Задания
Версия для печати и копирования в MS Word
Тип 12 № 6734
Электрический чайник мощностью 2,2 кВт рассчитан на включение в электрическую сеть напряжением 220 В. Определите силу тока в нагревательном элементе чайника при его работе в такой сети. Ответ приведите в амперах.
Спрятать решение
Решение.
Электрическую мощность можно рассчитать по формуле: откуда
Ответ: 10.
Раздел кодификатора ФИПИ/Решу ЕГЭ: 3.2.9 Мощность электрического тока. Мощность источника тока. Тепловая мощность, выделяемая на резисторе
Спрятать решение
·
·
Сообщить об ошибке · Помощь
Варианты, ответы и решения ФИ2210401, ФИ2210402, ФИ2210403, ФИ2210404 тренировочная работа №4 статград пробник ЕГЭ 2023 по физике 11 класс в формате реального экзамена ЕГЭ 2023 года, которая прошла 7 марта 2023 года.
Скачать тренировочные варианты
Скачать ответы для вариантов
ФИ2210401_ФИ2210402_ФИ2210403_ФИ2210404
Вариант ФИ2210401 с ответами
1. Два маленьких тела, находившиеся в состоянии покоя, одновременно начинают двигаться из одной точки по плоскости YOX с разными по модулю постоянными ускорениями. На рисунке изображены векторы 1 a и 2 a ускорений этих тел (масштабы координатной сетки вдоль горизонтальной и вертикальной осей одинаковы). Чему равно отношение путей S1/S2, пройденных этими телами за первые 2 секунды их движения?
2. Ускорение свободного падения на поверхности Юпитера в 2,6 раза больше, чем на поверхности Земли. Первая космическая скорость для Юпитера в 5,4 раза больше, чем для Земли. Во сколько раз радиус Юпитера больше радиуса Земли? Ответ округлите до целого числа.
3. На горизонтальном столе лежит лист бумаги, на котором нарисован равнобедренный треугольник с длиной боковой стороны 12 см и углом 30° при основании. В его вершинах расположены одинаковые маленькие тяжёлые бусинки. На каком расстоянии от основания данного треугольника расположен центр тяжести системы, состоящей из этих трёх бусинок?
4. Небольшая шайба массой 50 г соскальзывает с наклонной плоскости с углом при основании 30°. Сопротивление воздуха пренебрежимо мало. В таблице приведены значения модуля скорости V шайбы в различные моменты времени t. Выберите все верные утверждения о результатах этого опыта на основании данных, содержащихся в таблице.
1) Сухое трение между шайбой и плоскостью отсутствует.
2) Модуль ускорения шайбы приблизительно равен 3 м/с2 .
3) За первую секунду движения шайба прошла путь менее 1 м.
4) В момент времени t = 0,4 с модуль импульса шайбы примерно равен 0,06 кг⋅м/с.
5) Если в момент времени t = 1,4 с шайба столкнётся с абсолютно неупругим препятствием, то выделится количество теплоты ≈ 0,44 Дж.
5. На двух узких опорах покоится тяжёлая горизонтальная однородная доска. На доске посередине между опорами лежит гиря. Гирю перекладывают так, что она оказывается лежащей на доске ближе к правой опоре. Как после перекладывания гири изменяются модуль силы реакции правой опоры и момент силы тяжести гири относительно левой опоры? Для каждой величины определите соответствующий характер изменения:
1) увеличивается
2) уменьшается
3) не изменяется
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
6. На горизонтальном столе установлена в вертикальном положении лёгкая пружина жёсткостью k. Её нижний конец прикреплён к столу, а к верхнему концу прикреплена горизонтальная платформа массой M. На высоте H над платформой удерживают маленький пластилиновый шарик массой m. Шарик отпускают без начальной скорости, после чего он свободно падает и прилипает к покоившейся платформе. В результате этого платформа с шариком начинают совершать колебания, в ходе которых ось пружины остаётся вертикальной, а платформа не касается стола. Установите соответствие между физическими величинами и формулами, выражающими их в рассматриваемой задаче (g – ускорение свободного падения). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
7. В сосуде объёмом 8,31 л находится 0,35 моль идеального газа при давлении 100 кПа. Газ сначала изотермически расширяют в 2 раза, а затем изохорически нагревают на 120 К. Чему равно давление газа в конечном состоянии? Ответ выразите в кПа и округлите до целого числа.
8. На рисунке приведена зависимость температуры T однородного твёрдого тела массой 2 кг от времени t в процессе нагревания. Чему равна удельная теплоёмкость вещества этого тела? Подводимую к телу тепловую мощность можно считать постоянной и равной 450 Вт.
9. На Т–р-диаграмме показан процесс изменения состояния идеального одноатомного газа. Газ отдал в этом процессе количество теплоты 80 кДж. Масса газа не менялась. Определите работу, совершённую внешними силами над газом в этом процессе, если р1 = 80 кПа, р2 = 200 кПа, Т0 =300 К.
10. С постоянной массой идеального одноатомного газа происходит циклический процесс 1−2−3−4−1, p–V-диаграмма которого представлена на рисунке. Максимальная температура газа в этом процессе составляет 400 К. На основании анализа этого циклического процесса выберите все верные утверждения.
1) Работа, совершённая газом при его изобарическом расширении, равна 200 Дж.
2) Количество вещества газа, участвующего в циклическом процессе, больше 0,45 моль.
3) Работа, совершённая над газом при его изобарическом сжатии, равна 200 Дж.
4) Изменение внутренней энергии газа в процессе 1–2–3–4–1 равно нулю.
5) Количество теплоты, переданное газу при изохорическом нагревании, равно 400 Дж.
11. В закрытом сосуде под подвижным поршнем находятся влажный воздух и немного воды. Перемещая поршень, объём сосуда медленно увеличивают при постоянной температуре. Как изменяются в этом процессе относительная влажность воздуха и концентрация пара? Известно, что в конечном состоянии в сосуде остаётся вода. Для каждой величины определите соответствующий характер изменения:
1) увеличивается
2) уменьшается
3) не изменяется
12. Участок электрической цепи состоит из трёх резисторов, соединённых так, как показано на рисунке. Сила тока I = 3 А. Сопротивления резисторов равны R1 = 20 Ом и R2 = 30 Ом. Каким должно быть сопротивление резистора R, чтобы сила текущего через него тока была равна 2 А?
13. На рисунке показан график зависимости магнитного потока Φ, пронизывающего проводящий контур, от времени t. Сопротивление контура равно 5 Ом. Чему равна сила тока, текущего в контуре, в промежутке времени от 0 до 10 с?
15. Две маленькие закреплённые бусинки, расположенные в точках А и В, несут на себе заряды +q > 0 и +4q соответственно (см. рисунок). Расстояние от точки С до точки А в два раза меньше, чем расстояние от точки С до точки В: СВ = 2 АС . Выберите все верные утверждения, соответствующие приведённым данным.
1) Модуль силы Кулона, действующей на бусинку в точке А, в 4 раза больше, чем модуль силы Кулона, действующей на бусинку в точке В.
2) Если бусинки соединить тонким проводником, то они будут притягиваться друг к другу.
3) Напряжённость результирующего электростатического поля в точке С равна нулю.
4) Если бусинки соединить стеклянной палочкой, то их заряды не изменятся.
5) Если бусинку с зарядом +4q заменить на бусинку с зарядом –4q, то напряжённость результирующего электростатического поля в точке С будет направлена вправо.
16. В первом опыте лазерный луч красного цвета падает перпендикулярно на дифракционную решётку, содержащую 50 штрихов на 1 мм. При этом на удалённом экране наблюдают дифракционную картину. Во втором опыте проводят эксперимент с тем же лазером, заменив решётку на другую, содержащую 100 штрихов на 1 мм, и оставив угол падения лазерного луча на решётку тем же. Как изменяются во втором опыте по сравнению с первым расстояние между дифракционными максимумами первого порядка на экране и количество наблюдаемых дифракционных максимумов? Для каждой величины определите соответствующий характер изменения:
- 1) увеличивается
- 2) уменьшается
- 3) не изменяется
17. В однородном вертикальном магнитном поле находится наклонная плоскость с углом α при основании. На этой плоскости закреплён П-образный проводник, по которому скользит вниз с постоянной скоростью V проводящая перемычка длиной L. Взаимное расположение наклонной плоскости, проводника и перемычки показано на рисунке. Сопротивление перемычки равно R, сопротивление П-образного проводника мало. Модуль индукции магнитного поля равен В. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
18. Какая доля радиоактивных ядер (в процентах от первоначального числа ядер) остаётся нераспавшейся через интервал времени, равный двум периодам полураспада?
19. В опыте по изучению фотоэффекта металлическая пластина облучалась светом с частотой ν. Работа выхода электронов из металла равна Авых. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать (h – постоянная Планка, с – скорость света в вакууме, me – масса электрона). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
20. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.
- 1) При равномерном прямолинейном движении за любые равные промежутки времени тело совершает одинаковые перемещения.
- 2) Средняя кинетическая энергия теплового движения молекул гелия уменьшается при увеличении абсолютной температуры газа.
- 3) В однородном электростатическом поле работа по перемещению электрического заряда между двумя положениями в пространстве не зависит от траектории.
- 4) При переходе электромагнитной волны из воды в воздух период колебаний вектора напряжённости электрического поля в волне уменьшается.
- 5) При испускании протона электрический заряд ядра уменьшается.
21. Даны следующие зависимости величин:
- А) зависимость модуля импульса материальной точки от её кинетической энергии при неизменной массе;
- Б) зависимость количества теплоты, выделяющегося при конденсации пара, от его массы;
- В) зависимость периода колебаний силы тока в идеальном колебательном контуре от индуктивности катушки.
Установите соответствие между этими зависимостями и графиками, обозначенными цифрами 1–5. Для каждой зависимости А–В подберите соответствующий вид графика и запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
22. Для определения массы порции подсолнечного масла ученик измерил её объём с использованием мерного цилиндра и получил результат: V = (12 ±1) см3 . Чему равна масса данной порции масла с учётом погрешности измерений?
23. Ученик изучает свойства силы трения скольжения. В его распоряжении имеются установки, состоящие из горизонтальной опоры и сплошного бруска. Площадь соприкосновения бруска с опорой при проведении всех опытов одинакова. Параметры установок приведены в таблице. Какие из этих установок нужно использовать для того, чтобы на опыте обнаружить зависимость коэффициента трения от модуля силы нормального давления тела на опору?
24. В боковой стенке покоящейся на столе бутылки проделано маленькое отверстие, в которое вставлена затычка. В бутылку налита вода, а горлышко бутылки закрыто резиновой пробкой, через которую пропущена вертикальная тонкая трубка. Нижний конец трубки находится выше отверстия в стенке бутылки, но ниже поверхности воды, а верхний конец сообщается с атмосферой (см. рис.). Затычку из отверстия в боковой стенке вынимают, и вода вытекает из бутылки через отверстие. При этом через трубку в бутылку входят пузырьки воздуха. Затем трубку начинают медленно опускать вниз и делают это до тех пор, пока нижний конец трубки не окажется на одном уровне с отверстием. Опишите, как будет изменяться скорость вытекания воды из отверстия по мере опускания трубки. Считайте, что уровень воды всегда находится выше нижнего конца трубки и выше отверстия в стенке. Ответ обоснуйте, указав, какие физические закономерности Вы использовали для объяснения.
25. В механической системе, изображённой на рисунке, все блоки, пружины и нити невесомые, нити нерастяжимые, трения в осях блоков нет, все участки нитей, не лежащие на блоках, вертикальны. Известно, что после подвешивания груза массой M = 40 кг к оси самого правого блока левая пружина в состоянии равновесия растянулась на величину Δx1 = 10 см. Найдите коэффициент жёсткости k1 левой пружины.
26. В центре металлической сферической оболочки толщиной 0,5 см поместили точечный заряд q = 2 мкКл, а на её внешнюю поверхность радиусом R = 10 см – заряд Q = – 1 мкКл. Найдите для равновесного состояния модуль напряжённости E электрического поля на расстоянии r = 1 м от центра оболочки и укажите, куда направлен вектор E – к центру оболочки или от неё.
27. В большом помещении с размерами 6 × 10 × 3 м3 в зимние холода при температуре Т1 парциальное давление водяного пара в воздухе составляло pп1 = 700 Па, а относительная влажность воздуха равнялась при этом φ1 = 50 %. После обогрева помещения температура в нём поднялась до значения T2 = 25 °С, а относительная влажность снизилась до φ2 = 25 %. Используя приведённый на рисунке график, найдите, как и на сколько в результате обогрева изменилась масса m паров воды в данном помещении.
28. Иногда для измерения индукции магнитного поля используют следующий способ: маленькую плоскую круглую катушку с большим числом витков быстро вводят в область измеряемого поля так, что её плоскость перпендикулярна линиям индукции. Катушка присоединена к входным клеммам баллистического гальванометра, который может измерять электрический заряд Δq, протекший по образовавшейся замкнутой цепи за время ввода измерительной катушки в исследуемое магнитное поле. Этот заряд связан с изменением магнитного потока Ф через катушку, поэтому данный гальванометр часто используют в качестве «флюксметра». Зная поток магнитной индукции и параметры катушки, можно найти величину В проекции индукции на ось катушки. Пусть измеренное таким способом значение В = 0,5 Тл, входное сопротивление гальванометра rф = 0,1 кОм, сопротивление измерительной катушки rк = 900 Ом, диаметр её витков d = 1 см. Определите число N витков в катушке, если протекший через цепь суммарный заряд qΣ = 15 мкКл.
29. Вдоль оптической оси тонкой выпуклой собирающей линзы распространяется в воздухе параллельный приосевой пучок света, собирающийся в точку справа от неё на расстоянии F1. Линза изготовлена из стекла с показателем преломления n1 = 1,4 и ограничена справа и слева сферическими поверхностями радиусами R1 = 15 см. На какое расстояние и в какую сторону сместится точка схождения лучей этого пучка, если заменить линзу на другую, с показателем преломления стекла n2 = 1,6 и радиусами поверхностей R2 = 24 см? Положения обеих линз относительно пучка света одинаковые. Все углы падения и преломления можно считать малыми и использовать для них приближённую формулу sin α ≈ α.
30. На даче у школьника на горизонтальном полу террасы стояла пластмассовая кубическая ёмкость для воды, иногда протекающей с крыши. Когда ёмкость заполнилась наполовину, дедушка попросил внука вылить воду из неё, наклонив вокруг одного из нижних рёбер куба, чтобы вода переливалась через соседнее верхнее ребро. Какую работу А совершил внук к моменту начала вытекания воды из ёмкости, если процесс подъёма был очень медленным, так что поверхность воды всё время оставалась горизонтальной? Объём воды вначале был равен V = 108 л, квадратные стенки ёмкости и её днище тонкие, однородные, массой m = 4 кг каждая (сверху ёмкость открыта). Сделайте рисунки с указанием положения центров масс воды, днища и стенок ёмкости до начала наклона ёмкости и в момент, когда вода начинает выливаться. Обоснуйте применимость используемых законов к решению задачи.
Вариант ФИ2210402 с ответами
1. Два маленьких тела, находившиеся в состоянии покоя, одновременно начинают двигаться из одной точки по плоскости YOX с разными по модулю постоянными ускорениями. На рисунке изображены векторы 1 a и 2 a ускорений этих тел (масштабы координатной сетки вдоль горизонтальной и вертикальной осей одинаковы). Чему равно отношение путей S1/S2, пройденных этими телами за первые 3 секунды их движения?
2. Ускорение свободного падения на поверхности Земли в 2,65 раза больше, чем на поверхности Марса. Вторая космическая скорость для Земли в 2,24 раза больше, чем для Марса. Во сколько раз радиус Земли больше радиуса Марса? Ответ округлите до целого числа.
3. На горизонтальном столе лежит лист бумаги, на котором нарисован равнобедренный треугольник ABC с основанием BC. Длина боковой стороны этого треугольника 18 см, угол при основании 30°. В его вершинах расположены одинаковые маленькие тяжёлые бусинки. На каком расстоянии от вершины A расположен центр тяжести системы, состоящей из этих трёх бусинок?
4. Небольшая шайба массой 100 г соскальзывает с наклонной плоскости с углом при основании 45°. Сопротивление воздуха пренебрежимо мало. В таблице приведены значения модуля скорости V шайбы в различные моменты времени t. Выберите все верные утверждения о результатах этого опыта на основании данных, содержащихся в таблице.
- 1) Между шайбой и плоскостью есть сухое трение.
- 2) Модуль ускорения шайбы приблизительно равен 7 м/с2 .
- 3) За первую секунду движения шайба прошла путь менее 2 м.
- 4) В момент времени t = 0,6 с модуль импульса шайбы примерно равен 0,36 кг⋅м/с.
- 5) Если в момент времени t = 1,2 с шайба столкнётся с абсолютно неупругим препятствием, то выделится количество теплоты ≈ 2,6 Дж.
5. На двух узких опорах покоится тяжёлая горизонтальная однородная доска. На доске посередине между опорами лежит гиря. Гирю перекладывают так, что она оказывается лежащей на доске ближе к правой опоре. Как после перекладывания гири изменяются модуль силы реакции левой опоры и момент силы тяжести гири относительно правой опоры? Для каждой величины определите соответствующий характер изменения:
- 1) увеличивается
- 2) уменьшается
- 3) не изменяется
6. На горизонтальном столе установлена в вертикальном положении лёгкая пружина жёсткостью k. Её нижний конец прикреплён к столу, а к верхнему концу прикреплена горизонтальная платформа массой M. На высоте H над платформой удерживают маленький пластилиновый шарик массой m. Шарик отпускают без начальной скорости, после чего он свободно падает и прилипает к покоившейся платформе. В результате этого платформа с шариком начинают совершать колебания, в ходе которых ось пружины остаётся вертикальной, а платформа не касается стола. Установите соответствие между физическими величинами и формулами, выражающими их в рассматриваемой задаче (g – ускорение свободного падения). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
7. В сосуде объёмом 8,31 л находится 0,35 моля идеального газа при давлении 100 кПа. Газ сначала изотермически расширяют в 2 раза, а затем изобарически нагревают на 24 К. Чему равен объём газа в конечном состоянии?
8. На рисунке приведена зависимость температуры t однородного твёрдого тела массой 5 кг от времени τ в процессе нагревания. Чему равна удельная теплоёмкость вещества этого тела? Подводимую к телу тепловую мощность можно считать постоянной и равной 520 Вт.
9. На Т–V-диаграмме показан процесс изменения состояния идеального одноатомного газа. Газ получил в этом процессе количество теплоты 120 кДж. Масса газа не менялась. Определите работу, совершённую газом в этом процессе, если V1 = 8 л, V2 = 20 л, Т0 = 300 К.
10. С постоянной массой идеального одноатомного газа происходит циклический процесс 1−2−3−4−1, p–V-диаграмма которого представлена на рисунке. Максимальная температура газа в этом процессе составляет 600 К. На основании анализа этого циклического процесса выберите все верные утверждения.
- 1) Работа, совершённая газом при его изобарическом расширении, равна 400 Дж.
- 2) Количество вещества газа, участвующего в циклическом процессе, больше 0,45 моля.
- 3) Суммарное количество теплоты, которым газ обменялся с окружающими телами в процессе 1–2–3–4–1, равно 200 Дж.
- 4) Изменение внутренней энергии газа в процессе 4–1 равно 600 Дж.
- 5) Температура газа в состоянии 4 равна 225 К.
11. В закрытом сосуде под подвижным поршнем находятся влажный воздух и немного воды. Перемещая поршень, объём сосуда медленно уменьшают при постоянной температуре. Как изменяются в этом процессе относительная влажность воздуха и плотность пара? Для каждой величины определите соответствующий характер изменения:
- 1) увеличивается
- 2) уменьшается
- 3) не изменяется
12. Участок электрической цепи состоит из трёх резисторов, соединённых так, как показано на рисунке. Сила тока I = 6 А. Сопротивления резисторов равны R1 = 10 Ом и R2 = 30 Ом. Каким должно быть сопротивление резистора R, чтобы сила тока, текущего через него, была равна 2 А?
13. На рисунке показан график зависимости магнитного потока Φ, пронизывающего проводящий контур, от времени t. Сопротивление контура равно 3 Ом. Чему равна сила тока, текущего в контуре в промежутке времени от 10 до 20 с?
14. Сила тока i в идеальном колебательном контуре меняется со временем t по закону 0,02cos(5 10 ) 6 i = ⋅ t , где все величины выражены в единицах СИ. Чему равен максимальный заряд одной из пластин конденсатора, включённого в этот колебательный контур?
15. Две маленькие закреплённые бусинки, расположенные в точках А и В, несут на себе заряды +q > 0 и –4q соответственно (см. рисунок). Точка С расположена посередине отрезка АВ. Выберите все верные утверждения, соответствующие приведённым данным.
- 1) Сила Кулона, действующая на бусинку в точке А равна по модулю силе Кулона, действующей на бусинку в точке В.
- 2) Если бусинки соединить проводником, то они станут отталкиваться друг от друга.
- 3) Напряжённость результирующего электростатического поля в точке С направлена влево.
- 4) Если бусинки соединить стеклянной палочкой, то их заряды станут одинаковыми.
- 5) Если бусинку с зарядом –4q заменить на бусинку с зарядом +3q, то модуль напряжённости результирующего электростатического поля в точке С уменьшится в 2,5 раза.
16. В первом опыте лазерный луч красного цвета падает перпендикулярно на дифракционную решётку, содержащую 100 штрихов на 1 мм. При этом на удалённом экране наблюдают дифракционную картину. Во втором опыте проводят эксперимент с тем же лазером, заменив решётку на другую, содержащую 50 штрихов на 1 мм, и оставив угол падения лазерного луча на решётку тем же. Как изменяются во втором опыте по сравнению с первым расстояние между дифракционными максимумами второго порядка на экране и угол, под которым наблюдается первый дифракционный максимум? Для каждой величины определите соответствующий характер изменения:
- 1) увеличивается
- 2) уменьшается
- 3) не изменяется
17. В однородном вертикальном магнитном поле находится наклонная плоскость с углом α при основании. На этой плоскости закреплён П-образный проводник, по которому скользит вниз с постоянной скоростью V проводящая перемычка длиной L. Взаимное расположение наклонной плоскости, проводника и перемычки показано на рисунке. Сопротивление перемычки равно R, сопротивление П-образного проводника мало. Модуль индукции магнитного поля равен В. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.
18. Какая доля радиоактивных ядер (в процентах от первоначального числа ядер) остаётся нераспавшейся через интервал времени, равный трём периодам полураспада?
19. В опыте по изучению фотоэффекта металлическая пластина облучалась светом с частотой ν. Работа выхода электронов из металла равна Авых. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать (h – постоянная Планка, с – скорость света в вакууме, me – масса электрона). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
20. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.
- 1) При равномерном движении по окружности перемещение тела за один период обращения равно нулю.
- 2) При увеличении средней кинетической энергии теплового движения молекул гелия его давление в закрытом сосуде неизменного объёма уменьшается.
- 3) При движении заряда по окружности в однородном магнитном поле сила Лоренца, действующая на этот заряд, не совершает работу.
- 4) При переходе электромагнитной волны из воздуха в воду период колебаний вектора индукции магнитного поля в волне не изменяется.
- 5) При испускании нейтрона электрический заряд ядра увеличивается.
21. Даны следующие зависимости величин:
- А) зависимость кинетической энергии материальной точки от модуля её импульса при неизменной массе;
- Б) зависимость количества теплоты, выделяющегося при кристаллизации воды, от её массы;
- В) зависимость энергии конденсатора постоянной ёмкости от его заряда.
Установите соответствие между этими зависимостями и графиками, обозначенными цифрами 1–5. Для каждой зависимости А–В подберите соответствующий вид графика и запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
22. Для определения массы порции керосина ученик измерил её объём с использованием мерного цилиндра и получил результат: V = (30,0 ± 0,5) см3 . Чему равна масса данной порции керосина с учётом погрешности измерений?
23. Ученик изучает свойства силы трения скольжения. В его распоряжении имеются установки, состоящие из горизонтальной опоры и сплошного бруска. Площадь соприкосновения бруска с опорой при проведении всех опытов одинакова. Параметры установок приведены в таблице. Какие из установок нужно использовать для того, чтобы на опыте обнаружить зависимость коэффициента трения от материала опоры?
24. В боковой стенке покоящейся на столе бутылки проделано маленькое отверстие, в которое вставлена затычка. В бутылку налита вода, а горлышко бутылки закрыто резиновой пробкой, через которую пропущена вертикальная тонкая трубка. Нижний конец трубки находится ниже поверхности воды на уровне отверстия в стенке бутылки, а верхний конец сообщается с атмосферой (см. рис.). Затычку из отверстия в боковой стенке вынимают и начинают медленно поднимать трубку вверх. При этом вода вытекает из бутылки через отверстие, а через трубку в бутылку входят пузырьки воздуха. Опишите, как будет изменяться скорость вытекания воды из отверстия по мере поднимания трубки. Считайте, что уровень воды всегда находится выше нижнего конца трубки и выше отверстия в стенке. Ответ обоснуйте, указав, какие физические закономерности Вы использовали для объяснения.
25. В механической системе, изображённой на рисунке, все блоки, пружины и нити невесомые, нити нерастяжимые, трения в осях блоков нет, все участки нитей, не лежащие на блоках, вертикальны. Известно, что после подвешивания груза M к оси самого правого блока левая пружина, имеющая коэффициент жёсткости k1 = 500 Н/м, в состоянии равновесия растянулась на величину Δx1 = 10 см. На какую величину Δx2 удлинилась при этом правая пружина, если её коэффициент жёсткости равен k2 = 1000 Н/м?
26. В центре металлической сферической оболочки толщиной 0,2 см поместили точечный заряд q = 1 мкКл, а на её внешнюю поверхность радиусом R = 10 см – заряд Q = – 3 мкКл. Найдите для равновесного состояния модуль E напряжённости электрического поля на расстоянии r = 2 м от центра оболочки и укажите, куда направлен вектор E – к центру оболочки или от неё.
27. В большом помещении с размерами 5 × 10 м2 (пол) и 3,5 м (высота потолка) температура T1 во время зимних холодов понизилась, парциальное давление водяного пара в воздухе опустилось до значения pп1 = 600 Па, а относительная влажность воздуха равнялась при этом φ1 = 50 %. После обогрева помещения температура в нём поднялась до значения T2 = 24 °С, а относительная влажность снизилась до φ2 = 30 %. Используя приведённый на рисунке график, найдите, как и во сколько раз в результате обогрева изменилась масса m паров воды в данном помещении.
28. Иногда для измерения индукции магнитного поля используют следующий способ: маленькую плоскую круглую катушку с большим числом витков быстро вводят в область измеряемого поля так, что её плоскость перпендикулярна линиям индукции. Катушка присоединена к входным клеммам баллистического гальванометра, который может измерять электрический заряд Δq, протекший по образовавшейся замкнутой цепи за время ввода измерительной катушки в исследуемое магнитное поле. Этот заряд связан с изменением магнитного потока Ф через катушку, поэтому данный гальванометр часто используют в качестве «флюксметра». Зная поток магнитной индукции и параметры катушки, можно найти величину В проекции индукции на ось катушки. Пусть входное сопротивление гальванометра rф = 0,2 кОм, сопротивление измерительной катушки rк = 600 Ом, диаметр её витков d = 0,95 см, число витков в ней N = 300. Чему равен измеренный модуль индукции магнитного поля, если протекший через цепь суммарный заряд qΣ = 12 мкКл.
29. Вдоль оптической оси тонкой выпуклой собирающей линзы распространяется в воздухе параллельный приосевой пучок света, собирающийся в точку справа от неё на расстоянии F1. Линза изготовлена из стекла с показателем преломления n1 = 1,5 и ограничена справа и слева сферическими поверхностями радиусами R1 = 20 см. На какое расстояние сместится точка схождения лучей этого пучка, если заменить линзу на другую, с показателем преломления стекла n2 = 1,7 и радиусами поверхностей R2 = 16 см? Положения обеих линз относительно пучка света одинаковые. Все углы падения и преломления можно считать малыми и использовать для них приближённую формулу sinα ≈ α.
30. На даче у школьника на горизонтальном полу террасы стояла пластмассовая кубическая ёмкость для воды, иногда протекающей с крыши. Когда ёмкость заполнилась наполовину, дедушка попросил своего сильного внука вылить воду из неё, наклонив вокруг одного из нижних рёбер куба, чтобы вода переливалась через соседнее верхнее ребро. Оцените, на какую величину ∆E внук увеличит механическую энергию ёмкости с водой к моменту начала вытекания воды из ёмкости, если процесс подъёма был очень медленным, так что поверхность воды всё время оставалась горизонтальной? Объём воды вначале был равен V = 63 л, квадратные стенки ёмкости и её днище тонкие, однородные, массой m = 3 кг каждая (сверху ёмкость открыта). Сделайте рисунки с указанием положения центров масс воды, днища и стенок ёмкости до начала наклона ёмкости и в момент, когда вода начинает выливаться. Обоснуйте применимость используемых законов к решению задачи.
Попробуйте решить другие варианты
Статград ФИ2210301-ФИ2210304 физика 11 класс ЕГЭ 2023 варианты и ответы
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
https://olymp.bmstu.ru/ru
Всего: 617 1–20 | 21–40 | 41–60 | 61–80 | 81–100 …
Добавить в вариант
Какое количество тепла выделится на резисторе после замыкания ключа
Внутренним сопротивлением батареи пренебречь.
Классификатор: Электродинамика. Электрические цепи с конденсаторами
Вертикальная часть тонкой открытой с обоих концов L — образной трубки заполнена на длину L жидкостью и удерживается с помощью клапана K. Найдите, через какое время
после открытия клапана, вся жидкость вытечет из вертикальной части трубки. Силами трения и поверхностного натяжения пренебречь. При течении жидкость заполняет всё сечение трубки.
Классификатор: Механика. Гидростатика
Вертикальная часть тонкой открытой с обоих концов L — образной трубки заполнена на длину L жидкостью и удерживается с помощью клапана K. Найдите, через какое время
после открытия клапана, половина жидкости вытечет из вертикальной части трубки. Силами трения и поверхностного натяжения пренебречь. При течении жидкость заполняет всё сечение трубки.
Классификатор: Механика. Гидростатика
Вертикальная часть тонкой открытой с обоих концов L — образной трубки заполнена на длину L жидкостью и удерживается с помощью клапана K. Найдите, через какое время
после открытия клапана, скорость жидкости достигнет половины от максимального значения. Силами трения и поверхностного натяжения пренебречь. При течении жидкость заполняет всё сечение трубки.
Классификатор: Механика. Гидростатика
Вообразим, что строительная техника позволяет возводить сколь угодно высокие сооружения. Какую высоту H должна иметь башня, расположенная на экваторе Земли, чтобы тело, находящееся на вершине такой башни, было невесомым?
Классификатор: Механика. Гравитационное взаимодействие
Самолёт совершает вираж, двигаясь по окружности радиуса на одной и той же высоте. Определите с какой постоянной скоростью движется самолёт, если плоскость крыла самолёта наклонена к горизонтальной плоскости под постоянным углом
Классификатор: Механика. Динамика движения по окружности
Самолёт совершает вираж, двигаясь по окружности с постоянной скоростью на одной и той же высоте. Определите радиус R этой окружности, если плоскость крыла самолёта наклонена к горизонтальной плоскости под постоянным углом
Классификатор: Механика. Динамика движения по окружности
Самолёт совершает вираж, двигаясь по окружности радиуса на одной и той же высоте. Определите с какой постоянной скоростью движется самолёт, если плоскость крыла самолёта наклонена к горизонтальной плоскости под постоянным углом
Классификатор: Механика. Динамика движения по окружности
Самолёт совершает вираж, двигаясь по окружности с постоянной скоростью υ = 540 км/ч на одной и той же высоте. Определите радиус R этой окружности, если плоскость крыла самолёта наклонена к горизонтальной плоскости под постоянным углом
Классификатор: Механика. Динамика движения по окружности
Классификатор: Механика. Гравитационное взаимодействие
Классификатор: Механика. Гравитационное взаимодействие
Классификатор: Механика. Гравитационное взаимодействие
Классификатор: Механика. Гравитационное взаимодействие
Рабочим веществом идеальной тепловой машины, работающей по циклу Карно, является один моль идеального одноатомного газа. КПД цикла известен и равен μ. Определите температуру холодильника, если работа, которую совершает газ при адиабатическом расширении, равна A.
Классификатор: МКТ и термодинамика. Тепловые двигатели
Рабочим веществом идеальной тепловой машины, работающей по циклу Карно, является один моль идеального одноатомного газа. КПД цикла известен и равен Определите температуру нагревателя, если работа, которую совершает газ при адиабатическом расширении, равна A.
Классификатор: МКТ и термодинамика. Тепловые двигатели
Рабочим веществом идеальной тепловой машины, работающей по циклу Карно, являются два моля идеального одноатомного газа. КПД цикла известен и равен μ. Определите температуру нагревателя, если работа, которую совершает газ при адиабатическом расширении, равна A.
Классификатор: МКТ и термодинамика. Тепловые двигатели
Рабочим веществом идеальной тепловой машины, работающей по циклу Карно, являются два моля идеального одноатомного газа. КПД цикла известен и равен Определите температуру холодильника, если работа, которую совершает газ при адиабатическом расширении, равна A.
Классификатор: МКТ и термодинамика. Тепловые двигатели
Классификатор: Механика. Законы Ньютона
Классификатор: Механика. Законы Ньютона
Классификатор: Механика. Законы Ньютона
Всего: 617 1–20 | 21–40 | 41–60 | 61–80 | 81–100 …
Лебедева Алевтина Сергеевна, учитель физики, стаж работы 27 лет. Почетная грамота Министерства образования Московской области (2013 год), Благодарность Главы Воскресенского муниципального района (2015 год), Грамота Президента Ассоциации учителей математики и физики Московской области (2015 год).
В работе представлены задания разных уровней сложности: базового, повышенного и высокого. Задания базового уровня, это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов. Задания повышенного уровня направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одного-двух законов (формул) по какой-либо из тем школьного курса физики. В работе 4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двух трех разделов физики, т.е. высокого уровня подготовки. Данный вариант полностью соответствует демонстрационному варианту ЕГЭ 2017 года, задания взяты из открытого банка заданий ЕГЭ.
Задание 1. На рисунке представлен график зависимости модуля скорости от времени t. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.
Решение. Путь, пройденный автомобилем в интервале времени от 0 до 30 с проще всего определить как площадь трапеции, основаниями которой являются интервалы времени (30 – 0) = 30 c и (30 – 10) = 20 с, а высотой является скорость v = 10 м/с, т.е.
S = | (30 + 20) с | 10 м/с = 250 м. |
2 |
Ответ. 250 м.
Задание 2. Груз массой 100 кг поднимают вертикально вверх с помощью троса. На рисунке приведена зависимость проекции скорости V груза на ось, направленную вверх, от времени t. Определите модуль силы натяжения троса в течение подъема.
Рис. 1
Рис. 2
Решение. По графику зависимости проекции скорости v груза на ось, направленную вертикально вверх, от времени t, можно определить проекцию ускорения груза
a = | ∆v | = | (8 – 2) м/с | = 2 м/с2. |
∆t | 3 с |
На груз действуют: сила тяжести , направленная вертикально вниз и сила натяжения троса
, направленная вдоль троса вертикально вверх смотри рис. 2. Запишем основное уравнение динамики. Воспользуемся вторым законом Ньютона. Геометрическая сумма сил действующих на тело равна произведению массы тела на сообщаемое ему ускорение.
+
=
(1)
Запишем уравнение для проекции векторов в системе отсчета, связанной с землей, ось OY направим вверх. Проекция силы натяжения положительная, так как направление силы совпадает с направлением оси OY, проекция силы тяжести отрицательная, так как вектор силы противоположно направлен оси OY, проекция вектора ускорения тоже положительная, так тело движется с ускорением вверх. Имеем
T – mg = ma (2);
из формулы (2) модуль силы натяжения
Т = m(g + a) = 100 кг (10 + 2) м/с2 = 1200 Н.
Ответ. 1200 Н.
Задание 3. Тело тащат по шероховатой горизонтальной поверхности с постоянной скоростью модуль которой равен 1, 5 м/с, прикладывая к нему силу
так, как показано на рисунке (1). При этом модуль действующей на тело силы трения скольжения равен 16 Н. Чему равна мощность, развиваемая силой F?
Рис. 1
Рис. 2
Решение. Представим себе физический процесс, заданный в условии задачи и сделаем схематический чертеж с указанием всех сил, действующих на тело (рис.2). Запишем основное уравнение динамики.
+
тр +
+
=
(1)
Выбрав систему отсчета, связанную с неподвижной поверхностью, запишем уравнения для проекции векторов на выбранные координатные оси. По условию задачи тело движется равномерно, так как его скорость постоянна и равна 1,5 м/с. Это значит, ускорение тела равно нулю. По горизонтали на тело действуют две силы: сила трения скольжения тр. и сила
, с которой тело тащат. Проекция силы трения отрицательная, так как вектор силы не совпадает с направлением оси Х. Проекция силы F положительная. Напоминаем, для нахождения проекции опускаем перпендикуляр из начала и конца вектора на выбранную ось. С учетом этого имеем: F cosα – Fтр = 0; (1) выразим проекцию силы F, это Fcosα = Fтр = 16 Н; (2) тогда мощность, развиваемая силой
, будет равна N = Fcosα V (3) Сделаем замену, учитывая уравнение (2), и подставим соответствующие данные в уравнение (3):
N = 16 Н · 1,5 м/с = 24 Вт.
Ответ. 24 Вт.
Задание 4. Груз, закрепленный на легкой пружине жесткостью 200 Н/м, совершает вертикальные колебания. На рисунке представлен график зависимости смещения x груза от времени t. Определите, чему равна масса груза. Ответ округлите до целого числа.
Решение. Груз на пружине совершает вертикальные колебания. По графику зависимости смещения груза х от времени t, определим период колебаний груза. Период колебаний равен Т = 4 с; из формулы Т = 2π выразим массу m груза.
T | ; | m | = | T2 | ; m = k | T2 | ; m = 200 H/м | (4 с)2 | = 81,14 кг ≈ 81 кг. | |
2π | k | 4π2 | 4π2 | 39,438 |
Ответ: 81 кг.
Задание 5. На рисунке показана система из двух легких блоков и невесомого троса, с помощью которого можно удерживать в равновесии или поднимать груз массой 10 кг. Трение пренебрежимо мало. На основании анализа приведенного рисунка выберите два верных утверждения и укажите в ответе их номера.
- Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 100 Н.
- Изображенная на рисунке система блоков не дает выигрыша в силе.
- Для того чтобы медленно поднять груз на высоту h, нужно вытянуть участок веревки длиной 3h.
- Для того чтобы медленно поднять груз на высоту h, нужно вытянуть участок веревки длиной 2h.
- Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.
Решение. В данной задаче необходимо вспомнить простые механизмы, а именно блоки: подвижный и неподвижный блок. Подвижный блок дает выигрыш в силе в два раза, при этом участок веревки нужно вытянуть в два раза длиннее, а неподвижный блок используют для перенаправления силы. В работе простые механизмы выигрыша не дают. После анализа задачи сразу выбираем нужные утверждения:
- Для того чтобы медленно поднять груз на высоту h, нужно вытянуть участок веревки длиной 2h.
- Для того чтобы удерживать груз в равновесии, нужно действовать на конец веревки с силой 50 Н.
Ответ. 45.
Задание 6. В сосуд с водой полностью погружен алюминиевый груз, закрепленный на невесомой и нерастяжимой нити. Груз не касается стенок и дна сосуда. Затем в такой же сосуд с водой погружают железный груз, масса которого равна массе алюминиевого груза. Как в результате этого изменятся модуль силы натяжения нити и модуль действующей на груз силы тяжести?
Для каждой величины определите соответствующий характер изменения:
- Увеличивается;
- Уменьшается;
- Не изменяется.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Модуль силы натяжения нити |
Модуль действующей на груз силы тяжести |
Рис. 1
Решение. Анализируем условие задачи и выделяем те параметры, которые не меняются в ходе исследования: это масса тела и жидкость, в которую погружают тело на нити. После этого лучше выполнить схематический рисунок и указать действующие на груз силы: сила натяжения нити Fупр, направленная вдоль нити вверх; сила тяжести , направленная вертикально вниз; архимедова сила
a, действующая со стороны жидкости на погруженное тело и направленная вверх. По условию задачи масса грузов одинакова, следовательно, модуль действующей на груз силы тяжести не меняется. Так как плотность грузов разная, то объем тоже будет разный
Плотность железа 7800 кг/м3, а алюминиевого груза 2700 кг/м3. Следовательно, Vж < Va. Тело в равновесии, равнодействующая всех сил, действующих на тело равна нулю. Направим координатную ось OY вверх. Основное уравнение динамики с учетом проекции сил запишем в виде Fупр + Fa – mg = 0; (1) Выразим силу натяжения Fупр = mg – Fa (2); архимедова сила зависит от плотности жидкости и объема погруженной части тела Fa = ρgV п.ч.т. (3); Плотность жидкости не меняется, а объем тела из железа меньше Vж < Va, поэтому архимедова сила, действующая на железный груз будет меньше. Делаем вывод о модуле силы натяжения нити, работая с уравнение (2), он возрастет.
Ответ. 13.
Задание 7. Брусок массой m соскальзывает с закрепленной шероховатой наклонной плоскости с углом α при основании. Модуль ускорения бруска равен a, модуль скорости бруска возрастает. Сопротивлением воздуха можно пренебречь.
Установите соответствие между физическими величинами и формулами, при помощи которых их можно вычислить. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА |
ФОРМУЛА |
А) Модуль силы реакции, действующей на брусок со стороны наклонной плоскости |
1) mg |
Б) Коэффициент трения бруска о наклонную плоскость |
3) mg cosα |
Решение. Данная задача требует применение законов Ньютона. Рекомендуем сделать схематический чертеж; указать все кинематические характеристики движения. Если возможно, изобразить вектор ускорения и векторы всех сил, приложенных к движущемуся телу; помнить, что силы, действующие на тело, – результат взаимодействия с другими телами. Затем записать основное уравнение динамики. Выбрать систему отсчета и записать полученное уравнение для проекции векторов сил и ускорений;
Следуя предложенному алгоритму, сделаем схематический чертеж (рис. 1). На рисунке изображены силы, приложенные к центру тяжести бруска, и координатные оси системы отсчета, связанной с поверхностью наклонной плоскости. Так как все силы постоянны, то движение бруска будет равнопеременным с увеличивающейся скоростью, т.е. вектор ускорения направлен в сторону движения. Выберем направление осей как указано на рисунке. Запишем проекции сил, на выбранные оси.
Рис. 1
Запишем основное уравнение динамики:
+
тр +
=
(1)
Запишем данное уравнение (1) для проекции сил и ускорения.
На ось OY: проекция силы реакции опоры положительная, так как вектор совпадает с направлением оси OY Ny = N; проекция силы трения равна нулю так как вектор перпендикулярен оси; проекция силы тяжести будет отрицательная и равная mgy = –mgcosα; проекция вектора ускорения ay = 0, так как вектор ускорения перпендикулярен оси. Имеем N – mgcosα = 0 (2) из уравнения выразим силу реакции действующей на брусок, со стороны наклонной плоскости. N = mgcosα (3). Запишем проекции на ось OX.
На ось OX: проекция силы N равна нулю, так как вектор перпендикулярен оси ОХ; Проекция силы трения отрицательная (вектор направлен в противоположную сторону относительно выбранной оси); проекция силы тяжести положительная и равна mgx = mgsinα (4) из прямоугольного треугольника. Проекция ускорения положительная ax = a; Тогда уравнение (1) запишем с учетом проекции mgsinα – Fтр = ma (5); Fтр = m(gsinα – a) (6); Помним, что сила трения пропорциональна силе нормального давления N.
По определению Fтр = μN (7), выразим коэффициент трения бруска о наклонную плоскость.
μ = | Fтр | = | m(gsinα – a) | = tgα – | a | (8). |
N | mgcosα | gcosα |
Выбираем соответствующие позиции для каждой буквы.
Ответ. A – 3; Б – 2.
Задание 8. Газообразный кислород находится в сосуде объемом 33,2 литра. Давление газа 150 кПа, его температура 127° С. Определите массу газа в этом сосуде. Ответ выразите в граммах и округлите до целого числа.
Решение. Важно обратить внимание на перевод единиц в систему СИ. Температуру переводим в Кельвины T = t°С + 273, объем V = 33,2 л = 33,2 · 10–3 м3; Давление переводим P = 150 кПа = 150 000 Па. Используя уравнение состояния идеального газа
PV = | m | RT, (уравнение Менделеева –Клапейрона) |
μ |
выразим массу газа.
и подставим числовые значения в полученное уравнение.
m = | 1,5 · 105 ·33,2 · 10–3 · 32 · 10–3 | = 0,0479 кг = 47,9 г ≈ 48 г |
8,31 · 400 |
Обязательно обращаем внимание, в каких единица просят записать ответ. Это очень важно.
Ответ. 48 г.
Задание 9. Идеальный одноатомный газ в количестве 0,025 моль адиабатически расширился. При этом его температура понизилась с +103°С до +23°С. Какую работу совершил газ? Ответ выразите в Джоулях и округлите до целого числа.
Решение. Во-первых, газ одноатомный число степеней свободы i = 3, во-вторых, газ расширяется адиабатически – это значит без теплообмена Q = 0. Газ совершает работу за счет уменьшения внутренней энергии. С учетом этого, первый закон термодинамики запишем в виде 0 = ∆U + Aг; (1) выразим работу газа Aг = –∆U (2); Изменение внутренней энергии для одноатомного газа запишем как
Проведем вычисления подставив (3) в (2). Не забываем перевести температуру из градусов Цельсия в Кельвины.
Aг = – | 3 | 0,025 · 8,31 · (–80) = 24,93 (Дж) ≈ 25Дж |
2 |
Ответ. 25 Дж.
Задание 10. Относительная влажность порции воздуха при некоторой температуре равна 10 %. Во сколько раз следует изменить давление этой порции воздуха для того, чтобы при неизменной температуре его относительная влажность увеличилась на 25 %?
Решение. Вопросы, связанные с насыщенным паром и влажностью воздуха, чаще всего вызывают затруднения у школьников. Воспользуемся формулой для расчета относительной влажности воздуха
φ = | Pв.п. | · 100 % (1); |
Pн.п. |
По условию задачи температура не изменяется, значит, давление насыщенного пара остается тем же. Запишем формулу (1) для двух состояний воздуха.
φ1 = | P1в.п. | · 100 % (2); |
Pн.п. |
и
φ2 = | P2в.п. | · 100 % (3); |
Pн.п. |
φ1 = 10 % ; φ2 = 35 %
Выразим давления воздуха из формул (2), (3) и найдем отношение давлений.
P2 | = | φ2 | = | 35 | = 3,5 |
P1 | φ1 | 10 |
Ответ. Давление следует увеличить в 3,5 раза.
Задание 11. Горячее вещество в жидком состоянии медленно охлаждалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.
Время, мин |
0 |
5 |
10 |
15 |
20 |
25 |
30 |
35 |
Температура, °С |
250 |
242 |
234 |
232 |
232 |
232 |
230 |
216 |
Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведенных измерений и укажите их номера.
- Температура плавления вещества в данных условиях равна 232°С.
- Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
- Теплоемкость вещества в жидком и твердом состоянии одинакова.
- Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
- Процесс кристаллизации вещества занял более 25 минут.
Решение. Так как вещество охлаждалось, то его внутренняя энергия уменьшалась. Результаты измерения температуры, позволяют определить температуру, при которой вещество начинает кристаллизоваться. Пока вещество переходит из жидкого состояния в твердое, температура не меняется. Зная, что температура плавления и температура кристаллизации одинаковы, выбираем утверждение:
1. Tемпература плавления вещества в данных условиях равна 232°С.
Второе верное утверждение это:
4. Через 30 мин. после начала измерений вещество находилось только в твердом состоянии. Так как температура в этот момент времени, уже ниже температуры кристаллизации.
Ответ. 14.
Задание 12. В изолированной системе тело А имеет температуру +40°С, а тело Б температуру +65°С. Эти тела привели в тепловой контакт друг с другом. Через некоторое время наступило тепловое равновесие. Как в результате изменилась температура тела Б и суммарная внутренняя энергия тела А и Б?
Для каждой величины определите соответствующий характер изменения:
- Увеличилась;
- Уменьшилась;
- Не изменилась.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Температура тела Б |
Суммарная внутренняя энергия тел А и Б |
Решение. Если в изолированной системе тел не происходит никаких превращений энергии кроме теплообмена, то количество теплоты, отданное телами, внутренняя энергия которых уменьшается, равно количеству теплоты, полученному телами, внутренняя энергия которых увеличивается. (По закону сохранения энергии.) При этом суммарная внутренняя энергия системы не меняется. Задачи такого типа решаются на основании уравнения теплового баланса.
∆U = ∑ | n | ∆Ui = 0 (1); |
i = 1 |
где ∆U – изменение внутренней энергии.
В нашем случае в результате теплообмена внутренняя энергия тела Б уменьшается, а значит уменьшается температура этого тела. Внутренняя энергия тела А увеличивается, так как тело получило количество теплоты от тела Б, то температура его увеличится. Суммарная внутренняя энергия тел А и Б не изменяется.
Ответ. 23.
Задание 13. Протон p, влетевший в зазор между полюсами электромагнита, имеет скорость , перпендикулярную вектору индукции
магнитного поля, как показано на рисунке. Куда направлена действующая на протон сила Лоренца относительно рисунка (вверх, к наблюдателю, от наблюдателя, вниз, влево, вправо)
Решение. На заряженную частицу магнитное поле действует с силой Лоренца. Для того чтобы определить направление этой силы, важно помнить мнемоническое правило левой руки, не забывать учитывать заряд частицы. Четыре пальца левой руки направляем по вектору скорости, для положительно заряженной частицы, вектор должен перпендикулярно входить в ладонь, большой палец отставленный на 90° показывает направление действующей на частицу силы Лоренца. В результате имеем, что вектор силы Лоренца направлен от наблюдателя относительно рисунка.
Ответ. от наблюдателя.
Задание 14. Модуль напряженности электрического поля в плоском воздушном конденсаторе емкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд конденсатора? Ответ запишите в мкКл.
Решение. Переведем все единицы измерения в систему СИ. Емкость С = 50 мкФ = 50 · 10–6 Ф, расстояние между пластинами d = 2 · 10–3 м. В задаче говорится о плоском воздушном конденсаторе – устройстве для накопления электрического заряда и энергии электрического поля. Из формулы электрической емкости
выразим электрический заряд q = C · U (2). Используя связь напряженности электрического поля E и напряжения U, запишем формулу
где d – расстояние между пластинами.
Выразим напряжение U = E · d (4); Подставим (4) в (2) и рассчитаем заряд конденсатора.
q = C · Ed = 50 · 10–6 · 200 · 0,002 = 20 мкКл
Обращаем внимание, в каких единицах нужно записать ответ. Получили в кулонах, а представляем в мкКл.
Ответ. 20 мкКл.
Задание 15.
Рис. 1
Ученик провел опыт по преломлению света, представленный на фотографии. Как изменяется при увеличении угла падения угол преломления света, распространяющегося в стекле, и показатель преломления стекла?
- Увеличивается
- Уменьшается
- Не изменяется
- Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.
Угол преломления |
Показатель преломления стекла |
Решение. В задачах такого плана вспоминаем, что такое преломление. Это изменение направления распространения волны при прохождении из одной среды в другую. Вызвано оно тем, что скорости распространения волн в этих средах различны. Разобравшись из какой среды в какую свет распространяется, запишем закона преломления в виде
где n2 – абсолютный показатель преломления стекла, среда куда идет свет; n1 – абсолютный показатель преломления первой среды, откуда свет идет. Для воздуха n1 = 1. α – угол падения луча на поверхность стеклянного полуцилиндра, β – угол преломления луча в стекле. Причем, угол преломления будет меньше угла падения, так как стекло оптически более плотная среда – среда с большим показателем преломления. Скорость распространения света в стекле меньше. Обращаем внимание, что углы измеряем от перпендикуляра, восстановленного в точке падения луча. Если увеличивать угол падения, то и угол преломления будет расти. Показатель преломления стекла от этого меняться не будет.
Ответ.
Задание 16. Медная перемычка в момент времени t0 = 0 начинает двигаться со скоростью 2 м/с по параллельным горизонтальным проводящим рельсам, к концам которых подсоединен резистор сопротивлением 10 Ом. Вся система находится в вертикальном однородном магнитном поле. Сопротивление перемычки и рельсов пренебрежимо мало, перемычка все время расположена перпендикулярно рельсам. Поток Ф вектора магнитной индукции через контур, образованный перемычкой, рельсами и резистором, изменяется с течением времени t так, как показано на графике.
Используя график, выберите два верных утверждения и укажите в ответе их номера.
- К моменту времени t = 0,1 с изменение магнитного потока через контур равно 1 мВб.
- Индукционный ток в перемычке в интервале от t = 0,1 с t = 0,3 с максимален.
- Модуль ЭДС индукции, возникающей в контуре, равен 10 мВ.
- Сила индукционного тока, текущего в перемычке, равна 64 мА.
- Для поддержания движения перемычки к ней прикладывают силу, проекция которой на направление рельсов равна 0,2 Н.
Решение. По графику зависимости потока вектора магнитной индукции через контур от времени определим участки, где поток Ф меняется, и где изменение потока равно нулю. Это позволит нам определить интервалы времени, в которые в контуре будет возникать индукционный ток. Верное утверждение:
1) К моменту времени t = 0,1 с изменение магнитного потока через контур равно 1 мВб ∆Ф = (1 – 0) · 10–3 Вб; Модуль ЭДС индукции, возникающей в контуре определим используя закон ЭМИ
Ɛ = | – | ∆Ф | = | – | 1 ·10–3 | = 0,01 В = 10 мВ |
∆t | 0,1 |
Ответ. 13.
Задание 17.
По графику зависимости силы тока от времени в электрической цепи, индуктивность которой равна 1 мГн, определите модуль ЭДС самоиндукции в интервале времени от 5 до 10 с. Ответ запишите в мкВ.
Решение. Переведем все величины в систему СИ, т.е. индуктивность 1 мГн переведем в Гн, получим 10–3 Гн. Силу тока, показанной на рисунке в мА также будем переводить в А путем умножения на величину 10–3.
Формула ЭДС самоиндукции имеет вид
где L – индуктивность цепи; ∆I – изменение тока; ∆t – интервал времени (при котором происходит изменение тока).
Модуль ЭДС самоиндукции будет иметь вид
при этом интервал времени дан по условию задачи
∆t = 10 c – 5 c = 5 c
секунд и по графику определяем интервал изменения тока за это время:
∆I = 30 · 10–3 – 20 · 10–3 = 10 · 10–3 = 10–2 A.
Подставляем числовые значения в формулу (2), получаем
|Ɛ| = 2 ·10–6 В, или 2 мкВ.
Ответ. 2.
Задание 18. Две прозрачные плоскопараллельные пластинки плотно прижаты друг к другу. Из воздуха на поверхность первой пластинки падает луч света (см. рисунок). Известно, что показатель преломления верхней пластинки равен n2 = 1,77. Установите соответствие между физическими величинами и их значениями. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА |
ЕЕ ЗНАЧЕНИЕ |
А) Синус угла падения луча на границу 2-3 между пластинами |
1) ≈ 0,698 |
2) ≈ 0,433 |
|
Б) Угол преломления луча при переходе границы 3-1 ( в радианах) |
3) ≈ 0,363 |
4) ≈ 0,873 |
Решение. Для решения задач о преломлении света на границе раздела двух сред, в частности задач на прохождение света через плоскопараллельные пластинки можно рекомендовать следующий порядок решения: сделать чертеж с указанием хода лучей, идущих из одной среды в другую; в точке падения луча на границе раздела двух сред провести нормаль к поверхности, отметить углы падения и преломления. Особо обратить внимание на оптическую плотность рассматриваемых сред и помнить, что при переходе луча света из оптически менее плотной среды в оптически более плотную среду угол преломления будет меньше угла падения. На рисунке дан угол между падающим лучом и поверхностью, а нам нужен угол падения. Помним, что углы определяются от перпендикуляра, восстановленного в точке падения. Определяем, что угол падения луча на поверхность 90° – 40° = 50°, показатель преломления n2 = 1,77; n1 = 1 (воздух).
Запишем закон преломления
для границы 1-2:
sinβ = | sin50 | = 0,4327 ≈ 0,433 |
1,77 |
Построим примерный ход луча через пластинки. Используем формулу (1) для границы 2–3 и 3–1. В ответе получаем
А) Синус угла падения луча на границу 2–3 между пластинками – это 2) ≈ 0,433;
Б) Угол преломления луча при переходе границы 3–1 (в радианах) – это 4) ≈ 0,873.
Ответ. 24.
Задание 19. Определите, сколько α – частиц и сколько протонов получается в результате реакции термоядерного синтеза
+
→ x
+ y
;
Количество α-частиц |
Количество протонов |
Решение. При всех ядерных реакциях соблюдаются законы сохранения электрического заряда и числа нуклонов. Обозначим через x – количество альфа частиц, y– количество протонов. Составим уравнения
+
→ x
+ y
;
решая систему имеем, что x = 1; y = 2
Ответ. 1 – α-частица; 2 – протона.
Задание 20. Модуль импульса первого фотона равен 1,32 · 10–28 кг·м/с, что на 9,48 · 10–28 кг·м/с меньше, чем модуль импульса второго фотона. Найдите отношение энергии E2/E1 второго и первого фотонов. Ответ округлите до десятых долей.
Решение. Импульс второго фотона больше импульса первого фотона по условию значит можно представить p2 = p1 + Δp (1). Энергию фотона можно выразить через импульс фотона, используя следующие уравнения. Это E = mc2 (1) и p = mc (2), тогда
E = pc (3),
где E – энергия фотона, p – импульс фотона, m – масса фотона, c = 3 · 108 м/с – скорость света. С учетом формулы (3) имеем:
Ответ округляем до десятых и получаем 8,2.
Ответ. 8,2.
Задание 21. Ядро атома претерпело радиоактивный позитронный β – распад. Как в результате этого изменялись электрический заряд ядра и количество нейтронов в нем?
Для каждой величины определите соответствующий характер изменения:
- Увеличилась;
- Уменьшилась;
- Не изменилась.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Электрический заряд ядра |
Количество нейтронов в ядре |
Решение. Позитронный β – распад в атомном ядре происходит при превращений протона в нейтрон с испусканием позитрона. В результате этого число нейтронов в ядре увеличивается на единицу, электрический заряд уменьшается на единицу, а массовое число ядра остается неизменным. Таким образом, реакция превращения элемента следующая:
→
+
Ответ. 21.
Задание 22. В лаборатории было проведено пять экспериментов по наблюдению дифракции с помощью различных дифракционных решеток. Каждая из решеток освещалась параллельными пучками монохроматического света с определенной длиной волны. Свет во всех случаях падал перпендикулярно решетке. В двух из этих экспериментов наблюдалось одинаковое количество главных дифракционных максимумов. Укажите сначала номер эксперимента, в котором использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом.
Номер эксперимента |
Период дифракционной решетки |
Длина волны падающего света |
1 |
2d |
λ/2 |
2 |
d |
λ |
3 |
2d |
λ |
4 |
d/2 |
λ/2 |
5 |
d/2 |
2λ |
Решение. Дифракцией света называется явление светового пучка в область геометрической тени. Дифракцию можно наблюдать в том случае, когда на пути световой волны встречаются непрозрачные участки или отверстия в больших по размерам и непрозрачных для света преградах, причем размеры этих участков или отверстий соизмеримы с длиной волны. Одним из важнейших дифракционных устройств является дифракционная решетка. Угловые направления на максимумы дифракционной картины определяются уравнением
dsinφ = k λ (1),
где d – период дифракционной решетки, φ – угол между нормалью к решетке и направлением на один из максимумов дифракционной картины, λ – длина световой волны, k – целое число, называемое порядком дифракционного максимума. Выразим из уравнения (1)
Подбирая пары согласно условию эксперимента, выбираем сначала 4 где использовалась дифракционная решетка с меньшим периодом, а затем – номер эксперимента, в котором использовалась дифракционная решетка с большим периодом – это 2.
Ответ. 42.
Задание 23. По проволочному резистору течет ток. Резистор заменили на другой, с проволокой из того же металла и той же длины, но имеющей вдвое меньшую площадь поперечного сечения, и пропустили через него вдвое меньший ток. Как изменятся при этом напряжение на резисторе и его сопротивление?
Для каждой величины определите соответствующий характер изменения:
- Увеличится;
- Уменьшится;
- Не изменится.
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Напряжение на резисторе |
Сопротивление резистора |
Решение. Важно помнить от каких величин зависит сопротивление проводника. Формула для расчета сопротивления имеет вид
где ρ – удельное сопротивление проводника; l – длина проводника; S – площадь поперечного сечения. Для полного ответа на вопрос задачи необходимо записан формулу
закона Ома для участка цепи, из формулы (2), выразим напряжение
U = IR (3).
По условию задачи второй резистор изготовлен из проволоки того же материала, той же длины, но разной площади поперечного сечения. Площадь в два раза меньшая. Подставляя в (1) получим, что сопротивление увеличивается в 2 раза, а сила тока уменьшается в 2 раза, следовательно, напряжение не изменяется.
Ответ. 13.
Задание 24. Период колебаний математического маятника на поверхности Земли в 1, 2 раза больше периода его колебаний на некоторой планете. Чему равен модуль ускорения свободного падения на этой планете? Влияние атмосферы в обоих случаях пренебрежимо мало.
Решение. Математический маятник – это система, состоящая из нити, размеры которой много больше размеров шарика и самого шарика. Трудность может возникнуть если забыта формула Томсона для периода колебаний математического маятника.
T = 2π (1);
l – длина математического маятника; g – ускорение свободного падения.
По условию
Используя формулу Томсона для периода колебаний математического маятника T = 2π (3), запишем формулу (1) в виде
Tз | = |
Tп |
Выразим из (3) gп = 14,4 м/с2. Надо отметить, что ускорение свободного падения зависит от массы планеты и радиуса
Ответ. 14,4 м/с2.
Задание 25. Прямолинейный проводник длиной 1 м, по которому течет ток 3 А, расположен в однородном магнитном поле с индукцией В = 0,4 Тл под углом 30° к вектору . Каков модуль силы, действующей на проводник со стороны магнитного поля?
Решение. Если в магнитное поле, поместить проводник с током, то поле на проводник с током будет действовать с силой Ампера. Запишем формулу модуля силы Ампера
FА = ILBsinα;
FА = 0,6 Н
Ответ. FА = 0,6 Н.
Задание 26. Энергия магнитного поля, запасенная в катушке при пропускании через нее постоянного тока, равна 120 Дж. Во сколько раз нужно увеличить силу тока, протекающего через обмотку катушки, для того, чтобы запасенная в ней энергия магнитного поля увеличилась на 5760 Дж.
Решение. Энергия магнитного поля катушки рассчитывается по формуле
По условию W1 = 120 Дж, тогда W2 = 120 + 5760 = 5880 Дж.
I12 = | 2W1 | ; I22 = | 2W2 | ; |
L | L |
Тогда отношение токов
Ответ. Силу тока нужно увеличить в 7 раз. В бланк ответов Вы вносите только цифру 7.
Задание 27. Электрическая цепь состоит из двух лампочек, двух диодов и витка провода, соединенных, как показано на рисунке. (Диод пропускает ток только в одном направлении, как показано на верхней части рисунка). Какая из лампочек загорится, если к витку приближать северный полюс магнита? Ответ объясните, указав, какие явления и закономерности вы использовали при объяснении.
Решение. Линии магнитной индукции выходят из северного полюса магнита и расходятся. При приближении магнита магнитный поток через виток провода увеличивается. В соответствии с правило Ленца магнитное поле, создаваемое индукционным током витка, должно быть направлено вправо. По правилу буравчика ток должен идти по часовой стрелке (если смотреть слева). В этом направлении пропускает диод, стоящий в цепи второй лампы. Значит, загорится вторая лампа.
Ответ. Загорится вторая лампа.
Задание 28. Алюминиевая спица длиной L = 25 см и площадью поперечного сечения S = 0,1 см2 подвешена на нити за верхний конец. Нижний конец опирается на горизонтальное дно сосуда, в который налита вода. Длина погруженной в воду части спицы l = 10 см. Найти силу F, с которой спица давит на дно сосуда, если известно, что нить расположена вертикально. Плотность алюминия ρа = 2,7 г/см3, плотность воды ρв = 1,0 г/см3. Ускорение свободного падения g = 10 м/с2
Решение. Выполним поясняющий рисунок.
– Сила натяжения нити;
– Сила реакции дна сосуда;
a – архимедова сила, действующая только на погруженную часть тела, и приложенная к центру погруженной части спицы;
– сила тяжести, действующая на спицу со стороны Земли и приложена к центу всей спицы.
По определению масса спицы m и модуль архимедовой силы выражаются следующим образом : m = SLρa (1);
Fa = Slρвg (2)
Рассмотрим моменты сил относительно точки подвеса спицы.
М(Т) = 0 – момент силы натяжения; (3)
М(N) = NLcosα – момент силы реакции опоры; (4)
М(Fa) = Slρв g (L – | 1 | ) cosα – момент архимедовой силы ; (5) |
2 |
М(mg) = SLρa g | L | cosα – момент силы тяжести; (6) |
2 |
С учетом знаков моментов запишем уравнение
NLcosα + Slρв g (L – | l | ) cosα = SLρa g | L | cosα (7) |
2 | 2 |
учитывая, что по третьему закону Ньютона сила реакции дна сосуда равна силе Fд с которой спица давит на дно сосуда запишем N = Fд и из уравнения (7) выразим эту силу:
Fд = [ | 1 | Lρa – (1 – | l | )lρв]Sg (8). |
2 | 2L |
Подставим числовые данные и получим, что
Fд = 0,025 Н.
Ответ. Fд = 0,025 Н.
Задание 29. Баллон, содержащий m1 = 1 кг азота, при испытании на прочность взорвался при температуре t1 = 327°С. Какую массу водорода m2 можно было бы хранить в таком баллоне при температуре t2 = 27°С, имея пятикратный запас прочности? Молярная масса азота M1 = 28 г/моль, водорода M2 = 2 г/моль.
Решение. Запишем уравнение состояния идеального газа Менделеева – Клапейрона для азота
Из уравнения состояния азота следует, что давление, при котором взорвался баллон,
p1 = | m1 | · | RT1 | , (2) |
M1 | V |
где V – объем баллона, T1 = t1 + 273°C. По условию водород можно хранить при давлении p2 = p1/5; (3) Учитывая, что
p2 = | m2 | · | RT2 | (4) |
M2 | V |
можем выразить массу водорода работая сразу с уравнениями (2), (3), (4). Конечная формула имеет вид:
m2 = | m1 | M2 | T1 | (5). | ||
5 | M1 | T2 |
После подстановки числовых данных m2 = 28 г.
Ответ. m2 = 28 г.
Задание 30. В идеальном колебательном контуре амплитуда колебаний силы тока в катушке индуктивности Im = 5 мА, а амплитуда напряжения на конденсаторе Um = 2,0 В. В момент времени t напряжение на конденсаторе равно 1,2 В. Найдите силу тока в катушке в этот момент.
Решение. В идеальном колебательном контуре сохраняется энергия колебаний. Для момента времени t закон сохранения энергий имеет вид
C | U2 | + L | I2 | = L | Im2 | (1) |
2 | 2 | 2 |
Для амплитудных (максимальных) значений запишем
C | Um2 | = L | Im2 | (2) |
2 | 2 |
Из равенства (1) следует :
а из уравнения (2) выразим
Подставим (4) в (3). В результате получим:
I = Im (5)
Таким образом, сила тока в катушке в момент времени t равна
I = 4,0 мА.
Ответ. I = 4,0 мА.
Задание 31. На дне водоема глубиной 2 м лежит зеркало. Луч света, пройдя через воду, отражается от зеркала и выходит из воды. Показатель преломления воды равен 1,33. Найдите расстояние между точкой входа луча в воду и точкой выхода луча из воды, если угол падения луча равен 30°
Решение. Сделаем поясняющий рисунок
α – угол падения луча;
β – угол преломления луча в воде;
АС – расстояние между точкой входа луча в воду и точкой выхода луча из воды.
По закону преломления света
где n2 – показатель преломления воды; n1 – показатель преломления воздуха. n1 = 1. Тогда формулу (1) можно записать
Выразим
Рассмотрим прямоугольный ΔАDВ. В нем АD = h, тогда DВ = АD
tgβ = htgβ = h | sinα | = h | sinβ | = h | sinα | (4) |
cosβ |
Получаем следующее выражение:
АС = 2 DВ = 2h | sinα | (5) |
Подставим числовые значения в полученную формулу (5)
АС = 1,63 м
Ответ. 1,63 м.