Центр O окружности радиуса 4 принадлежит биссектрисе угла величиной 60°. Найдите радиус окружности, вписанной в данный угол и касающейся данной окружности, если известно, что расстояние от точки O до вершины угла равно 10.
Спрятать решение
Решение.
Пусть Q — центр искомой окружности радиуса x, B — точка касания одной из сторон данного угла с вершиной Центр окружности, вписанной в угол, лежит на биссектрисе угла, поэтому Из прямоугольного треугольника BAQ находим, что Рассмотрим случай внешнего касания окружностей. Если точка Q лежит между A и O (см. рис.), то или откуда находим, что
Если точка O лежит между A и Q (см. рис.), то или откуда
Рассмотрим случай внутреннего касания окружностей. Если точка Q лежит между A и O (см. рис.), то или откуда находим, что
Если точка O лежит между A и Q (см. рис.), то или откуда
Ответ: Ответ: 2; 14; 6.
———-
Дублирует задание 507383.
Спрятать критерии
Критерии проверки:
Критерии оценивания выполнения задания | Баллы |
---|---|
Рассмотрены все возможные геометрические конфигурации, и получен правильный ответ | 3 |
Рассмотрена хотя бы одна возможная конфигурация, в которой получено правильное значение искомой величины | 2 |
Рассмотрена хотя бы одна возможная геометрическая конфигурация, в которой получено значение искомой величины, неправильное из-за геометрической ошибки | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 3 |
На координатной прямой отмечены точки A, B, C, и D.
Число m равно
Каждой точке соответствует одно из чисел в правом столбце. Установите соответствие между указанными точками и числами.
ТОЧКИ
А) A
Б) B
В) C
Г) D
ЧИСЛА
1)
2)
3)
4)
В таблице под каждой буквой укажите соответствующий номер.
А | Б | В | Г |
Шкалирование
Первичный | Тестовый | Оценка |
---|---|---|
5-6 | 27-34 | 3 |
7-8 | 40-46 | 4 |
9-10 | 52-58 | |
11-12-13 | 64-66-68 | 5 |
14-15-16 | 70-72-74 | |
17-18-19 | 76-78-80 | |
20-21-22 | 82-84-86 | |
23-24-25 | 88-90-92 | |
26-27-28 | 94-96-98 | |
29-30-31 | 100 |
Первичный балл / Тестовый балл |
5/27 | 6/34 | 7/40 | 8/46 | 9/52 | 10/58 | 11/64 | 12/66 | 13/68 | 14/70 |
---|---|---|---|---|---|---|---|---|---|---|
15/72 | 16/74 | 17/76 | 18/78 | 19/80 | 20/82 | X / 2X+42 | 29+ / 100 |
Тренировочный вариант №26 пробный решу ЕГЭ 2023 по математике 11 класс базовый уровень от 8 марта 2023 года с ответами и решением по новой демоверсии ЕГЭ 2023 года для подготовки на 100 баллов, задания взяты из банка заданий ФИПИ и с экзамена прошлых лет, данный вариант вы можете решить онлайн или скачать.
▶Скачать вариант с ответами
▶Другие тренировочные варианты
вариант_26_егэ2023_база_математика_ответы
1. В квартире установлен прибор учёта расхода холодной воды (счётчик). Показания счётчика 1 сентября составляли 123 куб. м воды, а 1 октября – 129 куб. м. Сколько нужно заплатить за холодную воду за сентябрь, если стоимость 1 куб. м холодной воды составляет 22 руб. 20 коп.? Ответ дайте в рублях.
Ответ: 133, 2
3. На рисунке жирными точками показана цена золота, установленная Центробанком РФ во все рабочие дни в октябре 2009 года. По горизонтали указываются числа месяца, по вертикали – цена золота в рублях за грамм. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку наименьшую цену золота за данный период. Ответ дайте в рублях за грамм.
Ответ: 967, 5
4. Площадь прямоугольника вычисляется по формуле 𝑆 = 𝑑 2 sin 𝛼 2 , где 𝑑 − диагональ, 𝛼 − угол между диагоналями. Пользуясь этой формулой, найдите 𝑆, если 𝑑 = 3 и sin 𝛼 = 2 3 .
Ответ: 3
5. Конкурс исполнителей проводится в 5 дней. Всего заявлено 50 выступлений – по одному от каждой страны, участвующей в конкурсе. Исполнитель из России участвует в конкурсе. В первый день запланировано 14 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление исполнителя из России состоится в третий день конкурса?
Ответ: 0, 18
6. Рейтинговое агентство определяет рейтинг электрических фенов для волос на основе средней цены 𝑃 (в рублях за штуку), а также показателей функциональности 𝐹, качества 𝑄 и дизайна 𝐷. Рейтинг 𝑅 вычисляется по формуле 𝑅 = 3(𝐹 +𝑄) + 𝐷 − 0,01𝑃. В таблице даны цены и показатели четырёх моделей фенов. Найдите наименьший рейтинг фена из представленных в таблице моделей.
Ответ: 1
7. На графике изображена зависимость скорости движения рейсового автобуса от времени. На вертикальной оси отмечена скорость автобуса в км/ч, на горизонтальной – время в минутах, прошедшее с начала движения автобуса. Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику движения автобуса на этом интервале.
Ответ: 4123
8. В доме Кости больше этажей, чем в доме Олега, в доме Тани меньше этажей, чем в доме Олега, а в доме Феди больше этажей, чем в Танином доме. Выберите утверждения, которые верны при указанных условиях.
1) Дом Тани самый малоэтажный среди перечисленных четырёх.
2) В доме Тани больше этажей, чем в доме Феди.
3) В Костином доме больше этажей, чем в Танином.
4) Среди этих четырёх домов есть три дома с одинаковым количеством этажей.
Ответ: 13
9. На клетчатой бумаге с размером клетки 1 × 1 изображён параллелограмм. Найдите его площадь.
Ответ: 28
10. Столб подпирает детскую горку посередине. Найдите высоту 𝑙 этого столба, если высота ℎ горки равна 4,2 м. Ответ дайте в метрах.
Ответ: 2, 1
11. Плоскость, проходящая через точки 𝐴, 𝐵 и 𝐶 (см. рис.), разбивает правильную треугольную призму на два многогранника. Сколько вершин у получившегося многогранника с меньшим числом граней?
Ответ: 6
12. В треугольнике 𝐴𝐵𝐶 угол 𝐶 равен 90°, 𝐴𝐵 = 15, 𝐴𝐶 = 9. Найдите sin 𝐴.
Ответ: 0, 8
13. Объём конуса равен 27. Через точку, делящую высоту конуса в отношении 1:2, считая от вершины, проведена плоскость, параллельная основанию. Найдите объём конуса, отсекаемого от данного конуса проведённой плоскостью.
Ответ: 1
15. Городской бюджет составляет 67 млн рублей, а расходы на одну из его статей составили 15%. Сколько миллионов рублей потрачено на эту статью бюджета?
Ответ: 55
17. Найдите корень уравнения log3 (2𝑥 +4) −log3 2 = log3 5.
Ответ: 3
19. Вычеркните в числе 75416303 три цифры так, чтобы получившееся число делилось на 30. В ответе укажите какое-нибудь одно получившееся число.
Ответ: 75630
20. Два пешехода отправляются одновременно в одном направлении из одного и того же места на прогулку по аллее парка. Скорость первого на 1,5 км/ч больше скорости второго. Через сколько минут расстояние между пешеходами станет равным 150 метрам?
Ответ: 6
21. Из десяти стран четыре подписали договор о сотрудничестве ровно с четырьмя другими странами, а каждая из оставшихся шести – ровно с пятью. Сколько всего было подписано договоров?
Ответ: 23
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
508780 решу егэ математика
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
—>
Задание 14 № 508380
Воспользуемся тем, что для суммы возможны четыре случая раскрытия модулей, откуда заключаем:
Приведем другое решение:
Как и в первом решении запишем неравенство в виде:
Заметим, что левая часть представляет из себя кусочно-линейную функцию, которая возрастает при и убывает при Это означает, что в точке –3 она достигает минимума равного 5. Таким образом, правая часть Тогда неравенство принимает вид:
Задание 14 № 508380
—>
508780 решу егэ математика.
Ege. sdamgia. ru
07.03.2017 0:00:13
2017-03-07 00:00:13
Источники:
Https://ege. sdamgia. ru/problem? id=508380
ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 508780 решу егэ математика
508780 решу егэ математика
508780 решу егэ математика
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
—>
Задание 10 № 508781
Симметричную монету бросают 11 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4~орла»?
Задание 10 № 508782
Симметричную монету бросают 12 раз. Во сколько раз вероятность события «выпадет ровно 4 орла» меньше вероятности события «выпадет ровно 5~орлов»?
Задание 10 № 508783
Симметричную монету бросают 8 раз. Во сколько раз вероятность события «выпало ровно 4 орла» больше вероятности события «выпадет ровно 3~орла»?
Задание 10 № 508784
Симметричную монету бросают 9 раз. Во сколько раз вероятность события «выпадет ровно 4 орла» больше вероятности события «выпадет ровно 3~орла»?
Задание 10 № 508785
Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 4 орла» больше вероятности события «выпадет ровно 3~орла»?
Задание 10 № 508786
Симметричную монету бросают 16 раз. Во сколько раз вероятность события «выпадет ровно 8 орлов» больше вероятности события «выпадет ровно 7~орлов»?
Задание 10 № 508787
Симметричную монету бросают 17 раз. Во сколько раз вероятность события «выпадет ровно 8 орлов» больше вероятности события «выпадет ровно 7~орлов»?
Задание 10 № 508788
Симметричную монету бросают 20 раз. Во сколько раз вероятность события «выпадет ровно 10 орлов» больше вероятности события «выпадет ровно 9~орлов»?
Задание 10 № 508789
Симметричную монету бросают 21 раз. Во сколько раз вероятность события «выпадет ровно 10 орлов» больше вероятности события «выпадет ровно 9~орлов»?
Задание 10 № 508790
Симметричную монету бросают 22 раза. Во сколько раз вероятность события «выпадет ровно 10 орлов» больше вероятности события «выпадет ровно 9~орлов»?
Задание 10 № 508786
Задание 10 № 508781
Задание 10 508786.
Ege. sdamgia. ru
14.05.2019 20:28:53
2019-05-14 20:28:53
Источники:
Https://ege. sdamgia. ru/test? likes=508780
ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 508780 решу егэ математика
508780 решу егэ математика
508780 решу егэ математика
Ускоренная подготовка к ЕГЭ с репетиторами Учи. Дома. Записывайтесь на бесплатное занятие!
—>
Задание 10 № 508780
Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?
Воспользуемся формулой Бернулли. Найдем вероятность события А, состоящего в том, что при десяти бросаниях выпадет ровно 5 орлов:
Аналогично найдем вероятность события B, состоящего в том, что при десяти бросаниях выпадет ровно 4 орла:
Приведем решение Ирины Шраго.
Вероятность того, что выпадет ровно 5 орлов, равна отношению количества вариантов, при которых выпадает ровно 5 орлов, к общему количеству вариантов: Вероятность того, что выпадет ровно 4 орла, равна отношению количества вариантов, при которых выпадает ровно 4 орла, к общему количеству вариантов: Тогда отношение этих вероятностей
—>
Задание 10 № 508780
Уско рен ная под го тов ка к ЕГЭ с ре пе ти то ра ми Учи.
Ege. sdamgia. ru
09.08.2017 16:57:34
2017-08-09 16:57:34
Источники:
Https://ege. sdamgia. ru/problem? id=508780
На чтение 1 мин Просмотров 6 Опубликовано 5 марта, 2023
Тренировочный вариант №15 и №16 решу ЕГЭ 2023 профиль по математике 11 класс с ответами Решение и ответы на задачи на официальном сайте источника онлайн.
Тренировочный вариант №15 и вариант №16 в формате решу ЕГЭ 2023 по математике 11 класс профильный уровень от 10 января
Варианты ответов и решение задачи ТУТ: https://100ballnik.com/%d1%82%d1%80%d0%b5%d0%bd%d0%b8%d1%80%d0%be%d0%b2%d0%be%d1%87%d0%bd%d1%8b%d0%b9-%d0%b2%d0%b0%d1%80%d0%b8%d0%b0%d0%bd%d1%82-%e2%84%9615-%d0%b8-%e2%84%9616-%d1%80%d0%b5%d1%88%d1%83-%d0%b5%d0%b3%d1%8d-2-2/
Ответы и решение задачи онлайн
Оставляйте комментарии на сайте, обсуждайте их решения и ответы, предлагайте альтернативные варианты ответов.