Решу егэ 132367

Найдите наибольшее значение функции y=23 синус x минус 26x плюс 5 на отрезке  левая квадратная скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая квадратная скобка .

Спрятать решение

Решение.

Найдем производную заданной функции:

y'=23 косинус x минус 26.

Уравнение y'=0 не имеет решений, производная отрицательна при всех значениях переменной, поэтому заданная функция является убывающей. Следовательно, наибольшим значением функции на заданном отрезке является

y левая круглая скобка 0 правая круглая скобка =23 синус 0 минус 26 умножить на 0 плюс 5=5.

Ответ: 5.

Задания

Версия для печати и копирования в MS Word

Задания Д18 № 132367

Найдите наибольшее значение функции y=23 синус x минус 26x плюс 5 на отрезке  левая квадратная скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая квадратная скобка .

Спрятать решение

Решение.

Найдем производную заданной функции:

y'=23 косинус x минус 26.

Уравнение y'=0 не имеет решений, производная отрицательна при всех значениях переменной, поэтому заданная функция является убывающей. Следовательно, наибольшим значением функции на заданном отрезке является

y левая круглая скобка 0 правая круглая скобка =23 синус 0 минус 26 умножить на 0 плюс 5=5.

Ответ: 5.

Аналоги к заданию № 77497: 132367 132319 132321 132323 132325 132327 132329 132331 132333 132335 … Все

Спрятать решение

·

Прототип задания

·

·

Сообщить об ошибке · Помощь

Skip to content

ЕГЭ по математике — Профиль 2023. Открытый банк заданий с ответами.

ЕГЭ по математике — Профиль 2023. Открытый банк заданий с ответами.admin2023-03-05T19:16:30+03:00

  • ЗАДАЧИ ЕГЭ С ОТВЕТАМИ

  • АНГЛИЙСКИЙ без ГРАНИЦ

2012-07-21

НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Конструктор упражнений для позвоночника!

Добавить комментарий

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

  • РубрикиРубрики
  • Задачи по номерам!

    №1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16

  • МЕТКИ

    БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие

  • ОСТЕОХОНДРОЗУ-НЕТ!

Натуральное вещественное

число 132367
.

Произведение и сумма цифр числа: 756, 22.
У числа 2 делителя: 1, 132367.
132368 — сумма делителей.
132367 и 0.000007554753072895813 — это обратные числа.

Это число можно представить произведением: 1 * 132367.

Перевод числа 132367 в другие системы счисления:
двоичная система: 100000010100001111, троичная: 20201120111, восьмеричная: 402417, шестнадцатеричная: 2050F.
Число 132367 в байтах это 129 килобайтов 271 байт .

В виде кода азбуки Морзе: .—- …— ..— …— -…. —…

Число — не число Фибоначчи.

Синус 132367: -0.7610, косинус 132367: 0.6487, тангенс 132367: -1.1731.
Натуральный логарифм равен 11.7933.
Логарифм десятичный числа: 5.1218.
363.8228 — квадратный корень из числа 132367, 50.9636 — корень кубический.
Возведение числа в квадрат: 1.7521e+10.

Перевод из числа секунд — 1 день 12 часов 46 минут 7 секунд .
В нумерологии число 132367 означает цифру 4.

ОГЭ по математике

Подборка тренировочных вариантов по математике для 9 класса в формате ОГЭ 2023 с ответами и критериями оценивания.

Изменений относительно 2022 года нет, потому актуальны и варианты прошлого года.

Тренировочные варианты ОГЭ 2023 по математике

alexlarin.net  уровень 1 уровень 2
вариант 327 larin22-oge-327-1 larin22-oge-327
вариант 328 larin22-oge-328-1 larin22-oge-328
вариант 329 larin23-oge-329-1 larin23-oge-329
вариант 330 larin23-oge-330-1 larin23-oge-330
вариант 331 larin23-oge-331-1 larin23-oge-331
вариант 332 larin23-oge-332-1 larin23-oge-332
вариант 333 larin23-oge-333-1 larin23-oge-333
вариант 334 larin23-oge-334-1 larin23-oge-334
вариант 335 larin23-oge-335-1 larin23-oge-335
вариант 336 larin23-oge-336-1 larin23-oge-336
вариант 337 larin23-oge-337-1 larin23-oge-337
вариант 338 larin23-oge-338-1 larin23-oge-338
вариант 339 larin23-oge-339-1 larin23-oge-339
вариант 340 larin23-oge-340-1 larin23-oge-340
вариант 341 larin23-oge-341-1 larin23-oge-341
вариант 342 larin23-oge-342-1 larin23-oge-342
вариант 343 larin23-oge-343-1 larin23-oge-343
вариант 344 larin23-oge-344-1 larin23-oge-344
вариант 345 larin23-oge-345-1 larin23-oge-345
вариант 346 larin23-oge-346-1 larin23-oge-346
вариант 347 larin23-oge-347-1 larin23-oge-347
вариант 348 larin23-oge-348-1 larin23-oge-348
вариант 349 larin23-oge-349-1 larin23-oge-349
вариант 350 larin23-oge-350-1 larin23-oge-350
вариант 351 larin23-oge-351-1 larin23-oge-351
вариант 352 larin23-oge-352-1 larin23-oge-352
math100.ru
Вариант 54 math100-oge-54
Вариант 55 math100-oge-55
Вариант 56 math100-oge-56
Вариант 57 math100-oge-57
Вариант 58 math100-oge-58
Вариант 59 math100-oge-59
Вариант 60 math100-oge-60
Вариант 61 math100-oge-61
Вариант 62 math100-oge-62
Вариант 63 math100-oge-63
Вариант 64 math100-oge-64
Вариант 65 math100-oge-65
Вариант 66 math100-oge-66
Вариант 67 math100-oge-67
Вариант 68 math100-oge-68
Вариант 69 math100-oge-69
Вариант 70 math100-oge-70
Вариант 71 math100-oge-71
Вариант 72 math100-oge-72
Вариант 73 math100-oge-73
Вариант 74 math100-oge-74
Вариант 75 math100-oge-75
Вариант 76 math100-oge-76
Вариант 77 math100-oge-77
Вариант 78 math100-oge-78
Вариант 79 math100-oge-79
Вариант 80 math100-oge-80
time4math.ru
Варианты 1-2 ответы
Варианты 3-4 ответы
Варианты 5-6 ответы
Варианты 7-8 ответы
Варианты 9-10 ответы
Варианты 11-12 ответы
Варианты 13-14 ответы
Варианты 15-16 ответы
vk.com/pezhirovschool
Вариант 1 (с решением) скачать
Вариант 2 (с решением) скачать
Вариант 3 (с решением) скачать
Вариант 4 (с решением) скачать
Вариант 5 (с ответами) скачать
Вариант 6 скачать
vk.com/oge100ballov
variant 1 скачать
variant 2 скачать
variant 3 скачать
variant 4 скачать
yagubov.ru
вариант 33 (сентябрь) скачать
вариант 34 (октябрь) скачать
вариант 35 (ноябрь) скачать
вариант 36 (декабрь) скачать
вариант 37 (январь) скачать
вариант 38 (февраль) скачать
вариант 39 (март) скачать
vk.com/math.studying
вариант 1 ответы
вариант 2 ответы
vk.com/matematicalate
variant 1 скачать
variant 2 скачать
variant 3 скачать

Характеристика структуры и содержания КИМ ОГЭ 2023 по математике

Работа содержит 25 заданий и состоит из двух частей.

Часть 1 содержит 19 заданий с кратким ответом; часть 2 – 6 заданий с развёрнутым ответом. При проверке базовой математической компетентности экзаменуемые должны продемонстрировать владение основными алгоритмами, знание и понимание ключевых элементов содержания (математических понятий, их свойств, приёмов решения задач и проч.), умение пользоваться математической записью, применять знания к решению математических задач, не сводящихся к прямому применению алгоритма, а также применять математические знания в простейших практических ситуациях.

Задания части 2 направлены на проверку владения материалом на повышенном и высоком уровнях. Их назначение – дифференцировать хорошо успевающих школьников по уровням подготовки, выявить наиболее подготовленных обучающихся, составляющих потенциальный контингент профильных классов.

Эта часть содержит задания повышенного и высокого уровней сложности из различных разделов математики.

Все задания требуют записи решений и ответа. Задания расположены по нарастанию трудности: от относительно простых до сложных, предполагающих свободное владение материалом и высокий уровень математической культуры.

Связанные страницы:

Задание 1

В треугольнике $$ABC$$ известно, что $$AC=BC$$, высота $$AH$$ равна $$6sqrt{6}$$, $$BH=3$$ Найдите $$cos BAC$$.

Ответ: 0,2

Скрыть

Задание 2

Найдите объём многогранника, вершинами которого являются точки $$B$$, $$C$$, $$A_1$$, $$C_1$$ правильной треугольной призмы $$ABCA_1B_1C_1$$ площадь основания которой равна 5, а боковое ребро равно 6.

Ответ: 10

Скрыть

Задание 3

В группе туристов 25 человек. Их вертолётом доставляют в труднодоступный район, перевозя по 5 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист 3. полетит третьим рейсом вертолёта.

Ответ: 0,2

Скрыть

Номер рейса в этой задаче не имеет значения. Важно, что за один рейс перевозятся 5 человек. То есть, вероятность попасть туристу З. на какой-либо рейс (в том числе и 3-й), равна:

$$P=frac{m}{n}=frac{5}{25}=frac{1}{5}=0,2$$

Задание 4

Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 5. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

Ответ: 0,56

Скрыть

Задание 5

Найдите корень уравнения $$(frac{1}{4})^{x+2}=256^{x}$$

Ответ: -0,4

Скрыть

Задание 6

Найдите значение выражения $$log_{2,5}6cdot log_{6} 0,4$$

Ответ: -1

Скрыть

Задание 7

На рисунке изображён график функции $$y=f(x)$$, определённой на интервале $$(-1; 13)$$. Найдите количество точек, в которых касательная к графику функции $$y=f(x)$$ параллельна прямой $$y=-2$$.

Ответ: 9

Скрыть

Задание 8

Высота над землёй подброшенного вверх мяча меняется по закону $$y=1,4+11t-5t^2$$, где $$h$$ — высота в метрах, $$t$$ — время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее 7 метров?

Ответ: 0,6

Скрыть

Задание 9

Смешав 8-процентный и 26-процентный растворы кислоты и добавив 10 кг чистой воды, получили 16-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 20-процентный раствор кислоты. Сколько килограммов 8-процентного раствора использовали для получения смеси? Сколько секунд мяч будет находиться на высоте не менее 7 метров?

Ответ: 55

Скрыть

Задание 10

На рисунке изображены графики функций $$f(x)=asqrt{x}$$ и $$g(x)=kx+b$$, которые пересекаются в точке $$A(x_0; y_0)$$. Найдите $$y_0$$.

Ответ: 6

Скрыть

Задание 11

Найдите точку максимума функции промежутку $$y=(2x-1)cos x-2sin x+9$$, принадлежащую промежутку $$(0;frac{pi}{2})$$

Ответ: 0,5

Скрыть

Задание 12

а) Решите уравнение $$log^{2}_{2}(4x^{2})+3log_{0,5}(8x)=1$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $$[0,15;1,5]$$

Ответ: а)$$0,25;sqrt[4]{8}$$ б)$$0,25$$

Скрыть

Задание 13

Сторона основания правильной четырёхугольной пирамиды $$SABCD$$ относится к боковому ребру как $$1:sqrt{2}$$. Через вершину $$D$$ проведена плоскость $$alpha$$, перпендикулярная боковому ребру $$SB$$ и пересекающая его в точке $$M$$.

а) Докажите, что $$M$$ — середина $$SB$$.

б) Найдите расстояние между прямыми $$AC$$ и $$DM$$, если высота пирамиды равна $$6sqrt{3}$$.

Ответ: 3

Скрыть

Задание 14

Решите неравенство $$frac{sqrt{x+4}(8-3^{2+x^{2}})}{4^{x-1}-3}leq 0$$

Ответ: $$-4;(log_{4}12;+infty)$$

Скрыть

Задание 15

15 июня 2025 года Сергей Данилович планирует взять кредит в банке на 4 года в размере целого числа миллионов рублей. Условия его возврата таковы:

— в январе каждого года действия кредита долг увеличивается на 15 % от суммы долга на конец предыдущего года;

— в период с февраля по июнь в каждый из 2026 и 2027 годов необходимо выплатить только начисленные в январе проценты по кредиту;

— в период с февраля по июнь в каждый из 2028 и 2029 годов выплачиваются равные суммы, причём последний платёж должен погасить долг по кредиту полностью.

Найдите наименьший размер кредита, при котором общая сумма выплат по кредиту превысит 12 млн рублей.

Ответ: 8 млн. руб.

Скрыть

Задание 16

Окружность с центром в точке $$C$$ касается гипотенузы $$AB$$ прямоугольного треугольника $$ABC$$ и пересекает его катеты $$AC$$ и $$BC$$ в точках $$E$$ и $$F$$. Точка $$D$$ — основание высоты, опущенной из вершины $$C$$. $$I$$ и $$J$$ — центры окружностей, вписанных в треугольники $$BCD$$ и $$ACD$$.

а) Докажите, что $$I$$ и $$J$$ лежат на отрезке $$EF$$.

б) Найдите расстояние от точки $$C$$ до прямой $$IJ$$, если $$AC=15$$, $$BC = 20$$.

Ответ: $$6sqrt{2}$$

Скрыть

Задание 17

Найдите все значения $$a$$, при каждом из которых оба уравнения $$a+frac{x}{2}=|x|$$ и $$asqrt{2}+x=sqrt{2asqrt{2}-x^{2}+12}$$ имеют ровно по 2 различных корня, и строго между корнями каждого из уравнений лежит корень другого уравнения.

Ответ: $$[sqrt{2};frac{3sqrt{6}}{sqrt{13}})$$

Скрыть

Задание 18

Трёхзначное число, меньшее 910, поделили на сумму его цифр и получили натуральное число $$n$$.

а) Может ли $$n$$ равняться 68?

б) Может ли $$n$$ равняться 86?

в) Какое наибольшее значение может принимать $$n$$, если все цифры ненулевые?

Ответ: а)да б)нет в)79

Скрыть

Понравилась статья? Поделить с друзьями:
  • Решу егэ 132263
  • Решебник по сборнику задач для выпускного экзамена по учебному предмету математика
  • Решу егэ 10275
  • Решу егэ 124267
  • Решебник по сборнику задач для выпускного экзамена по математике 11 класс 2019