Решение задач егэ с игральной костью

Решение задач о бросании игральных костей

найти вероятность, что при бросании игральных костей

Еще одна популярная задача теории вероятностей (наравне с задачей о подбрасывании монет) — задача о подбрасывании игральных костей.

Обычно задача звучит так: бросается одна или несколько игральных костей (обычно 2, реже 3). Необходимо найти вероятность того, что число очков равно 4, или сумма очков равна 10, или произведение числа очков делится на 2, или числа очков отличаются на 3 и так далее.

Основной метод решения подобных задач — использование формулы классической вероятности, который мы и разберем на примерах ниже.

Ознакомившись с методами решения, вы сможете скачать супер-полезный Excel-файл для расчета вероятности при бросании 2 игральных костей (с таблицами и примерами).

Нужна помощь? Решаем теорию вероятностей на отлично

Спасибо за ваши закладки и рекомендации

Одна игральная кость

С одной игральной костью дело обстоит до неприличия просто. Напомню, что вероятность находится по формуле $P=m/n$, где $n$ — число всех равновозможных элементарных исходов эксперимента с подбрасыванием кубика или кости, а $m$ — число тех исходов, которые благоприятствуют событию.

Пример 1. Игральная кость брошена один раз. Какова вероятность, что выпало четное число очков?

Так как игральная кость представляет собой кубик (еще говорят, правильная игральная кость, то есть кубик сбалансированный, так что выпадает на все грани с одинаковой вероятностью), граней у кубика 6 (с числом очков от 1 до 6, обычно обозначаемых точкам), то и общее число исходов в задаче $n=6$. Благоприятствуют событию только такие исходы, когда выпадет грань с 2, 4 или 6 очками (только четные), таких граней $m=3$. Тогда искомая вероятность равна $P=3/6=1/2=0.5$.

Пример 2. Брошен игральный кубик. Найти вероятность выпадения не менее 5 очков.

Рассуждаем также, как и в предыдущем примере. Общее число равновозможных исходов при бросании игрального кубика $n=6$, а условию «выпало не менее 5 очков», то есть «выпало или 5, или 6 очков» удовлетворяют 2 исхода, $m=2$. Нужная вероятность равна $P=2/6=1/3=0.333$.

Даже не вижу смысла приводить еще примеры, переходим к двум игральным костям, где все интереснее и сложнее.

Две игральные кости

Когда речь идет о задачах с бросанием 2 костей, очень удобно использовать таблицу выпадения очков. По горизонтали отложим число очков, которое выпало на первой кости, по вертикали — число очков, выпавшее на второй кости. Получим такую заготовку (обычно я делаю ее в Excel, файл вы сможете скачать ниже):

таблица очков при бросании 2 игральных костей

А что же в ячейках таблицы, спросите вы? А это зависит от того, какую задачу мы будем решать. Будет задача про сумму очков — запишем туда сумму, про разность — запишем разность и так далее. Приступаем?

Пример 3. Одновременно бросают 2 игральные кости. Найти вероятность того, что в сумме выпадет менее 5 очков.

Сначала разберемся с общим числом исходов эксперимента. когда мы бросали одну кость, все было очевидно, 6 граней — 6 исходов. Здесь костей уже две, поэтому исходы можно представлять как упорядоченные пары чисел вида $(x,y)$, где $x$ — сколько очков выпало на первой кости (от 1 до 6), $y$ — сколько очков выпало на второй кости (от 1 до 6). Очевидно, что всего таких пар чисел будет $n=6cdot 6=36$ (и им соответствуют как раз 36 ячеек в таблице исходов).

Вот и пришло время заполнять таблицу. В каждую ячейку занесем сумму числа очков выпавших на первой и второй кости и получим уже вот такую картину:

таблица суммы очков при бросании 2 игральных костей

Теперь эта таблица поможем нам найти число благоприятствующих событию «в сумме выпадет менее 5 очков» исходов. Для этого подсчитаем число ячеек, в которых значение суммы будет меньше 5 (то есть 2, 3 или 4). Для наглядности закрасим эти ячейки, их будет $m=6$:

таблица суммы очков менее 5 при бросании 2 игральных костей

Тогда вероятность равна: $P=6/36=1/6$.

Пример 4. Брошены две игральные кости. Найти вероятность того, что произведение числа очков делится на 3.

Составляем таблицу произведений очков, выпавших на первой и второй кости. Сразу выделяем в ней те числа, которые кратны 3:

таблица произведения очков при бросании 2 игральных костей

Остается только записать, что общее число исходов $n=36$ (см. предыдущий пример, рассуждения такие же), а число благоприятствующих исходов (число закрашенных ячеек в таблице выше) $m=20$. Тогда вероятность события будет равной $P=20/36=5/9$.

Как видно, и этот тип задач при должной подготовке (разобрать еще пару тройку задач) решается быстро и просто. Сделаем для разнообразия еще одну задачу с другой таблицей (все таблицы можно будет скачать внизу страницы).

Пример 5. Игральную кость бросают дважды. Найти вероятность того, что разность числа очков на первой и второй кости будет от 2 до 5.

Запишем таблицу разностей очков, выделим в ней ячейки, в которых значение разности будет между 2 и 5:

таблица разности очков при бросании 2 игральных костей

Итак, что общее число равновозможных элементарных исходов $n=36$, а число благоприятствующих исходов (число закрашенных ячеек в таблице выше) $m=10$. Тогда вероятность события будет равной $P=10/36=5/18$.

Итак, в случае, когда речь идет о бросании 2 костей и простом событии, нужно построить таблицу, выделить в ней нужные ячейки и поделить их число на 36, это и будет вероятностью. Помимо задач на сумму, произведение и разность числа очков, также встречаются задачи на модуль разности, наименьшее и наибольшее выпавшее число очков (подходящие таблицы вы найдете в файле Excel).

Другие задачи про кости и кубики

Конечно, разобранными выше двумя классами задач про бросание костей дело не ограничивается (просто это наиболее часто встречаемые в задачниках и методичках), существуют и другие. Для разнообразия и понимания примерного способа решения разберем еще три типовых примера: на бросание 3 игральных костей, на условную вероятность и на формулу Бернулли.

Пример 6. Бросают 3 игральные кости. Найдите вероятность того, что в сумме выпало 15 очков.

В случае с 3 игральными костями таблицы составляют уже реже, так как их нужно будет аж 6 штук (а не одна, как выше), обходятся простым перебором нужных комбинаций.

Найдем общее число исходов эксперимента. Исходы можно представлять как упорядоченные тройки чисел вида $(x,y,z)$, где $x$ — сколько очков выпало на первой кости (от 1 до 6), $y$ — сколько очков выпало на второй кости (от 1 до 6), $z$ — сколько очков выпало на третьей кости (от 1 до 6). Очевидно, что всего таких троек чисел будет $n=6cdot 6cdot 6=216$ .

Теперь подберем такие исходы, которые дают в сумме 15 очков.

$$
(3,6,6), (6,3,6), (6,6,3),\
(4,5,6), (4,6,5), (5,4,6), (6,5,4), (5,6,4), (6,4,5),\
(5,5,5).
$$

Получили $m=3+6+1=10$ исходов. Искомая вероятность $P=10/216=0.046$.

Пример 7. Бросают 2 игральные кости. Найти вероятность того, что на первой кости выпало не более 4 очков, при условии, что сумма очков четная.

Наиболее простой способ решения этой задачи — снова воспользоваться таблицей (все будет наглядно), как и ранее. Выписываем таблицу сумм очков и выделяем только ячейки с четными значениями:

таблица сумм очков (четные) при бросании 2 игральных костей

Получаем, что согласно условию эксперимента, всего есть не 36, а $n=18$ исходов (когда сумма очков четная).

Теперь из этих ячееек выберем только те, которые соответствуют событию «на первой кости выпало не более 4 очков» — то есть фактически ячейки в первых 4 строках таблицы (выделены оранжевым), их будет $m=12$.

таблица сумм очков (четные, х до 4) при бросании 2 игральных костей

Искомая вероятность $P=12/18=2/3.$

Эту же задачу можно решить по-другому, используя формулу условной вероятности. Введем события:
А = Сумма числа очков четная
В = На первой кости выпало не более 4 очков
АВ = Сумма числа очков четная и на первой кости выпало не более 4 очков
Тогда формула для искомой вероятности имеет вид:
$$
P(B|A)=frac{P(AB)}{P(A)}.
$$
Находим вероятности. Общее число исходов $n=36$, для события А число благоприятствующих исходов (см. таблицы выше) $m(A)=18$, а для события АВ — $m(AB)=12$. Получаем:
$$
P(A)=frac{m(A)}{n}=frac{18}{36}=frac{1}{2}; quad P(AB)=frac{m(AB)}{n}=frac{12}{36}=frac{1}{3};\
P(B|A)=frac{P(AB)}{P(A)}=frac{1/3}{1/2}=frac{2}{3}.
$$
Ответы совпали.

Пример 8. Игральный кубик брошен 4 раза. Найти вероятность того, что четное число очков выпадет ровно 3 раза.

В случае, когда игральный кубик бросается несколько раз, а речь в событии идет не о сумме, произведении и т.п. интегральных характеристиках, а лишь о количестве выпадений определенного типа, можно для вычисления вероятности использовать формулу Бернулли.

Итак, имеем $n=4$ независимых испытания (броски кубика), вероятность выпадения четного числа очков в одном испытании (при одном броске кубика) равна $p=3/6=1/2=0.5$ (см. выше задачи для одной игральной кости).

Тогда по формуле Бернулли $P=P_n(k)=C_n^k cdot p^k cdot (1-p)^{n-k}$, подставляя $k=3$, найдем вероятность того, что четное число очков появится 3 раза:
$$
P_4(3)=C_4^3 cdot left(1/2right)^3 cdot left(1-1/2right)^1=4 cdot left(1/2right)^4=1/4=0,25.
$$

Приведем еще пример, решаемый аналогичным образом.

Пример 9. Игральную кость бросают 8 раз. Найти вероятность того, что шестёрка появится хотя бы один раз.

Подставляем в формулу Бернулли следующие значения: $n=8$ (число бросков), $p=1/6$ (вероятность появления 6 при одном броске), $kge 1$ (хотя бы один раз появится шестерка). Прежде чем вычислять эту вероятность, напомню, что практически все задачи с формулировкой «хотя бы один…» удобно решать, переходя к противоположному событию «ни одного…». В нашем примере сначала стоит найти вероятность события «Шестёрка не появится ни разу», то есть $k=0$:
$$
P_8(0)=C_8^0 cdot left(1/6right)^0 cdot left(1-1/6right)^8=left(5/6right)^8.
$$
Тогда искомая вероятность будет равна
$$
P_8(kge 1)=1-P_8(0)=1-left(5/6right)^8=0.767.
$$

А еще у нас есть онлайн калькулятор для формулы Бернулли

Полезные ссылки

таблица очков при бросании игральных костей

Для наглядного и удобного расчета вероятностей в случае бросания двух игральных костей я сделала
Файл с таблицами для расчета вероятности.

В нем приведены таблицы суммы, произведения, разности, минимума, максимума, модуля разности числа очков.

Вводя число благоприятствующих исходов в специальную ячейку вы получите рассчитанную вероятность (в обычных и десятичных дробях). Файл открывается программой Excel.

Еще по теории вероятностей:

  • Онлайн калькуляторы
  • Онлайн учебник
  • Более 200 примеров
  • Решенные контрольные
  • Формулы и таблицы
  • Сдача тестов
  • Решение на заказ
  • Онлайн помощь

Спасибо за ваши закладки и рекомендации

В решебнике вы найдете более 400 задач о бросании игральных костей и кубиков с полными решениями (вводите часть текста для поиска своей задачи):

ЕГЭ _ ПРОФИЛЬНАЯ МАТЕМАТИКА _ Задание №4 _ Вероятности сложных событий _ Игральная кость

Задача 1. Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 3. Какова вероятность того, что для этого потребовалось ровно два броска? Ответ округлите до сотых.

Решение.

1 способ.

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

Ответ. 0,4

2 способ.

6

6

6

6

3

3

3

2

2

2

1

1

1

5

5

5

5

4

4

4

4

3

2

1

Ответ. 0,4

Реши самостоятельно.

№ п/п

ЗАДАЧА

ОТВЕТ

1

Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 2. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

0,31

2

Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 4. Какова вероятность того, что для этого потребовалось два броска?

0,5

3

Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 5. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

0,56

4

Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 6. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

0,58

5

Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 7. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

0,42

6

Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 8. Какова вероятность того, что для этого потребовалось два броска?

0,28

7

Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 9. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

0,17

8

Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 10. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

0,08

9

Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 3. Какова вероятность того, что для этого потребовалось три броска? Ответ округлите до сотых.

0,08

10

Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 2. Какова вероятность того, что для этого потребовалось три броска? Ответ округлите до тысячных.

0,028

РЕШЕНИЯ.

1

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

2

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

3

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

4

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

5

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

6

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

7

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

8

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

9

1-й бросок

2-й бросок

3-й бросок

исходов

1

1

2,3,4,5,6

5

1

2

1,2,3,4,5,6

6

2

1

1,2,3,4,5,6

6

10

1-й бросок

2-й бросок

3-й бросок

исходов

1

1

1,2,3,4,5,6

6

Задача 2. Игральную кость бросили два раза. Известно, что три очка не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 8».

Решение.

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

«Три очка не выпали ни разу» – 25 исходов (клетки закрашены серым цветом)

«Сумма выпавших очков окажется равна 8» – 3 исхода (клетки отмечены символом +)

Ответ. 0,12

Реши самостоятельно.

№ п/п

ЗАДАЧА

ОТВЕТ

1

Игральную кость бросили два раза. Известно, что шесть очков не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 2».

0,04

2

Игральную кость бросили два раза. Известно, что два очка не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 12».

0,04

3

Игральную кость бросили два раза. Известно, что два очка не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 4».

0,08

4

Игральную кость бросили два раза. Известно, что четыре очка не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 11».

0,08

5

Игральную кость бросили два раза. Известно, что пять очков не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 10».

0,08

6

Игральную кость бросили два раза. Известно, что два очка не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 10».

0,12

7

Игральную кость бросили два раза. Известно, что шесть очков не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 4».

0,12

8

Игральную кость бросили два раза. Известно, что пять очков не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 7».

0,16

9

Игральную кость бросили два раза. Известно, что четыре очка не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 8».

0,16

10

Игральную кость бросили два раза. Известно, что шесть очков не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 5».

0,16

1

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

2

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

3

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

4

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

5

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

6

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

7

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

8

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

9

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

10

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

Задача 3. Игральный кубик бросают дважды. Известно, что в сумме выпало 8 очков. Найдите вероятность того, что в первый раз выпало 6 очков.

Решение.

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

«В сумме выпало 8 очков» – 5 исходов (клетки закрашены серым цветом)

«В первый раз выпало 6 очков» – 1 исход (клетки отмечены символом +)

Ответ. 0,2

Реши самостоятельно.

№ п/п

ЗАДАЧА

ОТВЕТ

1

Игральный кубик бросают дважды. Известно, что в сумме выпало 6 очков. Найдите вероятность того, что во второй раз выпало 4 очка.

0,2

2

Игральный кубик бросают дважды. Известно, что в сумме выпало 3 очка. Найдите вероятность того, что в первый раз выпало 2 очка.

0,5

3

Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.

0,5

4

Игральный кубик бросают дважды. Известно, что в сумме выпало 5 очков. Найдите вероятность того, что в первый раз выпало 2 очка.

0,25

5

Игральный кубик бросают дважды. Известно, что в сумме выпало 9 очков. Найдите вероятность того, что во второй раз выпало 5 очков.

0,25

6

Игральный кубик бросают дважды. Известно, что в сумме выпало 8 очков. Найдите вероятность того, что во второй раз выпало 3 очка.

0,2

РЕШЕНИЯ.

1

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

2

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

3

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

4

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

5

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

6

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

Задача 4. При двукратном бросании игральной кости в сумме выпало 5 очков. Какова вероятность того, что хотя бы раз выпало 1 очко?

Решение.

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

«В сумме выпало 5 очков» – 4 исхода (клетки закрашены серым цветом)

«Хотя бы раз выпало 1 очко» – 2 исхода (клетки отмечены символом +)

Ответ. 0,5

Реши самостоятельно.

№ п/п

ЗАДАЧА

ОТВЕТ

1

При двукратном бросании игральной кости в сумме выпало 11 очков. Какова вероятность того, что хотя бы раз выпало 5 очков?

1

2

При двукратном бросании игральной кости в сумме выпало 3 очка. Какова вероятность того, что хотя бы раз выпало 2 очка?

1

3

При двукратном бросании игральной кости в сумме выпало 6 очков. Какова вероятность того, что хотя бы раз выпало 2 очка?

0,4

4

При двукратном бросании игральной кости в сумме выпало 6 очков. Какова вероятность того, что хотя бы раз выпало 3 очка?

0,2

5

При двукратном бросании игральной кости в сумме выпало 8 очков. Какова вероятность того, что хотя бы раз выпало 6 очков?

0,4

6

При двукратном бросании игральной кости в сумме выпало 8 очков. Какова вероятность того, что хотя бы раз выпало 4 очка?

0,2

РЕШЕНИЯ.

1

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

2

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

3

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

4

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

5

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

6

Второй бросок

1

2

3

4

5

6

Первый бросок

1

2

3

4

5

6

Пояснения.

Всего исходов

при 1 броске – 6

при 2 бросках — 36

при 3 бросках — 216

Задача 5. Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 3. Какова вероятность того, что было сделано два броска? Ответ округлите до сотых.

Решение.

1 бросок

3

(1 случай)

2 броска

1+2, 2+1

(2 случая)

3 броска

1+1+1

(1 случай)

4 броска

нет таких случаев

ВСЕГО ИСХОДОВ

БЛАГОПРИЯТНЫЙ ИСХОД

(при 2-х бросках)

Ответ. 0,24

Реши самостоятельно.

№ п/п

ЗАДАЧА

ОТВЕТ

1

Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 3. Какова вероятность того, что был сделан один бросок? Ответ округлите до сотых.

0,73

2

Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 3. Какова вероятность того, что было сделано три броска? Ответ округлите до сотых.

0,02

3

Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 4. Какова вероятность того, что потребовалось сделать три броска? Ответ округлите до сотых.

0,05

4

Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 4. Какова вероятность того, что был сделан один бросок? Ответ округлите до сотых.

0,63

РЕШЕНИЯ.

1 бросок

3

(1 случай)

2 броска

1+2, 2+1

(2 случая)

3 броска

1+1+1

(1 случай)

4 броска

нет таких случаев

ВСЕГО ИСХОДОВ

БЛАГОПРИЯТНЫЙ ИСХОД

(при 2-х бросках)

1 бросок

3

(1 случай)

2 броска

1+2, 2+1

(2 случая)

3 броска

1+1+1

(1 случай)

4 броска

нет таких случаев

ВСЕГО ИСХОДОВ

БЛАГОПРИЯТНЫЙ ИСХОД

(при 2-х бросках)

1 бросок

4

(1 случай)

2 броска

1+3, 3+1, 2+2

(3 случая)

3 броска

1+1+2, 1+2+1, 2+1+1

(3 случая)

4 броска

1+1+1+1

(1 случай)

5 бросков

Нет таких случаев

ВСЕГО ИСХОДОВ

БЛАГОПРИЯТНЫЙ ИСХОД

(при 2-х бросках)

1 бросок

4

(1 случай)

2 броска

1+3, 3+1, 2+2

(3 случая)

3 броска

1+1+2, 1+2+1, 2+1+1

(3 случая)

4 броска

1+1+1+1

(1 случай)

5 бросков

Нет таких случаев

ВСЕГО ИСХОДОВ

БЛАГОПРИЯТНЫЙ ИСХОД

(при 2-х бросках)

В задачах по теории вероятностей, которые представлены в ЕГЭ номером №4,   кроме задач о выборе объектов из набора, встречаются задачи на подбрасывание монеты и о бросках кубика. Их сегодня мы и разберем.

Задачи о подбрасывании монеты

Задача 1. Симметричную монету бросают дважды. Найдите вероятность того, что решка выпадет ровно один раз.

Решение.

В таких задачах удобно выписать все возможные исходы, записывая их при помощи букв Р (решка) и О (орел). Так, исход ОР означает, что при первом броске выпал орел, а при втором – решка. В рассматриваемой задаче возможны 4 исхода: РР, РО, ОР, ОО. Благоприятствуют событию «решка выпадет ровно один раз» 2 исхода: РО и ОР. Искомая вероятность равна frac {2}{4}=0,5.

Ответ: 0,5.

Задача 2. Симметричную монету бросают трижды, Найдите вероятность того, что орел выпадет ровно два раза.

Решение.

Всего возможны 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Благоприятствуют событию «орёл выпадет ровно два раза» 3 исхода: РОО, ОРО, ООР. Искомая вероятность равна frac {3}{8}=0,375.

Ответ: 0,375.

Задача 3. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнет игру с мячом. Команда «Изумруд» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Изумруд» выиграет жребий ровно один раз.

Решение.

Эта задача аналогична предыдущей. Пусть каждый раз выпадение решки означает выигрыш жребия «Изумрудом» (такое предположение не влияет на вычисление вероятностей). Тогда возможны 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Благоприятствуют событию «решка выпадет ровно один раз» 3 исхода: РОО,ОРО,ООР. Искомая вероятность равна    frac {3}{8}=0,375.

Ответ: 0,375.

Задача 4. Симметричную монету бросают трижды. Найдите вероятность того, что наступит исход РОО (в первый раз выпадает решка, во второй и третий — орёл).

Решение.

Как и в предыдущих задачах, здесь имеется 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Вероятность наступления исхода РОО равна frac {1}{8}=0,125.

     Ответ: 0,125.

Задачи о бросках кубика 

Задача 5. Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «сумма очков равна 8»?

Решение.

Исходом будем считать пару чисел: очки при первом и втором броске. Тогда указанному событию благоприятствуют следующие исходы: 2 – 6, 3 – 5, 4 – 4, 5 – 3, 6 – 2. Их количество равно 5. Ответ: 5.

Задача 6. Одновременно бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка. Результат округлите до сотых.

Решение.

Исходом будем считать пару чисел: очки, выпавшие на первой и второй игральной кости. Всего имеется 36 равновозможных исходов (на первой кости число от 1 до 6, на второй – также число от 1 до 6).

Вообще, если бросают n  игральных костей (кубиков), то имеется 6^{n} равновозможных исходов. Столько же исходов получается, если один и тот же кубик бросают n раз подряд.

 Событию «в сумме выпало 4» благоприятствуют следующие исходы: 1 – 3, 2 – 2, 3 – 1. Их количество равно 3. Искомая вероятность равна frac {3}{36}=frac {1}{12}.

Для подсчёта приближённого значения дроби  удобно воспользоваться делением уголком. Таким образом, frac {1}{12} приблизительно равна 0,083…, округлив до сотых имеем 0,08.

Ответ: 0,08

Задача 7. Одновременно бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат округлите до сотых.

Решение.

Исходом будем считать тройку чисел: очки, выпавшие на первой, второй и третьей игральной кости. Всего имеется 6^{3}=216 равновозможных исходов. Событию «в сумме выпало 5» благоприятствуют следующие исходы: 1–1–3, 1–3–1, 3–1–1, 1–2–2, 2–1–2, 2–2–1. Их количество равно 6. Искомая вероятность равна  frac {6}{216}=frac {1}{36}. Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком. Приблизительно получаем 0,027…, округлив до сотых, имеем  0,03.

Ответ: 0,03.

Подведем итог

После изучения материала по решению простых задач по теории вероятностей рекомендую выполнить задачи для самостоятельного решения, которые мы публикуем на нашем канале Telegram. Вы также можете проверить правильность их выполнения, внеся свои ответы в предлагаемую форму.

Также рекомендую изучить «Задачи на вычисление» , «Площадь треугольника» и другие уроки по решению заданий ЕГЭ по математике, которые представлены на нашем канале Youtube. 

Спасибо, что поделились статьей в социальных сетях

Источник «Подготовка к ЕГЭ. Математика. Теория вероятностей». Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова

Рассмотрим решение новых задач по теории вероятностей, которые появятся в ЕГЭ по математике в 2022 году.

Вы можете попробовать решить задачи самостоятельно, а потом сверить свое решение с предложенным.

1. № 508755

Игральный кубик бросают дважды. Известно, что в сумме выпало 8 очков. Найдите вероятность того, что в первый раз выпало 6 очков. 

Решение. показать

2. № 508769

Игральную кость бросили два раза. Известно, что три очка не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 8». 

Решение. показать

3. № 508781

Симметричную монету бросают 11 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?

Решение. показать

4. № 508791

В одном ресторане в г. Тамбове администратор предлагает гостям сыграть в «Шеш-беш»: гость бросает одновременно две игральные кости. Если он выбросит комбинацию 5 и 6 очков хотя бы один раз из двух попыток, то получит комплимент от ресторана: чашку кофе или десерт бесплатно. Какова вероятность получить комплимент? Результат округлите до сотых.

Решение. показать

5. № 508793

Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 4. Какова вероятность того, что потребовалось сделать три броска? Результат округлите до сотых.

Решение. показать

6. № 508798

Игральную кость бросали до тех пор, пока сумма выпавших очков не превысила число 3. Какова вероятность того, что для этого потребовалось 3 броска? Ответ округлите до сотых.

Решение. показать

7. № 508809

Телефон передает SMS-сообщение. В случае неудачи телефон делает следующую попытку. Вероятность того, что сообщение удастся передать без ошибок в каждой отдельной попытке, равна 0,2. Найдите вероятность того, что для передачи сообщения потребуется не больше двух попыток. 

Решение. показать

8. № 508820

При подозрении на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 91% случаев. Если заболевание нет, то тест выявляет отсутствие заболевания в среднем в 93% случаев. Известно, что в среднем тест оказывается положительным у 10% пациентов, направленных на тестирование. При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание? Результат округлите до сотых.

Решение. показать

9. № 508831

Стрелок в тире стреляет по мишени до тех пор, пока не поразит ее. Известно, что он попадает в цель с вероятностью 0,2 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,5?

Решение. показать

10. № 508843

В ящике три красных и три синих фломастера. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что в первый раз синий фломастер появится третьим по счету?

Решение. показать

11. №508851

Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень дается не более двух выстрелов, и известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,6. Во сколько раз вероятность события «стрелок поразит ровно три мишени» больше вероятность события «стрелок поразит ровно две мишени».

Решение. показать

12. № 508868

В викторине участвуют 10 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды. Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником. Известно, что в первых шести играх победила команда А. Какова вероятность, что эта команда выиграет седьмой раунд.

Решение. показать

13. № 508871

Турнир по настольному теннису проводится по олимпийской системе: игроки случайным образом разбиваются на пары; проигравший в каждой паре выбывает из турнира, а победитель выходит в следующий тур, где встречается со следующим противником, который определен жребием. Всего в турнире 8 игроков, все они играют одинаково хорошо, поэтому в каждой встрече вероятность выигрыша и поражения у каждого игрока равна 0,5. Среди игроков два друга — Иван и Алексей. Какова вероятность того, что этим двоим в каком-то туре придется сыграть друг с другом?   

Решение. показать

14. № 508887

Первый игральный кубик обычный, а на гранях второго кубика нет четных чисел, а нечетные числа встречаются по два раза. В остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 3 и 5 очков. Какова вероятность, что бросали второй кубик?

Решение. показать

15. № 509078

Маша коллекционирует принцесс из Киндер-сюрпризов.  Всего в коллекции 10 разных принцесс, и они равномерно распределены, то есть в каждом Киндер-сюрпризе может с равными вероятностями оказаться любая из 10 принцесс. У Маши есть две разные принцессы из коллекции. Какова вероятность того, что для получения следующей принцессы Маше придется купить еще 2 или 3 шоколадных яйца?

Решение. показать

15. № 508885

Первый член последовательности целых чисел равен 0. Каждый следующий член последовательности с вероятность Подготовка к ГИА и ЕГЭ на единицу больше предыдущего и с вероятность Подготовка к ГИА и ЕГЭ на единицу меньше предыдущего. Какова вероятность того, что какой-то член этой последовательности окажется равен -1?

Решение. показать

И.В. Фельдман, репетитор по математике

4. Введение в теорию вероятностей


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Сложные задачи по теории вероятности

Общая памятка по всем разделам теории вероятностей:


Задание
1

#3858

Уровень задания: Равен ЕГЭ

Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы (4) очка в двух играх. Если команда выигрывает, она получает (3) очка, в случае ничьей — (1) очко, если проигрывает — (0) очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны (0,3).

Чтобы команда в двух играх набрала не менее (4) очков, ей нужно: либо 1) выиграть обе игры, либо 2) выиграть в одной из игр и сыграть вничью в другой игре.
Так как вероятности выиграть и проиграть одинакова и равна (0,3), то вероятность сыграть вничью равна (1-0,3-0,3=0,4).
Следовательно, вероятности в этих случаях равны соответственно:
1) (0,3cdot 0,3)
2) (0,3cdot 0,4+0,4cdot 0,3) (выиграть в первой игре и сыграть вничью во второй или сыграть вничью в первой и выиграть во второй).
Следовательно, вероятность того, что команда выйдет в следующий круг соревнований, равна [0,3cdot 0,3+0,3cdot 0,4+0,4cdot 0,3=0,33]

Ответ: 0,33


Задание
2

#2739

Уровень задания: Сложнее ЕГЭ

Илья решает задачу по геометрии, в которой дан четырёхугольник (ABCD), причём (AB = 5), (BC = 6), (CD = 4), (AD = 10). В условии задачи сказано, что одна из вершин является центром некоторой окружности и Илья думает, какую вершину ему выбрать в качестве центра этой самой окружности.

Известно, что вероятность выбора каждой конкретной вершины пропорциональна сумме длин сторон четырёхугольника (ABCD), проходящих через эту вершину. Какова вероятность того, что Илья выберет вершину (B)?

Через вершину (A) проходят стороны (AB) и (AD), их сумма: (AB + AD = 15).

Через вершину (B) проходят стороны (AB) и (BC), их сумма: (AB + BC = 11).

Через вершину (C) проходят стороны (BC) и (CD), их сумма: (BC + CD = 10).

Через вершину (D) проходят стороны (CD) и (DA), их сумма: (CD + DA = 14).

Обозначим вероятность выбора вершины (A) через (P(A)) (для остальных вершин аналогично). Тогда по условию имеем: [P(A) = 15k,qquad P(B) = 11k,qquad P(C) = 10k,qquad P(D) = 14k,,] но (P(A) + P(B) + P(C) + P(D) = 1), тогда (k = 0,02), откуда находим: (P(B) = 0,22).

Ответ: 0,22


Задание
3

#191

Уровень задания: Сложнее ЕГЭ

Монетку подбросили 10 раз. Какова вероятность того, что выпало не менее 9 орлов? Ответ округлите до тысячных.

Условие того, что выпало не менее 9 орлов эквивалентно тому, что выпало не более 1 решки, то есть либо ровно 1 решка, либо 0 решек.

Количество всевозможных различных исходов в серии из 10 испытаний равно (2^{10} = 1024).

Среди них есть 11 исходов, подходящих под условие: (Орёл; Орёл; …; Орёл), (Орёл; Орёл; …; Орёл; Решка), (Орёл; Орёл; …; Решка; Орёл), …, (Решка; Орёл; …; Орёл), следовательно, искомая вероятность равна [dfrac{11}{1024}.] После округления получим (0,011).

Ответ: 0,011


Задание
4

#190

Уровень задания: Сложнее ЕГЭ

Монетку подбросили 3 раза. Какова вероятность того, что выпало не менее 3 орлов? Ответ округлите до тысячных.

Условие того, что выпало не менее 3 орлов эквивалентно тому, что выпали только орлы.

Количество всевозможных различных исходов в серии из 3 испытаний равно (2^3 = 8) . Среди них есть ровно один исход, подходящий под условие: (Орёл; Орёл; Орёл). Таким образом, искомая вероятность равна [dfrac{1}{8} = 0,125.]

Ответ: 0,125


Задание
5

#189

Уровень задания: Сложнее ЕГЭ

Монетку подбросили 2 раза. Какова вероятность того, что выпало не менее 1 орла? Ответ округлите до тысячных.

Всевозможных исходов в серии из 2 подбрасываний может быть (2^2 = 4): (Орёл; Орёл), (Орёл; Решка), (Решка; Орёл), (Решка; Решка).

Среди выписанных (всевозможных) исходов под условие задачи подходят первые 3, следовательно, искомая вероятность равна [dfrac{3}{4} = 0,75.]

Ответ: 0,75


Задание
6

#2658

Уровень задания: Сложнее ЕГЭ

Игорь трижды подбрасывает правильную игральную кость. Какова вероятность того, что за эти три подбрасывания ровно один раз выпадет число, кратное трём, а сумма результатов подбрасываний не будет делиться на (3)? Ответ округлите до сотых.

Так как игральная кость правильная, то вероятность выпадения каждой грани равна (dfrac{1}{6}). Среди чисел на гранях есть два числа, дающих при делении на (3) остаток (0), два числа, дающих при делении на (3) остаток (1) и два числа, дающих при делении на (3) остаток (2).

Тогда вероятность за одно подбрасывание получить, например, число, дающее при делении на (3) остаток (1), равна (dfrac{1}{3}). С другими остатками аналогично.

Условие задачи можно переформулировать в следующем виде: какова вероятность за три подбрасывания получить результаты, остатки от деления на (3) которых будут содержать единственный (0) и два одинаковых числа?

Таким образом, нас устраивают исходы, остатки от деления на (3) которых будут иметь вид:

[begin{aligned}
&0,quad 1,quad 1\
&1,quad 0,quad 1\
&1,quad 1,quad 0\
&0,quad 2,quad 2\
&2,quad 0,quad 2\
&2,quad 2,quad 0,.
end{aligned}]

Вероятность любого из выписанных исходов равна [dfrac{1}{3}cdot dfrac{1}{3}cdot dfrac{1}{3},.] При этом различных исходов здесь шесть, следовательно, вероятность получения подходящего исхода равна [6cdot dfrac{1}{3}cdot dfrac{1}{3}cdot dfrac{1}{3} = dfrac{2}{9},.] После округления получим ответ (0,22).

Ответ: 0,22


Задание
7

#2765

Уровень задания: Сложнее ЕГЭ

Таня заметила, что в казино “Подкинем” используют неправильную игральную кость (т.е. не у всех граней вероятности выпадения одинаковы). При этом она установила, что вероятность выпадения чётного числа равна (0,6); вероятность выпадения числа, делящегося на (3), равна (0,3); вероятность того, что выпадет (1) или (5), равна (0,22). Найдите вероятность того, что на этой игральной кости выпадет число (3). Ответ округлите до сотых.

Вероятность выпадения числа (n) обозначим через (P({n})), вероятность выпадения одного из чисел (m) и (n) обозначим через (P({m; n})), а вероятность выпадения одного из чисел (m), (n) и (k) обозначим через (P({m; n; k})). Тогда [P({2; 4; 6}) = 0,6qquadLeftrightarrowqquad P({1; 3; 5}) = 1 — 0,6 = 0,4]

При этом (P({1; 5}) = 0,22), но ведь (P({1; 3; 5}) — P({1; 5}) = P({3})), следовательно, [P({3}) = 0,4 — 0,22 = 0,18,.]

Ответ: 0,18

Если выпускник готовится к сдаче ЕГЭ по математике профильного уровня, ему необходимо научиться решать задачи на применение теории вероятности повышенной сложности. Как показывает практика многих лет, такие задания являются обязательной частью программы аттестационного испытания. Поэтому если учащийся не до конца понимает принцип решения сложных задач на теорию вероятности, ему обязательно стоит вновь разобраться в данной теме.

Вместе с образовательным порталом «Школково» старшеклассники смогут качественно подготовиться к прохождению аттестационного испытания. Наш сайт позволит определить наиболее сложные темы и восполнить пробелы в знаниях. Опытные специалисты «Школково» подготовили весь необходимый материал, изложив его таким образом, чтобы школьники с любым уровнем подготовки смогли легко справиться с решением сложных задач ЕГЭ на теорию вероятности. Базовая информация по данной теме представлена в разделе «Теоретическая справка».

Чтобы попрактиковаться в выполнении сложных задач ЕГЭ по теории вероятности, школьники могут выполнить соответствующие упражнения. Простые и сложные задания, подобранные нашими специалистами, содержат подробные алгоритмы решения и правильные ответы. База заданий регулярно обновляется и дополняется.

Выполнять упражнения школьники из Москвы и других российских городов могут в онлайн-режиме. При необходимости задания по теории вероятности в ЕГЭ можно сохранить в разделе «Избранное». Благодаря этому вы сможете быстро найти интересующие примеры и обсудить алгоритмы нахождения правильного ответа с преподавателем.

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Понравилась статья? Поделить с друзьями:
  • Решу егэ биология 10216
  • Решение задач егэ по информатике на питоне
  • Решу егэ биология 10106
  • Решение задач егэ по географии
  • Решу егэ биологические науки