическая функция. Необходимая теория
13. На рисунке изображён график функции Найдите
Решение:
График функции проходит через точки (-3; 1) и (-1; 2). Подставим по очереди эти точки в формулу функции.
Отсюда:
Вычтем из второго уравнения первое:
или — не подходит, так как (как основание логарифма).
Тогда
Ответ: 4.
14. На рисунке изображен график функции .
Найдите f(0,2).
Решение:
График логарифмической функции на рисунке проходит через точки и . Подставив по очереди координаты этих точек в формулу функции, получим систему уравнений:
Формула функции:
Найдем :
Ответ: -7.
Тригонометрические функции. Необходимая теория
15. На рисунке изображён график функции Найдите
Решение:
График функции сдвинут на 1,5 вверх; Значит, Амплитуда (наибольшее отклонение от среднего значения).
Это график функции Он получен из графика функции растяжением в 2 раза по вертикали и сдвигом вверх на .
Ответ:
16. На рисунке изображён график функции
Найдите .
Решение:
На рисунке — график функции Так как
График функции проходит через точку A Подставим и координаты точки А в формулу функции.
Так как получим:
Ответ: 2.
17. На рисунке изображен график периодической функции у = f(x). Найдите значение выражения
Решение:
Функция, график которой изображен на рисунке, не только периодическая, но и нечетная, и если то
Пользуясь периодичностью функции , период которой T = 4, получим:
Ответ: 5.
Друзья, мы надеемся, что на уроках математики в школе вы решаете такие задачи. Для углубленного изучения темы «Функции и графики» (задание 10 ЕГЭ по математике), а также задач с параметрами и других тем ЕГЭ — рекомендуем Онлайн-курс для подготовки к ЕГЭ на 100 баллов.
Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 10 ЕГЭ по математике. Графики функций» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
Решу ЕГЭ 2022 задание №9 по математике 11 класс профильный уровень с ответами и решением для практики и подготовки к экзамену.
- скачать задания прямая с ответами
- скачать задания парабола с ответами
- скачать задания гипербола с ответами
- скачать задания логарифмические функции с ответами
- скачать задания иррациональные функции с ответами
- скачать задания тригонометрические функции с ответами
Решу ЕГЭ 2022 линейные функции 9 задание математика с ответами:
Решу ЕГЭ 2022 парабола 9 задание профиль математика с ответами:
Решу ЕГЭ 2022 гипербола 9 задание профиль математика с ответами:
Решу ЕГЭ 2022 логарифмические функции 9 задание профиль математика с ответами:
Решу ЕГЭ 2022 иррациональные функции 9 задание профиль математика с ответами:
Решу ЕГЭ 2022 тригонометрические функции 9 задание профиль математика с ответами:
Как формулируется новое задание 9 ЕГЭ 2022 по математике? По графику функции, который дается в условии, вам нужно определить неизвестные параметры в ее формуле. Возможно — найти значение функции в некоторой точке или координаты точки пересечения графиков функций.
Как решать 9 задание ЕГЭ 2022 математика профиль видео теория:
1)На рисунке изображён график функции вида f(x)= a3x+b x+c , где числа a, b и c — целые. Найдите a.
2)На рисунке изображён график функции вида f(x)= 2ax+b x+c , где числа a, b и c — целые. Найдите a.
3)На рисунке изображён график функции вида f(x)= ax+b x+c , где числа a, b и c — целые. Найдите a.
4)На рисунке изображён график функции вида f(x)= a x+b +c, где числа a, b и c — целые. Найдите f(−22).
5)На рисунке изображён график функции вида f(x)= a x+b +c, где числа a, b и c — целые. Найдите решение уравнения f(x)=18.
6)На рисунке изображён график функции вида f(x)= 2ax+b x+c , где числа a, b и c — целые. Найдите a.
7)На рисунке изображён график функции вида f(x)= a x+b +c, где числа a, b и c — целые. Найдите f(15).
8)На рисунке изображён график функции вида f(x)= a x+b +c, где числа a, b и c — целые. Найдите x, при котором f(x)=21.
9)На рисунке изображён график функции вида f(x)=log5(ax+b)+c, где числа a, b, c — целые. Найдите наибольшее значение функции g(x)=−x2+ax+b.
10)На рисунке изображён график функции вида f(x)=log1.4(x−a)+b, где числа a, b — целые. Найдите ab.
11)На рисунке изображён график функции вида f(x)=2ax+b, где числа a, b — целые. Найдите сумму коэффициентов a+b, если f(1)=10.
12)На рисунке изображён график функции вида f(x)=log2(ax+b)+2, где числа a, b — целые. Найдите сумму коэффициентов a+b.
13)На рисунке изображён график функции вида f(x)=ln(a+x)+b, где числа a, b — целые. Найдите сумму коэффициентов a+b, если A(0;ln2e).
Задание №3 ЕГЭ 2022 по математике профиль прототипы с ответами
Задание №4 ЕГЭ 2022 по математике профиль прототипы с ответами
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
На рисунке изображены графики функций f(x)=-2x²-2x+4 и g(x)=ax²+bx+c, которые пересекаются в точках A(-1;4) и В(х₀;y₀). Найдите х₀.
Решение:
Правая парабола пересекает ось y в точке (0;4), значит, ее уравнение задается следующей формулой: f(x)=-2x²-2x+4
Левая парабола пересекает ось y в точке (0;1), значит ее уравнение задается следующей формулой: g(x)=ax²+bx+1
Функция g(x) проходит через точку (-4;1), значит:
1=16a-4b+1
16a-4b=0
16a=4b
b=4a (1)
Функция g(x) проходит через точку (-1;4), значит:
4=a-b+1
a-b=3 (2)
Подставим (1) в (2) и найдем а:
a-4a=3
-3a=3
a=-1
Найдем b, подставив a=-1 в (1):
b=-4
Имеем следующее:
f(x) =2x²+3x-4,
g(x) =-x²-4x+1.
Так как функции пересекаются, то f(x) = g(x):
-2x²-2x+4 = -x²-4x+1
x²-2x-3=0
D = (-2)² – 4·1·(-3) =4 + 12 = 16
x₁ = х₀ = 3 – абсцисса точки В,
x₂ = -1 – абсцисса точки А.
Ответ: 3
Графики функций
Щёлкать мышкой не надо. Презентация с голосовым сопровождением и будет перелистываться сама
Параболы
3
1
Общий вид уравнения параболы
Значит ,
На первом рисунке
X
X
На втором рисунке
4
2
На третьем
X
На четвёртом
X
Уравнение сдвинутой параболы:
показывает сдвиг параболы по оси Ох (сдвиг вспомогательной оси У относительно основной )
показывает сдвиг параболы по оси Оу (сдвиг вспомогательной оси Х относительно основной )
Пример
2
На рисунке изображён график функции вида
где числа a , b и c — целые. Найдите значение .
-1
Решение
По уравнению видно, что представленный график является параболой.
Общий вид уравнения сдвинутой параболы
Ответ: 6,4375