Каталог заданий.
Гиперболы
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 10 № 508951
На рисунке изображён график функции Найдите
Аналоги к заданию № 508951: 508971 508952 508953 508954 508955 508956 508957 508958 508959 508960 … Все
Источник: А. Ларин: Тренировочный вариант № 110.
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.2 Функция, описывающая обратную пропорциональную зависимость, её график
Решение
·
·
Сообщить об ошибке · Помощь
2
Тип 10 № 508961
На рисунке изображён график функции Найдите, при каком значении x значение функции равно 0,8.
Аналоги к заданию № 508961: 508983 508962 508963 508964 508965 508966 508967 508968 508969 508970 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.2 Функция, описывающая обратную пропорциональную зависимость, её график
Решение
·
·
Сообщить об ошибке · Помощь
3
Тип 10 № 564197
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите
Аналоги к заданию № 564197: 564198 564199 564200 564201 564202 564203 564204 564205 564206 564207 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.2 Функция, описывающая обратную пропорциональную зависимость, её график
Решение
·
·
Сообщить об ошибке · Помощь
4
Тип 10 № 564198
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите
Аналоги к заданию № 564197: 564198 564199 564200 564201 564202 564203 564204 564205 564206 564207 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.2 Функция, описывающая обратную пропорциональную зависимость, её график
Решение
·
·
Сообщить об ошибке · Помощь
5
Тип 10 № 564199
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите
Аналоги к заданию № 564197: 564198 564199 564200 564201 564202 564203 564204 564205 564206 564207 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 3.1.5 Преобразования графиков, 3.3.2 Функция, описывающая обратную пропорциональную зависимость, её график
Решение
·
·
Сообщить об ошибке · Помощь
Пройти тестирование по этим заданиям
ЕГЭ Профиль №9. Гипербола
Скачать файл в формате pdf.
ЕГЭ Профиль №9. Гипербола
Задача 1. На рисунке изображён график функции (fleft( x right) = frac{k}{x} + a.) Найдите (fleft( { — 12} right).)
Ответ
ОТВЕТ: 0,75. |
|
Задача 2. На рисунке изображён график функции (fleft( x right) = frac{k}{x} + a.) Найдите (fleft( {50} right).)
Ответ
ОТВЕТ: — 2,96. |
|
Задача 3. На рисунке изображён график функции (fleft( x right) = frac{k}{x} + a.) Найдите (fleft( {7,5} right).)
Ответ
ОТВЕТ: 1,6. |
|
Задача 4. На рисунке изображён график функции (fleft( x right) = frac{k}{x} + a.) Найдите (fleft( {0,25} right).)
Ответ
ОТВЕТ: — 14. |
|
Задача 5. На рисунке изображён график функции (fleft( x right) = frac{k}{x} + a.) Найдите, при каком значении x значение функции равно 0,8.
Ответ
ОТВЕТ: — 15. |
|
Задача 6. На рисунке изображён график функции (fleft( x right) = frac{k}{x} + a.) Найдите, при каком значении x значение функции равно 19.
Ответ
ОТВЕТ: 0,1. |
|
Задача 7. На рисунке изображён график функции (fleft( x right) = frac{k}{x} + a.) Найдите, при каком значении x значение функции равно 0,75.
Ответ
ОТВЕТ: 16. |
|
Задача 8. На рисунке изображён график функции (fleft( x right) = frac{k}{x} + a.) Найдите, при каком значении x значение функции равно ( — 9,5.)
Ответ
ОТВЕТ: 0,4. |
|
Задача 9. На рисунке изображён график функции (fleft( x right) = frac{k}{{x + a}}.) Найдите (fleft( {19} right).)
Ответ
ОТВЕТ: 0,15. |
|
Задача 10. На рисунке изображён график функции (fleft( x right) = frac{k}{{x + a}}.) Найдите (fleft( { — 4frac{2}{3}} right).)
Ответ
ОТВЕТ: — 0,75. |
|
Задача 11. На рисунке изображён график функции (fleft( x right) = frac{k}{{x + a}}.) Найдите (fleft( {18} right).)
Ответ
ОТВЕТ: — 0,1. |
|
Задача 12. На рисунке изображён график функции (fleft( x right) = frac{k}{{x + a}}.) Найдите (fleft( {6frac{1}{3}} right).)
Ответ
ОТВЕТ: — 0,24. |
|
Задача 13. На рисунке изображён график функции (fleft( x right) = frac{k}{{x + a}}.) Найдите значение x, при котором (fleft( x right) = 0,2.)
Ответ
ОТВЕТ: 14. |
|
Задача 14. На рисунке изображён график функции (fleft( x right) = frac{k}{{x + a}}.) Найдите значение x, при котором (fleft( x right) = — 0,08.)
Ответ
ОТВЕТ: — 24. |
|
Задача 15. На рисунке изображён график функции (fleft( x right) = frac{k}{{x + a}}.) Найдите значение x, при котором (fleft( x right) = — 0,04.)
Ответ
ОТВЕТ: 48. |
|
Задача 16. На рисунке изображён график функции (fleft( x right) = frac{k}{{x + a}}.) Найдите значение x, при котором (fleft( x right) = 0,2.)
Ответ
ОТВЕТ: — 29. |
Задача 17. На рисунке изображён график функции (fleft( x right) = frac{{k,x + a}}{{x + b}}.) Найдите k.
Ответ
ОТВЕТ: 1. |
|
Задача 18. На рисунке изображён график функции (fleft( x right) = frac{{k,x + a}}{{x + b}}.) Найдите k.
Ответ
ОТВЕТ: 2. |
|
Задача 19. На рисунке изображён график функции (fleft( x right) = frac{{k,x + a}}{{x + b}}.) Найдите k.
Ответ
ОТВЕТ: 2. |
|
Задача 20. На рисунке изображён график функции (fleft( x right) = frac{{k,x + a}}{{x + b}}.) Найдите k.
Ответ
ОТВЕТ: — 2. |
|
Задача 21. На рисунке изображён график функции (fleft( x right) = frac{{k,x + a}}{{x + b}}.) Найдите a.
Ответ
ОТВЕТ: 9. |
|
Задача 22. На рисунке изображён график функции (fleft( x right) = frac{{k,x + a}}{{x + b}}.) Найдите a.
Ответ
ОТВЕТ: — 4. |
|
Задача 23. На рисунке изображён график функции (fleft( x right) = frac{{k,x + a}}{{x + b}}.) Найдите a.
Ответ
ОТВЕТ: 1. |
|
Задача 24. На рисунке изображён график функции (fleft( x right) = frac{{k,x + a}}{{x + b}}.) Найдите a.
Ответ
ОТВЕТ: — 5. |
|
Задача 25. На рисунке изображены графики функций (fleft( x right) = frac{k}{x}) и (gleft( x right) = a,x + b,,) которые пересекаются в точках A и B. Найдите абсциссу точки B.
Ответ
ОТВЕТ: 0,2. |
|
Задача 26. На рисунке изображены графики функций (fleft( x right) = frac{k}{x}) и (gleft( x right) = a,x + b,,) которые пересекаются в точках A и B. Найдите абсциссу точки B.
Ответ
ОТВЕТ: — 6,25. |
|
Задача 27. На рисунке изображены графики функций (fleft( x right) = frac{k}{x}) и (gleft( x right) = a,x + b,,) которые пересекаются в точках A и B. Найдите абсциссу точки B.
Ответ
ОТВЕТ: 10. |
|
Задача 28. На рисунке изображены графики функций (fleft( x right) = frac{k}{x}) и (gleft( x right) = a,x + b,,) которые пересекаются в точках A и B. Найдите абсциссу точки B.
Ответ
ОТВЕТ: 12,5. |
|
Задача 29. На рисунке изображены графики функций (fleft( x right) = frac{k}{x}) и (gleft( x right) = a,x + b,,) которые пересекаются в точках A и B. Найдите ординату точки B.
Ответ
ОТВЕТ: 15. |
|
Задача 30. На рисунке изображены графики функций (fleft( x right) = frac{k}{x}) и (gleft( x right) = a,x + b,,) которые пересекаются в точках A и B. Найдите ординату точки B.
Ответ
ОТВЕТ: — 16. |
|
Задача 31. На рисунке изображены графики функций (fleft( x right) = frac{k}{x}) и (gleft( x right) = a,x + b,,) которые пересекаются в точках A и B. Найдите ординату точки B.
Ответ
ОТВЕТ: — 0,4. |
|
Задача 32. На рисунке изображены графики функций (fleft( x right) = frac{k}{x}) и (gleft( x right) = a,x + b,,) которые пересекаются в точках A и B. Найдите ординату точки B.
Ответ
ОТВЕТ: — 0,5. |
09
Янв 2022
Категория: 10 Графики функций
2022-01-09
2022-09-11
Задача 1. На рисунке изображён график функции Найдите
Решение: + показать
Задача 2. На рисунке изображён график функции вида где числа и — целые. Найдите значение , при котором
Решение: + показать
Задача 3. На рисунке изображён график функции вида где – целые числа. Найдите
Решение: + показать
Задача 4. На рисунке изображён график функции Найдите
Решение: + показать
Задача 5. На рисунке изображены графики функций и и которые пересекаются в точках и . Найдите ординату точки
Решение: + показать
Вы можете пройти тест “Гиперболы”
Автор: egeMax |
Нет комментариев
ЕГЭ 2022 ПРОФИЛЬНАЯ МАТЕМАТИКА РАЗБОР ЗАДАНИЯ №9
В этом уроке мы обсудим, как решать задание №9 на гиперболы.
Основные ссылки:
Группа Вконтакте: https://vk.com/path_in_math
Получать уведомления о вебинарах(рассылка Вконтакте): https://vk.com/app5898182_-199426423#…
Есть идеи или предложения? Связаться со мной можно по почте: pathmath2022@gmail.com
Или написать в сообщения группы Вконтакте: https://vk.com/path_in_math
Таймкоды:
00:00 кто убил path in math
01:15 стандартная гипербола
03:18 смещения гиперболы
08:16 практика по смещениям, строим гиперболу
13:44 решаем задание №9
18:28 как поддержать выход видеороликов
18:43 вопрос тысячелетия
Видео Задание №9 на ГИПЕРБОЛЫ. Подробный разбор. Профильная математика ЕГЭ 2022. канала PATH IN MATH: Математика — ЕГЭ, ОГЭ, ОЛИМПИАДЫ
Показать
- ЕГЭ по математике профиль
Новые задания №9 ЕГЭ 2022 по профильной математике — графики функций.
Для успешного результата необходимо уметь выполнять действия с функциями.
Задание №9 ЕГЭ 2022 математика профильный уровень Прототипы
Из кодификатора 2022 года для выполнения 9 задания нужно изучить основные элементарные функции, их свойства и графики:
3.3.1 Линейная функция, её график
3.3.2 Функция, описывающая обратную пропорциональную зависимость, её график
3.3.3 Квадратичная функция, её график
3.3.4 Степенная функция с натуральным показателем, её график
3.3.5 Тригонометрические функции, их графики
3.3.6 Показательная функция, её график
3.3.7 Логарифмическая функция, её график
Уметь выполнять действия с функциями: определять значение функции по значению аргумента при различных способах задания функции; описывать по графику поведение и свойства функции, находить по графику функции наибольшее и наименьшее значения; строить графики изученных функций:
При отработке данного задания будут полезны книги:
Купить ЕГЭ. Математика. Графики функций, уравнения и неравенства, содержащие переменную под знаком модуля
Купить Задачи с параметрами. Применение свойств функций, преобразование неравенств
Связанные страницы:
MATHM
>>
ЕГЭ
>>
ЕГЭ профиль
>>
Задача 9
ЗАДАЧА 9
сортировка
по темам
СПИСОК ТЕМ
Тема 1: График параболы
Тема 2: График гиперболы и корня
Тема 3: График модуля
Тема 4: Графики тригонометрических функций
Тема 5: График показательной функции и логарифма
Тема 6: Пересечение графиков
Задачи разделены на темы. Задачи из любой темы вполне реально встретить на настоящем экзамене ЕГЭ. Внутри каждой темы задачи
мы постарались расположить по возрастанию сложности.
Тема 1: График параболы.
посмотреть ответ
посмотреть решение
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
посмотреть ответ
посмотреть решение 1
посмотреть решение 2
видеоурок 1 по графику параболы
видеоурок 2 по графику параболы
Тема 2: График гиперболы и корня.
посмотреть ответ
посмотреть решение
видеоурок по графику гиперболы
посмотреть ответ
посмотреть решение
видеоурок по графику гиперболы
посмотреть ответ
посмотреть решение
видеоурок по графику гиперболы
посмотреть ответ
посмотреть решение
видеоурок по графику гиперболы
посмотреть ответ
посмотреть решение
видеоурок по графику корня
посмотреть ответ
посмотреть решение
видеоурок по графику корня
посмотреть ответ
посмотреть решение
видеоурок по графику корня
посмотреть ответ
посмотреть решение
видеоурок по графику корня
посмотреть ответ
посмотреть решение
видеоурок по графику корня
посмотреть ответ
посмотреть решение
видеоурок по графику корня
Тема 3: График модуля.
посмотреть ответ
посмотреть решение
видеоурок по графику модуля
посмотреть ответ
посмотреть решение
видеоурок по графику модуля
посмотреть ответ
посмотреть решение
видеоурок по графику модуля
посмотреть ответ
посмотреть решение
видеоурок по графику модуля
Тема 4: Графики тригонометрических функций.
посмотреть ответ
посмотреть решение
видеоурок 1 по графикам тригонометрических функций
видеоурок 2 по графикам тригонометрических функций
посмотреть ответ
посмотреть решение
видеоурок 1 по графикам тригонометрических функций
видеоурок 2 по графикам тригонометрических функций
посмотреть ответ
посмотреть решение
видеоурок 1 по графикам тригонометрических функций
видеоурок 2 по графикам тригонометрических функций
посмотреть ответ
посмотреть решение
видеоурок 1 по графикам тригонометрических функций
видеоурок 2 по графикам тригонометрических функций
посмотреть ответ
посмотреть решение
видеоурок 1 по графикам тригонометрических функций
видеоурок 2 по графикам тригонометрических функций
посмотреть ответ
посмотреть решение
видеоурок 1 по графикам тригонометрических функций
видеоурок 2 по графикам тригонометрических функций
Тема 5: График показательной функции и логарифма.
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
Тема 6: Пересечение графиков.
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
посмотреть ответ
посмотреть решение
29 декабря 2021
В закладки
Обсудить
Жалоба
В версии ЕГЭ-2022 по математике появилось новое 9 задание, в котором требуется работа с функциями.
Эта тема пока вызывает затруднения у учащихся в связи со своей новизной. В презентации представлены решения задач с использованием линейной и квадратичной функций. Некоторые задачи решены 3 способами, чтобы учащиеся смогли выбрать наиболее понятный для себя.
ege9new.pptx
ege9new.pdf
Автор: Лесных Марина Владимировна.
Тест «Витамины»
Проверочная работа по биологии в 8 классе.
Консультация по физике
Онлайн-трансляция по вопросам подготовки к ЕГЭ по физике.
Sorry, your request has been denied.
Решу ЕГЭ 2022 задание №9 по математике 11 класс профильный уровень с ответами и решением для практики и подготовки к экзамену.
- скачать задания прямая с ответами
- скачать задания парабола с ответами
- скачать задания гипербола с ответами
- скачать задания логарифмические функции с ответами
- скачать задания иррациональные функции с ответами
- скачать задания тригонометрические функции с ответами
Решу ЕГЭ 2022 линейные функции 9 задание математика с ответами:
Решу ЕГЭ 2022 парабола 9 задание профиль математика с ответами:
Решу ЕГЭ 2022 гипербола 9 задание профиль математика с ответами:
Решу ЕГЭ 2022 логарифмические функции 9 задание профиль математика с ответами:
Решу ЕГЭ 2022 иррациональные функции 9 задание профиль математика с ответами:
Решу ЕГЭ 2022 тригонометрические функции 9 задание профиль математика с ответами:
Как формулируется новое задание 9 ЕГЭ 2022 по математике? По графику функции, который дается в условии, вам нужно определить неизвестные параметры в ее формуле. Возможно — найти значение функции в некоторой точке или координаты точки пересечения графиков функций.
Как решать 9 задание ЕГЭ 2022 математика профиль видео теория:
1)На рисунке изображён график функции вида f(x)= a3x+b x+c , где числа a, b и c — целые. Найдите a.
2)На рисунке изображён график функции вида f(x)= 2ax+b x+c , где числа a, b и c — целые. Найдите a.
3)На рисунке изображён график функции вида f(x)= ax+b x+c , где числа a, b и c — целые. Найдите a.
4)На рисунке изображён график функции вида f(x)= a x+b +c, где числа a, b и c — целые. Найдите f(−22).
5)На рисунке изображён график функции вида f(x)= a x+b +c, где числа a, b и c — целые. Найдите решение уравнения f(x)=18.
6)На рисунке изображён график функции вида f(x)= 2ax+b x+c , где числа a, b и c — целые. Найдите a.
7)На рисунке изображён график функции вида f(x)= a x+b +c, где числа a, b и c — целые. Найдите f(15).
8)На рисунке изображён график функции вида f(x)= a x+b +c, где числа a, b и c — целые. Найдите x, при котором f(x)=21.
9)На рисунке изображён график функции вида f(x)=log5(ax+b)+c, где числа a, b, c — целые. Найдите наибольшее значение функции g(x)=−x2+ax+b.
10)На рисунке изображён график функции вида f(x)=log1.4(x−a)+b, где числа a, b — целые. Найдите ab.
11)На рисунке изображён график функции вида f(x)=2ax+b, где числа a, b — целые. Найдите сумму коэффициентов a+b, если f(1)=10.
12)На рисунке изображён график функции вида f(x)=log2(ax+b)+2, где числа a, b — целые. Найдите сумму коэффициентов a+b.
13)На рисунке изображён график функции вида f(x)=ln(a+x)+b, где числа a, b — целые. Найдите сумму коэффициентов a+b, если A(0;ln2e).
Задание №3 ЕГЭ 2022 по математике профиль прототипы с ответами
Задание №4 ЕГЭ 2022 по математике профиль прототипы с ответами
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
- Cайты учителей
- Все блоги
- Все файлы
- Все тесты
-
1 - Войти
- Зарегистрироваться / Создать сайт
СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ
Благодаря готовым учебным материалам для работы в классе и дистанционно
Скидки до 50 % на комплекты
только до
Готовые ключевые этапы урока всегда будут у вас под рукой
Была в сети 31.01.2022 15:49
Бабошкина Любовь Юрьевна
Учитель математики
66 лет
1 728
23 187
09.11.2021 20:48
В презентации разбирается один из способов решения задания №9 ЕГЭ (гиперболы)
Просмотр содержимого документа
«Графики функции. Задание №9 ЕГЭ-2022»
Графики функций
Щёлкать мышкой не надо. Презентация с голосовым сопровождением и будет перелистываться сама
Гиперболы
У
Уравнение гиперболы
О
Х
Уравнение
сдвинутой
гиперболы
– сдвиг по оси Ох
(сдвиг вспомогательной оси Y относительно основной)
сдвиг по оси Оу
(сдвиг вспомогательной оси Х относительно основной)
y 1
Пример
f(13).
Решение
c
x 1
(2;1)
– b
1) — b = 3, b = — 3
2) c = 2
3)
— уравнение заданной гиперболы
Ответ: 2,1