СДАМ ГИА:
РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика базового уровня
Математика базового уровня
≡ Математика
Базовый уровень
Профильный уровень
Информатика
Русский язык
Английский язык
Немецкий язык
Французский язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
Сайты, меню, вход, новости
СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ
Об экзамене
Каталог заданий
Варианты
Ученику
Учителю
Школа
Справочник
Сказать спасибо
Вопрос — ответ
Чужой компьютер
Зарегистрироваться
Восстановить пароль
Войти через ВКонтакте
Играть в ЕГЭ-игрушку
Новости
10 марта
Как подготовиться к ЕГЭ и ОГЭ за 45 дней
6 марта
Изменения ВПР 2023
3 марта
Разместили утвержденное расписание ЕГЭ
27 января
Вариант экзамена блокадного Ленинграда
23 января
ДДОС-атака на Решу ЕГЭ. Шантаж.
6 января
Открываем новый сервис: «папки в избранном»
22 декабря
Открыли новый портал Решу Олимп. Для подготовки к перечневым олимпиадам!
4 ноября
Материалы для подготовки к итоговому сочинению 2022–2023
31 октября
Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР
21 марта
Новый сервис: рисование
31 января
Внедрили тёмную тему!
НАШИ БОТЫ
Все новости
ЧУЖОЕ НЕ БРАТЬ!
Экзамер из Таганрога
10 апреля
Предприниматель Щеголихин скопировал сайт Решу ЕГЭ
Наша группа
Задания
Версия для печати и копирования в MS Word
Тип 13 № 513803
В основании пирамиды SABC лежит правильный треугольник ABC со стороной 4, а боковое ребро SA перпендикулярно основанию и равно Найдите объём пирамиды SABC.
Спрятать решение
Решение.
Найдём площадь основания пирамиды:
Теперь можем найти объём пирамиды SABC:
Ответ: 12.
Аналоги к заданию № 513741: 513761 513783 513803 525544 Все
Спрятать решение
·
Прототип задания
·
·
Сообщить об ошибке · Помощь
О проекте · Редакция · Правовая информация · О рекламе
© Гущин Д. Д., 2011—2023
Каталог заданий
Назад в каталог
Вернуться к списку прототипов этой категории
Версия для печати и копирования в MS Word
1
Тип 13 № 513803
В основании пирамиды SABC лежит правильный треугольник ABC со стороной 4, а боковое ребро SA перпендикулярно основанию и равно Найдите объём пирамиды SABC.
Аналоги к заданию № 513741: 513761 513783 513803 525544 Все
Решение
·
Прототип задания
·
·
Сообщить об ошибке · Помощь
Перейти к контенту
Найдите наименьшее значение функции на отрезке
Спрятать решение
Решение.
Найдем производную заданной функции Уравнение не имеет решений, производная положительна при всех значениях переменной, поэтому заданная функция является возрастающей. Следовательно, наименьшим значением функции на заданном отрезке является
Ответ: −14.
Источник: Пробный экзамен Санкт-Петербург 2015. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1.
Спрятать решение
·
·
Курс Д. Д. Гущина
·
Андрей Анатольевич 04.11.2017 22:56
Непонятно между чем и чем происходит выбор! Действительно, Yнаим.=-14., но вот почему:
Y(0)=6*cos(0)+24/П*0+5=6*1+0+5=11>-14, и только поэтому.
С уважением, Андрей Анатольевич
Александр Иванов
Если функция возрастает на отрезке, то наименьшее значение на левом крае, а наибольшее на правом
- ЗАДАЧИ ЕГЭ С ОТВЕТАМИ
- АНГЛИЙСКИЙ без ГРАНИЦ
2012-07-26
НЕ ОТКЛАДЫВАЙ! Заговори на английском!
ДОЛОЙ обидные ошибки на ЕГЭ!!
Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!
Конструктор упражнений для позвоночника!
Отзывов (2)
-
Ирина
2013-02-08 в 19:29
Почему у вас Sin х получился отрицательным? На мой взгляд это не верно. Sin x положительный.
Ответить
-
Александр Крутицких
2013-02-09 в 20:45
Ирина, спасибо! Исправлено.
Ответить
-
Добавить комментарий
*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.
- РубрикиРубрики
- Задачи по номерам!
№1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16
- МЕТКИ
БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие
- ОСТЕОХОНДРОЗУ-НЕТ!
brthe711
Вопрос по математике:
1) 26698+1363-31×1575÷9765×5411-5.
2) 97+102×966-7439×13-56978÷62.
3) 22528÷176×502÷4÷(4373+4796-9153).
4) 8470-32314÷(71+16086)×3778+23387÷
257.
5) (98969+895)÷1387+5889-14×(8+354).
6.) 2962+3001-10×991÷(47211-17×2777).
Решите пожалуйста решать нужно всё столбиком.Заранее спасибо огромное.
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!
Ответы и объяснения 1
xpreawn416
Надеюсь что нибудь поймёшь
Знаете ответ? Поделитесь им!
Гость ?
Как написать хороший ответ?
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете
правильный ответ; - Писать подробно, чтобы ответ был исчерпывающий и не
побуждал на дополнительные вопросы к нему; - Писать без грамматических, орфографических и
пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся
уникальные и личные объяснения; - Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
знаю» и так далее; - Использовать мат — это неуважительно по отношению к
пользователям; - Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Математика.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи —
смело задавайте вопросы!
Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.
Задание №11 решу ЕГЭ 2022 по математике 11 класс профильный уровень (профиль) все задания с ответами и решением, которые могут попасться на реальном ЕГЭ 2022.
- Степенные иррациональные функции
- Логарифмические функции
- Показательные функции
- Тригонометрические функции
- Исследование функции без производной
Задание 11 часть 1 профильного ЕГЭ по математике — это нахождение точек максимума и минимума функции, а также наибольших и наименьших значений функции с помощью производной. Вот какие типы задач могут встретиться в этом задании:
- Нахождение точек максимума и минимума функций
- Исследование сложных функций
- Нахождение наибольших и наименьших значений функций на отрезке
Степенные иррациональные функции ЕГЭ 2022 профиль математика:
Логарифмические функции ЕГЭ 2022 профиль математика:
Показательные функции ЕГЭ 2022 профиль математика:
Тригонометрические функции ЕГЭ 2022 профиль математика:
Исследование функции ЕГЭ 2022 профиль математика:
Видео как решать 11 задание в ЕГЭ по математике профиль:
1)Найдите наименьшее значение функции y=−2ln(x+3)5+10x на отрезке [−2,5;−1].
2)Найдите наибольшее значение функции y=ln(x+7)3−3x на отрезке [−6,5;−4].
3)Найдите наибольшее значение функции y=ln(4−2x)+2x−7 на отрезке [0;1,7].
4)Найдите точку максимума функции y=−8√x+12ln(x−4)−11.
5)Найдите точку максимума функции y=2lnx−√x−17.
6)Найдите наибольшее значение функции y=√−2log0,5(5x+1) на отрезке [12,6;51].
7)Найдите точку минимума функции y=x2−21x+6+55lnx.
8)Найдите точку максимума функции y=x2−11x−17+15lnx.
9)Найдите точку максимума функции y=(5×2−3x−3)ex+5.
10)Найдите наименьшее значение функции y=−4x−4cosx+5 на отрезке [−π;0].
Тренировочные варианты ЕГЭ 2022 по математике профиль 11 класс
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
Автор | Сообщение | |||
---|---|---|---|---|
Заголовок сообщения: Тренировочный вариант №421 Добавлено: Вчера, 09:59 |
||||
Зарегистрирован: 10 июн 2010, 15:00 |
https://alexlarin.net/ege/2023/trvar421.html |
|||
OlegTheMath |
Заголовок сообщения: Re: Тренировочный вариант №421 Добавлено: Вчера, 11:42 |
|||
Зарегистрирован: 06 май 2012, 21:09 |
Спасибо за интересный вариант! Подробности: надеюсь, правильно. |
|||
hpbhpb |
Заголовок сообщения: Re: Тренировочный вариант №421 Добавлено: Вчера, 11:57 |
|||
Зарегистрирован: 18 ноя 2015, 07:49 |
OlegTheMath писал(а): Спасибо за интересный вариант! Подробности: надеюсь, правильно. Да, правильно. |
|||
Показать сообщения за: Сортировать по: |
Автор | Сообщение | |||
---|---|---|---|---|
Заголовок сообщения: Тренировочный вариант №421 Добавлено: Вчера, 09:59 |
||||
|
https://alexlarin.net/ege/2023/trvar421.html |
|||
|
||||
OlegTheMath |
Заголовок сообщения: Re: Тренировочный вариант №421 Добавлено: Вчера, 11:42 |
|||
|
Спасибо за интересный вариант! Подробности: надеюсь, правильно. |
|||
hpbhpb |
Заголовок сообщения: Re: Тренировочный вариант №421 Добавлено: Вчера, 11:57 |
|||
|
OlegTheMath писал(а): Спасибо за интересный вариант! Подробности: надеюсь, правильно. Да, правильно. |
|||
Показать сообщения за: Сортировать по: |
Пробный тренировочный вариант №26 в формате решу ОГЭ 2023 по математике 9 класс от 7 марта 2023 года с ответами и решением по новой демоверсии ОГЭ 2023 года для подготовки на 100 баллов, задания взяты из открытого банка заданий ФИПИ и с экзамена прошлых лет, данный вариант вы можете решить онлайн или скачать.
Скачать тренировочный вариант и ответы
Посмотреть другие тренировочные варианты
variant_26_oge2023_matematika_9klass
Коля летом отдыхает у дедушки и бабушки в деревне Марьевке. Коля с дедушкой собираются съездить на велосипедах в село Сосновое на железнодорожную станцию. Из Марьевки в Сосновое можно проехать по прямой лесной дорожке. Есть более длинный путь по шоссе – через деревню Николаевку до деревни Запрудье, где нужно повернуть под прямым углом направо на другое шоссе, ведущее в Сосновое.
Есть и третий маршрут: в Николаевке можно свернуть на прямую тропинку, которая идёт мимо озера прямо в Сосновое. По шоссе Коля с дедушкой едут со скоростью 20 км/ч, а по лесной дорожке и тропинке 15 км/ч. Расстояние по шоссе от Марьевки до Николаевки равно 12 км, от Марьевки до Запрудья – 20 км, а от Запрудья до Соснового 15 км.
1. Пользуясь описанием, определите, какими цифрами на плане обозначены населённые пункты. В ответ запишите полученную последовательность четырёх цифр.
Ответ: 1432
2. На сколько процентов скорость, с которой едут Коля с дедушкой по тропинке, меньше их скорости по шоссе?
Ответ: 25
3. Сколько минут затратят на дорогу Коля с дедушкой, если поедут на станцию через Запрудье?
Ответ: 105
4. Найдите расстояние от д. Николаевка до с. Сосновое по прямой. Ответ дайте в километрах.
Ответ: 17
5. Определите, на какой маршрут до станции потребуется меньше всего времени. В ответе укажите, сколько минут потратят на дорогу Коля с дедушкой, если поедут этим маршрутом.
Ответ: 100
6. Найдите значение выражения 4,4 − 1,7.
Ответ: 2,7
8. Найдите значение выражения (4𝑏) 2 : 𝑏 5 ∙ 𝑏 3 при 𝑏 = 128.
Ответ: 16
9. Найдите корень уравнения (𝑥 − 5) 2 = (𝑥 − 2 .
Ответ: 6, 5
10. В магазине канцтоваров продаётся 84 ручки, из них 22 красных, 9 зелёных, 41 фиолетовая, остальные синие и чёрные, их поровну. Найдите вероятность того, что случайно выбранная в этом магазине ручка будет красной или фиолетовой.
Ответ: 0, 75
11. На рисунках изображены графики функций вида 𝑦 = 𝑘𝑥 +𝑏. Установите соответствие между графиками функций и знаками коэффициентов 𝑘 и 𝑏. В таблице под каждой буквой укажите соответствующий номер.
Ответ: 312
12. Чтобы перевести значение температуры по шкале Цельсия в шкалу Фаренгейта, пользуются формулой 𝑡𝐹 = 1,8𝑡𝐶 +32, где 𝑡𝐶 − температура в градусах Цельсия, 𝑡𝐹 − температура в градусах Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует 80 градусов по шкале Цельсия?
Ответ: 176
13. Укажите решение неравенства −3 − 𝑥 ≥ 𝑥 −6.
Ответ: 1
14. Курс воздушных ванн начинают с 10 минут в первый день и увеличивают время этой процедуры в каждый следующий день на 10 минут. В какой по счёту день продолжительность процедуры достигнет 1 часа 20 минут?
Ответ: 8
15. Диагонали 𝐴𝐶 и 𝐵𝐷 параллелограмма 𝐴𝐵𝐶𝐷 пересекаются в точке 𝑂, 𝐴𝐶 = 12, 𝐵𝐷 = 20, 𝐴𝐵 = 7. Найдите 𝐷𝑂.
Ответ: 10
16. Радиус окружности, описанной около квадрата, равен 32√2. Найдите длину стороны этого квадрата.
Ответ: 64
17. Найдите площадь квадрата, описанного около окружности радиуса 40.
Ответ: 6400
18. На клетчатой бумаге с размером клетки 1 × 1 изображена трапеция. Найдите длину её средней линии.
Ответ: 4
19. Какое из следующих утверждений верно?
1) Боковые стороны любой трапеции равны.
2) Серединные перпендикуляры к сторонам треугольника пересекаются в точке, являющейся центром окружности, описанной около треугольника.
3) Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны.
Ответ: 2
20. Решите уравнение 𝑥(𝑥 2 + 2𝑥 + 1) = 2(𝑥 +1).
Ответ: -2; -1; 1
21. Свежие фрукты содержат 78% воды, а высушенные – 22%. Сколько сухих фруктов получится из 78 кг свежих фруктов?
Ответ: 22
23. Точки 𝑀 и 𝑁 являются серединами сторон 𝐴𝐵 и 𝐵𝐶 треугольника 𝐴𝐵𝐶 соответственно. Отрезки 𝐴𝑁 и 𝐶𝑀 пересекаются в точке 𝑂, 𝐴𝑁 = 27, 𝐶𝑀 = 18. Найдите 𝐶𝑂.
Ответ: 12
24. В трапеции 𝐴𝐵𝐶𝐷 с основаниями 𝐴𝐷 и 𝐵𝐶 диагонали пересекаются в точке 𝑂. Докажите, что площади треугольников 𝐴𝑂𝐵 и 𝐶𝑂𝐷 равны.
25. Боковые стороны 𝐴𝐵 и 𝐶𝐷 трапеции 𝐴𝐵𝐶𝐷 равны соответственно 40 и 41, а основание 𝐵𝐶 равно 16. Биссектриса угла 𝐴𝐷𝐶 проходит через середину стороны 𝐴𝐵. Найдите площадь трапеции.
Ответ: 820
Тренировочные варианты ОГЭ по математике 9 класс задания с ответами
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
В июле Максим планирует взять кредит в банке на некоторую сумму. Банк предложил Максиму два варианта кредитования.
1-й вариант:
— кредит предоставляется на 3 года;
— в январе каждого года действия кредита долг увеличивается на 20 % от суммы долга на конец предыдущего года;
— в период с февраля по июнь каждого года действия кредита выплачиваются равные суммы, причём последний платёж должен погасить долг по кредиту полностью,
2-й вариант:
— кредит предоставляется на 2 года;
— в январе каждого года действия кредита долг увеличивается на 24 %;
— в период с февраля по июнь каждого года действия кредита выплачиваются равные суммы, причём последний платёж должен погасить долг по кредиту полностью.
Когда Максим подсчитал, то выяснил, что по 1-му варианту кредитования ему придётся выплачивать на 373 600 рублей больше, чем по 2-му варианту.
Какую сумму Максим планирует взять в кредит?
Ответ: 7,28 млн. руб.