Решу егэ 100759

Тренировочный вариант №27 пробник решу ЕГЭ 2023 по математике 11 класс профильный уровень от 12 марта 2023 года с ответами и решением по новой демоверсии ЕГЭ 2023 года для подготовки на 100 баллов, задания взяты из банка заданий ФИПИ и с экзамена прошлых лет, данный вариант вы можете решить онлайн или скачать.

▶Скачать вариант с ответами

▶Решение заданий с 1 по 18

▶Распечатай и реши вариант

вариант_27_егэ2023_профиль_математика

Ответы и решения для варианта

Risovalki_k_variantu_27_ege2023

1. Угол между биссектрисой и медианой прямоугольного треугольника, проведёнными из вершины прямого угла, равен 14°. Найдите меньший угол прямоугольного треугольника. Ответ дайте в градусах.

2. В правильной четырёхугольной пирамиде высота равна 2, боковое ребро равно 4. Найдите её объём.

3. Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже 36,8°С, равна 0,94. Найдите вероятность того, что в случайный момент времени у здорового человека температура тела окажется 36,8°С или выше.

4. Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,5 при каждом отдельном выстреле. Какое наименьшее количество патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не меньше 0,8?

5. Найдите корень уравнения (5𝑥 − 8) 2 = (5𝑥 − 2) 2 .

7. На рисунке изображён график 𝑦 = 𝑓 ′(𝑥) − производной функции 𝑓(𝑥), определённой на интервале (−9; 8). Найдите точку экстремума функции 𝑓(𝑥) на отрезке [−3; 3].

8. Для определения эффективной температуры звёзд используют закон Стефана-Больцмана, согласно которому мощность излучения 𝑃 (в ваттах) нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: 𝑃 = 𝜎𝑆𝑇 4 , где 𝜎 = 5,7 ∙ 10−8 − постоянная, площадь поверхности 𝑆 измеряется в квадратных метрах, а температура 𝑇 − в градусах Кельвина. Известно, что некоторая звезда имеет площадь поверхности 𝑆 = 1 18 ∙ 1021 м 2 , а излучаемая ею мощность 𝑃 равна 4,104 ∙ 1027 Вт. Определите температуру этой звезды. Дайте ответ в градусах Кельвина.

9. Имеется два сосуда. Первый содержит 80 кг, а второй – 70 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 63% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 65% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

10. На рисунке изображён график функции вида 𝑓(𝑥) = 𝑘 𝑥 . Найдите значение 𝑓(10).

11. Найдите точку минимума функции 𝑦 = 1,5𝑥 2 − 30𝑥 + 48 ∙ ln 𝑥 + 4.

13. В пирамиде 𝑆𝐴𝐵𝐶 известны длины рёбер: 𝐴𝐵 = 𝐴𝐶 = √29, 𝐵𝐶 = 𝑆𝐴 = 2√5, 𝑆𝐵 = 𝑆𝐶 = √13. а) Докажите, что прямая 𝑆𝐴 перпендикулярна прямой 𝐵𝐶. б) Найдите угол между прямой 𝑆𝐴 и плоскостью 𝑆𝐵𝐶.

14. Решите неравенство 9 4𝑥−𝑥 2−1 − 36 ∙ 3 4𝑥−𝑥 2−1 + 243 ≥ 0.

15. В июле планируется взять кредит в банке на сумму 7 млн рублей на срок 10 лет. Условия возврата таковы: – каждый январь долг возрастает на 𝑟% по сравнению с концом предыдущего года; – с февраля по июнь необходимо выплатить часть долга так, чтобы на начало июля каждого года долг уменьшался на одну и ту же сумму по сравнению с предыдущим июлем. Найдите наименьшую возможную ставку 𝑟, если известно, что последний платёж будет не менее 0,819 млн рублей.

16. Высоты 𝐵𝐵1 и 𝐶𝐶1 остроугольного треугольника 𝐴𝐵𝐶 пересекаются в точке 𝐻. а) Докажите, что ∠𝐴𝐻𝐵1 = ∠𝐴𝐶𝐵. б) Найдите 𝐵𝐶, если 𝐴𝐻 = 4 и ∠𝐵𝐴𝐶 = 60°.

18. Имеются каменные глыбы: 50 штук по 800 кг, 60 штук по 1000 кг и 60 штук по 1500 кг (раскалывать глыбы нельзя).

а) Можно ли увезти все эти глыбы одновременно на 60 грузовиках, грузоподъёмностью 5 тонн каждый, предполагая, что в грузовик выбранные глыбы поместятся?

б) Можно ли увезти все эти глыбы одновременно на 38 грузовиках, грузоподъёмностью 5 тонн каждый, предполагая, что в грузовик выбранные глыбы поместятся?

в) Какое наименьшее количество грузовиков, грузоподъёмностью 5 тонн каждый, понадобится, чтобы вывезти все эти глыбы одновременно, предполагая, что в грузовик выбранные глыбы поместятся?

ЕГЭ 2023 математика база и профиль тренировочные варианты с ответами

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ

Решение и ответы заданий варианта МА2210309 СтатГрад 28 февраля ЕГЭ 2023 по математике (профильный уровень). Тренировочная работа №3. ГДЗ профиль для 11 класса.
+Задания №1, №4, №6, №10 из варианта МА2210311.

❗Все материалы получены из открытых источников и публикуются после окончания тренировочного экзамена в ознакомительных целях.

❗Задания №13,16,17,18 долго оформлять, решу их позже, если будет время и желание. Решены те задания, у которых кнопка «Смотреть решение» зелёная.

Задание 1.
В треугольнике ABC угол C равен 90°, CH – высота, BC = 5, cosA=frac{2sqrt{6}}{5}. Найдите длину отрезка AH.

В треугольнике ABC угол C равен 90°, CH – высота, BC = 5

Задание 1 из варианта 2210311.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 13.

Задание 2.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2.

Задание 3.
В группе 16 человек, среди них – Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.

Задание 4.
Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Задание 4 из варианта 2210311.
Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.

Задание 5.
Решите уравнение frac{x–1}{5x+11}=frac{x–1}{3x-7}. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.

Задание 6.
Найдите значение выражения frac{(4^{frac{3}{5} }cdot7^{frac{2}{3}})^{15}}{28^{9}} .

Задание 6 из варианта 2210311.
Найдите 98cos2α, если cosα = frac{4}{7}.

Задание 7.
На рисунке изображён график y = f’(x) – производной функции f(x), определённой на интервале (−5; 5). В какой точке отрезка [−4; −1] функция f(x) принимает наибольшее значение?

На рисунке изображён график y = f'(x) – производной функции f(x), определённой на интервале (−5; 5).

Задание 8.
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле FA = ρgl3, где l – длина ребра куба в метрах, ρ = 1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте, что g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше чем 2116800 Н? Ответ дайте в метрах.

Задание 9.
Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

Задание 10.
На рисунке изображён график функции f(x) = ax2 + bx + c. Найдите значение f(−1).

На рисунке изображён график функции f(x) = ax2 + bx + c.

Задание 10 из варианта 2210311.
На рисунке изображены графики функций f(x) = frac{k}{x} и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.

Найдите абсциссу точки B.

Задание 11.
Найдите точку минимума функции y = x3 − 27x2 + 13.

Задание 12.
а) Решите уравнение 2cos3x = –sin(frac{3pi}{2} + x)
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π; 4π]

Задание 13.
Основанием правильной пирамиды PABCD является квадрат ABCD. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды, если AB = 30.

Задание 14.
Решите неравенство frac{9^{x}–13cdot 3^{x}+30}{3^{x+2}–3^{2x+1}}ge frac{1}{3^{x}}.

Задание 15.
По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» – увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n, при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

Задание 16.
В треугольнике ABC медианы AA1, BB1 и CC1 пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22.

Задание 17.
Найдите все значения a, при каждом из которых система уравнений 

begin{cases} (x-5a+1)^{2}+(y-2a-1)^{2}=a-2 \ 3x-4y=2a+3 end{cases}

не имеет решений.

Задание 18.
У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький – 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять.
а) Может ли Аня купить 24 конверта?
б) Может ли Аня купить 29 конвертов?
в) Какое наибольшее число конвертов может купить Аня?

Источник варианта: СтатГрад/statgrad.org.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 3

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

Целое вещественное
шестизначное

число 100759
.
100759 – полупростое число.
Произведение всех цифр: 0.
4 — количество делителей.
Сумма делителей этого числа: 106704.
Обратное число к 100759 – это 0.00000992467174148215.

Данное число можно представить произведением простых чисел: 17 * 5927.

Представления числа 100759:
двоичная система счисления: 11000100110010111, троичная система счисления: 12010012211, восьмеричная система счисления: 304627, шестнадцатеричная система счисления: 18997.
Число байт 100759 – это 98 килобайтов 407 байтов .

Азбука Морзе для числа 100759: .—- —— —— —… ….. —-.

Число 100759 не является числом Фибоначчи.

Косинус 100759: -0.2664, синус 100759: 0.9639, тангенс 100759: -3.6186.
Натуральный логарифм равен 11.5205.
Десятичный логарифм: 5.0033.
317.4256 — корень квадратный, 46.5330 — кубический корень.
Возведение числа 100759 в квадрат: 1.0152e+10.

Число секунд 100759 можно представить как 1 день 3 часа 59 минут 19 секунд .
Нумерологическое значение числа 100759 – цифра 4.

Понравилась статья? Поделить с друзьями:
  • Решу егэ 10063 физика
  • Решебник егэ по русскому купить
  • Решу егэ 105197
  • Решу егэ 100 бальник
  • Решебник для егэ физика