Решу егэ логарифмические графики

Поиск

Всего: 27    1–20 | 21–27

Добавить в вариант






Источник: Пробный экзамен по математике Кировского района Санкт-Петербурга, 2015. Вариант 2.




Найдите наименьшее значение функции y= логарифм по основанию 3 левая круглая скобка x в квадрате плюс 14x плюс 130 правая круглая скобка плюс 3.


Найдите наименьшее значение функции y= логарифм по основанию 4 левая круглая скобка x в квадрате плюс 14x плюс 305 правая круглая скобка плюс 9.


Найдите наибольшее значение функции y= логарифм по основанию 5 левая круглая скобка минус 116 плюс 22x минус x в квадрате правая круглая скобка минус 8.


Найдите наименьшее значение функции y= логарифм по основанию 3 левая круглая скобка x в квадрате минус 14x плюс 778 правая круглая скобка плюс 5.


Найдите наименьшее значение функции y= логарифм по основанию 4 левая круглая скобка x в квадрате плюс 14x плюс 305 правая круглая скобка плюс 9.


Найдите точку максимума функции y = логарифм по основанию 3 левая круглая скобка 11 плюс 4x минус x в квадрате правая круглая скобка минус 2.


Найдите наибольшее значение функцииy= логарифм по основанию левая круглая скобка дробь: числитель: 1, знаменатель: 4 конец дроби правая круглая скобка левая круглая скобка x в квадрате плюс 4x плюс 8 правая круглая скобка .


Найдите наименьшее значение функции y= логарифм по основанию 5 левая круглая скобка x в квадрате плюс 4x плюс 29 правая круглая скобка минус 8.


Найдите наименьшее значение функции y= логарифм по основанию 3 левая круглая скобка x в квадрате минус 6x плюс 10 правая круглая скобка плюс 2.


Найдите наибольшее значение функции y= логарифм по основанию левая круглая скобка дробь: числитель: 1, знаменатель: 3 конец дроби правая круглая скобка левая круглая скобка x в квадрате плюс 6x плюс 12 правая круглая скобка на отрезке  левая квадратная скобка минус 19; минус 1 правая квадратная скобка .


Найдите наименьшее значение функции y= логарифм по основанию 4 левая круглая скобка x в квадрате плюс 6x плюс 25 правая круглая скобка минус 5.


Найдите точку максимума функции y= логарифм по основанию 8 левая круглая скобка минус 40 минус 14x минус x в квадрате правая круглая скобка плюс 3.

Всего: 27    1–20 | 21–27

Skip to content

ЕГЭ Профиль №10. Логарифмическая и показательная функции

ЕГЭ Профиль №10. Логарифмическая и показательная функцииadmin2023-01-15T10:24:14+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №10. Логарифмическая и показательная функции

Задача 1. На рисунке изображён график функции  (fleft( x right) = b + {log _a}x.)   Найдите  (fleft( {27} right).)

Ответ

ОТВЕТ: 1.

Решение

График логарифмический функции (fleft( x right) = b + {log _a}x) проходит через точки (left( {1; — 2} right)) и (left( {3; — 1} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 2 = b + {{log }_a}1}\{ — 1 = b + {{log }_a}3}end{array},,,,,,,,, Leftrightarrow ,,,,,,,,left{ {begin{array}{*{20}{c}}{b =  — 2,,,,,,,,,,,,,,,,,}\{ — 1 = b + {{log }_a}3}end{array}} right.} right.,,,,,,,, Leftrightarrow ,,,,,,, — 1 =  — 2 + {log _a}3,,,,,,, Leftrightarrow ,,,,,,a = 3.)

Таким образом:   (fleft( x right) =  — 2 + {log _3}x)   и   (fleft( {27} right) =  — 2 + {log _3}27 = 1.)

Ответ: 1.

Задача 2. На рисунке изображён график функции  (fleft( x right) = b + {log _a}x.)   Найдите  (fleft( {16} right).)

Ответ

ОТВЕТ: 7.

Решение

График логарифмический функции (fleft( x right) = b + {log _a}x) проходит через точки (left( {2;1} right)) и (left( {4;3} right)).

Следовательно:    (left{ {begin{array}{*{20}{c}}{1 = b + {{log }_a}2}\{3 = b + {{log }_a}4}end{array}} right.)

Вычтем из первого уравнения второе:

( — 2 = {log _a}2 — {log _a}4,,,,,, Leftrightarrow ,,,,,,,,{log _a}frac{1}{2} =  — 2,,,,,,,, Leftrightarrow ,,,,,,,{a^2} = 2,,,,,,, Leftrightarrow ,,,,,,,a = sqrt 2 .)

Тогда:   (1 = b + {log _{sqrt 2 }}2,,,,,,, Leftrightarrow ,,,,,,1 = b + 2,,,,,,, Leftrightarrow ,,,,,,,,b =  — 1.)

Следовательно:   (fleft( x right) =  — 1 + {log _{sqrt 2 }}x)   и   (fleft( {16} right) =  — 1 + {log _{sqrt 2 }}16 =  — 1 + 8 = 7.)

Ответ: 7.

Задача 3. На рисунке изображён график функции  (fleft( x right) = b + {log _a}x.)   Найдите  (fleft( {128} right).)

Ответ

ОТВЕТ: — 5.

Решение

График логарифмический функции (fleft( x right) = b + {log _a}x) проходит через точки (left( {2;1} right)) и (left( {4;0} right)).

Следовательно:     (left{ {begin{array}{*{20}{c}}{1 = b + {{log }_a}2}\{0 = b + {{log }_a}4}end{array}} right.)

Вычтем из первого уравнения второе:

(1 = {log _a}2 — {log _a}4,,,,,,,, Leftrightarrow ,,,,,,,,{log _a}frac{1}{2} = 1,,,,,,,, Leftrightarrow ,,,,,,,a = frac{1}{2}.)

Тогда:     (1 = b + {log _{frac{1}{2}}}2,,,,,,, Leftrightarrow ,,,,,,1 = b — 1,,,,,,, Leftrightarrow ,,,,,,,,b = 2.)

Следовательно:    (fleft( x right) = 2 + {log _{frac{1}{2}}}x)    и    (fleft( {128} right) = 2 + {log _{frac{1}{2}}}128 = 2 — 7 =  — 5.)

Ответ: – 5.

Задача 4. На рисунке изображён график функции  (fleft( x right) = b + {log _a}x.)   Найдите  (fleft( {0,125} right).)

Ответ

ОТВЕТ: 5.

Решение

График логарифмический функции (fleft( x right) = b + {log _a}x) проходит через точки (left( {1; — 1} right)) и (left( {2; — 3} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 1 = b + {{log }_a}1,}\{ — 3 = b + {{log }_a}2}end{array},,,,,,,,, Leftrightarrow ,,,,,,,,left{ {begin{array}{*{20}{c}}{b =  — 1,,,,,,,,,,,,,,,,,}\{ — 3 = b + {{log }_a}2}end{array}} right.} right.,,,,,,,, Leftrightarrow ,,,,,,, — 3 =  — 1 + {log _a}2,,,,,,, Leftrightarrow ,,,,,,a = frac{1}{{sqrt 2 }}.)

Таким образом:   (fleft( x right) =  — 1 + {log _{_{frac{1}{{sqrt 2 }}}}}x)    и    (fleft( {frac{1}{8}} right) =  — 1 + {log _{_{frac{1}{{sqrt 2 }}}}}frac{1}{8} =  — 1 + 6 = 5.)

Ответ: 5.

Задача 5. На рисунке изображён график функции  (fleft( x right) = b + {log _a}x.)  Найдите значение x при котором  (fleft( x right) = 3.)

Ответ

ОТВЕТ: 64.

Решение

График логарифмический функции (fleft( x right) = b + {log _a}x) проходит через точки (left( {1; — 3} right)) и (left( {2; — 2} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 3 = b + {{log }_a}1}\{ — 2 = b + {{log }_a}2}end{array},,,,,,,,, Leftrightarrow ,,,,,,,,left{ {begin{array}{*{20}{c}}{b =  — 3,,,,,,,,,,,,,,,,,}\{ — 2 = b + {{log }_a}2}end{array}} right.} right.,,,,,,,, Leftrightarrow ,,,,,,, — 2 =  — 3 + {log _a}2,,,,,,, Leftrightarrow ,,,,,,a = 2.)

Таким образом:    (fleft( x right) =  — 3 + {log _2}x)    и    ( — 3 + {log _2}x = 3,,,,,,, Leftrightarrow ,,,,,,,,x = 64.)

Ответ: 64.

Задача 6. На рисунке изображён график функции  (fleft( x right) = b + {log _a}x.)  Найдите значение x при котором  (fleft( x right) = 2.)

Ответ

ОТВЕТ: 81.

Решение

График логарифмический функции (fleft( x right) = b + {log _a}x) проходит через точки (left( {1; — 2} right)) и (left( {3; — 1} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 2 = b + {{log }_a}1}\{ — 1 = b + {{log }_a}3}end{array},,,,,,,,, Leftrightarrow ,,,,,,,,left{ {begin{array}{*{20}{c}}{b =  — 2,,,,,,,,,,,,,,,,,}\{ — 1 = b + {{log }_a}3}end{array}} right.} right.,,,,,,,, Leftrightarrow ,,,,,,, — 1 =  — 2 + {log _a}3,,,,,,, Leftrightarrow ,,,,,,a = 3.)

Таким образом:    (fleft( x right) =  — 2 + {log _3}x)    и    ( — 2 + {log _3}x = 2,,,,,,, Leftrightarrow ,,,,,,,,x = 81.)

Ответ: 81.

Задача 7. На рисунке изображён график функции  (fleft( x right) = b + {log _a}x.)  Найдите значение x при котором  (fleft( x right) =  — 3.)

Ответ

ОТВЕТ: 32.

Решение

График логарифмический функции (fleft( x right) = b + {log _a}x) проходит через точки (left( {2;1} right)) и (left( {4;0} right)).

Следовательно:    (left{ {begin{array}{*{20}{c}}{1 = b + {{log }_a}2}\{0 = b + {{log }_a}4}end{array}} right.)

Вычтем из первого уравнения второе:

(1 = {log _a}2 — {log _a}4,,,,,,,, Leftrightarrow ,,,,,,,,1 = {log _a}frac{1}{2},,,,,,,, Leftrightarrow ,,,,,,,a = frac{1}{2}.)

Тогда:   (1 = b + {log _{frac{1}{2}}}2,,,,,,, Leftrightarrow ,,,,,,1 = b — 1,,,,,,, Leftrightarrow ,,,,,,,,b = 2.)

Следовательно:    (fleft( x right) = 2 + {log _{frac{1}{2}}}x)    и     (2 + {log _{frac{1}{2}}}x =  — 3,,,,,, Leftrightarrow ,,,,,,,,x = 32.)

Ответ: 32.

Задача 8. На рисунке изображён график функции  (fleft( x right) = b + {log _a}x.)  Найдите значение x при котором  (fleft( x right) = 3.)

Ответ

ОТВЕТ: 0,25.

Решение

График логарифмический функции (fleft( x right) = b + {log _a}x) проходит через точки (left( {1; — 1} right)) и (left( {2; — 3} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 1 = b + {{log }_a}1}\{ — 3 = b + {{log }_a}2}end{array},,,,,,,,, Leftrightarrow ,,,,,,,,left{ {begin{array}{*{20}{c}}{b =  — 1,,,,,,,,,,,,,,,,,}\{ — 3 = b + {{log }_a}3}end{array}} right.} right.,,,,,,,, Leftrightarrow ,,,,,,, — 3 =  — 1 + {log _a}2,,,,,,, Leftrightarrow ,,,,,,a = frac{1}{{sqrt 2 }}.)

Таким образом:   (fleft( x right) =  — 1 + {log _{frac{1}{{sqrt 2 }}}}x)    и    ( — 1 + {log _{frac{1}{{sqrt 2 }}}}x = 3,,,,,,, Leftrightarrow ,,,,,,,,x = 0,25.)

Ответ: 0,25.

Задача 9. На рисунке изображён график функции  (fleft( x right) = {log _a}left( {x + b} right).)   Найдите  (fleft( {27} right).)

Ответ

ОТВЕТ: 5.

Решение

График логарифмический функции (fleft( x right) = {log _a}left( {x + b} right)) проходит через точки (left( { — 1;2} right)) и (left( { — 4;0} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{2 = {{log }_a}left( { — 1 + b} right)}\{0 = {{log }_a}left( { — 4 + b} right)}end{array}} right.,,,,,,,,, Leftrightarrow ,,,,,,,,left{ {begin{array}{*{20}{c}}{ — 1 + b = {a^2}}\{ — 4 + b = 1}end{array}} right. Leftrightarrow ,,,,,,,left{ {begin{array}{*{20}{c}}{{a^2} = b — 1}\{b = 5,,,,,,,,}end{array}} right.,,,,,,,, Leftrightarrow ,,,,,,a = 2.)

Таким образом:   (fleft( x right) = {log _2}left( {x + 5} right))    и    (fleft( {27} right) = {log _2}left( {27 + 5} right) = 5.)

Ответ: 5.

Задача 10. На рисунке изображён график функции  (fleft( x right) = {log _a}left( {x + b} right).)   Найдите  (fleft( {238} right).)

Ответ

ОТВЕТ: 5.

Решение

График логарифмический функции (fleft( x right) = {log _a}left( {x + b} right)) проходит через точки (left( { — 2;1} right)) и (left( { — 4;0} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{1 = {{log }_a}left( { — 2 + b} right)}\{0 = {{log }_a}left( { — 4 + b} right)}end{array}} right.,,,,,,,,, Leftrightarrow ,,,,,,,,left{ {begin{array}{*{20}{c}}{a =  — 2 + b}\{ — 4 + b = 1}end{array}} right.,,,,,,,,, Leftrightarrow ,,,,,,,,,b = 5,,,,,,,a = 3.)

Таким образом:    (fleft( x right) = {log _3}left( {x + 5} right))    и    (fleft( {238} right) = {log _3}left( {238 + 5} right) = 5.)

Ответ: 5.

Задача 11. На рисунке изображён график функции  (fleft( x right) = {log _a}left( {x + b} right).)   Найдите  (fleft( {30} right).)

Ответ

ОТВЕТ: — 5.

Решение

График логарифмический функции (fleft( x right) = {log _a}left( {x + b} right)) проходит через точки (left( {2; — 2} right)) и (left( { — 1;0} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 2 = {{log }_a}left( {2 + b} right)}\{0 = {{log }_a}left( { — 1 + b} right)}end{array}} right.,,,,,,,, Leftrightarrow ,,,,,left{ {begin{array}{*{20}{c}}{{a^{ — 2}} = 2 + b}\{ — 1 + b = 1}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,,left{ {begin{array}{*{20}{c}}{frac{1}{{{a^2}}} = 2 + b}\{b = 2,,,,,,,}end{array}} right.,,,,, Leftrightarrow ,,,,,,a = frac{1}{2}.)

Таким образом:    (fleft( x right) = {log _{frac{1}{2}}}left( {x + 2} right))    и    (fleft( {30} right) = {log _{frac{1}{2}}}left( {30 + 2} right) =  — 5.)

Ответ: – 5.

Задача 12. На рисунке изображён график функции  (fleft( x right) = {log _a}left( {x + b} right).)   Найдите  (fleft( {77} right).)

Ответ

ОТВЕТ: — 4.

Решение

График логарифмический функции (fleft( x right) = {log _a}left( {x + b} right)) проходит через точки (left( { — 1; — 1} right)) и (left( { — 3;0} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 1 = {{log }_a}left( { — 1 + b} right)}\{0 = {{log }_a}left( { — 3 + b} right)}end{array}} right.,,,,,,,, Leftrightarrow ,,,,,left{ {begin{array}{*{20}{c}}{frac{1}{a} =  — 1 + b}\{ — 3 + b = 1}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,,left{ {begin{array}{*{20}{c}}{a = frac{1}{{b — 1}}}\{b = 4,,,,,,,}end{array}} right.,,,,, Leftrightarrow ,,,,,,a = frac{1}{3}.)

Таким образом:    (fleft( x right) = {log _{frac{1}{3}}}left( {x + 4} right))    и    (fleft( {77} right) = {log _{frac{1}{3}}}left( {77 + 4} right) =  — 4.)

Ответ: – 4.

Задача 13. На рисунке изображён график функции  (fleft( x right) = {log _a}left( {x + b} right).)  Найдите значение x, при котором  (fleft( x right) = 6.)

Ответ

ОТВЕТ: 59.

Решение

График логарифмический функции (fleft( x right) = {log _a}left( {x + b} right)) проходит через точки (left( { — 1;2} right)) и (left( { — 4;0} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{2 = {{log }_a}left( { — 1 + b} right)}\{0 = {{log }_a}left( { — 4 + b} right)}end{array}} right.,,,,,,,, Leftrightarrow ,,,,,left{ {begin{array}{*{20}{c}}{{a^2} =  — 1 + b}\{ — 4 + b = 1}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,,left{ {begin{array}{*{20}{c}}{{a^2} =  — 1 + b}\{b = 5,,,,,,,}end{array}} right.,,,,, Leftrightarrow ,,,,,,a = 2.)

Таким образом:    (fleft( x right) = {log _2}left( {x + 5} right))    и     ({log _2}left( {x + 5} right) = 6,,,,,,,, Leftrightarrow ,,,,,,,x + 5 = 64,,,,,,,, Leftrightarrow ,,,,,,,,,x = 59.)

Ответ: 59.

Задача 14. На рисунке изображён график функции  (fleft( x right) = {log _a}left( {x + b} right).)  Найдите значение x, при котором  (fleft( x right) = 5.)

Ответ

ОТВЕТ: 31.

Решение

График логарифмический функции (fleft( x right) = {log _a}left( {x + b} right)) проходит через точки (left( {1;1} right)) и (left( {0;0} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{1 = {{log }_a}left( {1 + b} right)}\{0 = {{log }_a}b,,,,,,,,,,,,}end{array}} right.,,,,,,,,,,, Leftrightarrow ,,,,,,,,,left{ {begin{array}{*{20}{c}}{1 + b = a}\{b = 1,,,,,}end{array}} right.,,,,,,,,,, Leftrightarrow ,,,,,,,,,a = 2.)

Таким образом:    (fleft( x right) = {log _2}left( {x + 1} right))   и     ({log _2}left( {x + 1} right) = 5,,,,,,,, Leftrightarrow ,,,,,,,x + 1 = 32,,,,,,,, Leftrightarrow ,,,,,,,,,x = 31.)

Ответ: 31.

Задача 15. На рисунке изображён график функции  (fleft( x right) = {log _a}left( {x + b} right).)  Найдите значение x, при котором  (fleft( x right) =  — 8.)

Ответ

ОТВЕТ: 79.

Решение

График логарифмический функции (fleft( x right) = {log _a}left( {x + b} right)) проходит через точки (left( {1; — 2} right)) и (left( { — 1;0} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 2 = {{log }_a}left( {1 + b} right)}\{0 = {{log }_a}left( { — 1 + b} right)}end{array}} right.,,,,,,,, Leftrightarrow ,,,,,left{ {begin{array}{*{20}{c}}{{a^{ — 2}} = 1 + b}\{ — 1 + b = 1}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,,left{ {begin{array}{*{20}{c}}{frac{1}{{{a^2}}} = 1 + b}\{b = 2,,,,,,,}end{array}} right.,,,,, Leftrightarrow ,,,,,,b = frac{1}{{sqrt 3 }}.)

Таким образом:   (fleft( x right) = {log _{frac{1}{{sqrt 3 }}}}left( {x + 2} right))    и     ({log _{frac{1}{{sqrt 3 }}}}left( {x + 2} right) =  — 8,,,,,,,, Leftrightarrow ,,,,,,,x + 2 = 81,,,,,,,, Leftrightarrow ,,,,,,,,,x = 79.)

Ответ: 79.

Задача 16. На рисунке изображён график функции  (fleft( x right) = {log _a}left( {x + b} right).)  Найдите значение x, при котором  (fleft( x right) =  — 5.)

Ответ

ОТВЕТ: 239.

Решение

График логарифмический функции (fleft( x right) = {log _a}left( {x + b} right)) проходит через точки (left( { — 1; — 1} right)) и (left( { — 3;0} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 1 = {{log }_a}left( { — 1 + b} right)}\{0 = {{log }_a}left( { — 3 + b} right)}end{array}} right.,,,,,,,, Leftrightarrow ,,,,,left{ {begin{array}{*{20}{c}}{{a^{ — 1}} = b — 1}\{ — 3 + b = 1}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,,left{ {begin{array}{*{20}{c}}{a = frac{1}{{b — 1}}}\{b = 4,,,,,,,}end{array}} right.,,,,, Leftrightarrow ,,,,,,a = frac{1}{3}.)

Таким образом:   (fleft( x right) = {log _{frac{1}{3}}}left( {x + 4} right))    и     ({log _{frac{1}{3}}}left( {x + 4} right) =  — 5,,,,,,,, Leftrightarrow ,,,,,,,x + 4 = 243,,,,,,,, Leftrightarrow ,,,,,,,,,x = 239.)

Ответ: 239.

Задача 17. На рисунке изображён график функции  (fleft( x right) = {a^x} + b.)   Найдите  (fleft( {10} right).)

Ответ

ОТВЕТ: 29.

Решение

График показательной функции  (fleft( x right) = {a^x} + b) проходит через точки (left( {0; — 2} right)) и (left( {4;1} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 2 = {a^0} + b}\{1 = {a^4} + b}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{b =  — 3,,,,,,}\{1 = {a^4} + b}end{array}} right.,,,,,, Leftrightarrow ,,,,,,,,{a^4} = 4,,,,,,,, Leftrightarrow ,,,,,,,,a = sqrt 2 .)

Таким образом:    (fleft( x right) = {sqrt 2 ^x} — 3)    и    (fleft( {10} right) = {sqrt 2 ^{10}} — 3 = 29.)

Ответ: 29.

Задача 18. На рисунке изображён график функции  (fleft( x right) = {a^x} + b.)   Найдите  (fleft( 8 right).)

Ответ

ОТВЕТ: 79.

Решение

График показательной функции  (fleft( x right) = {a^x} + b) проходит через точки (left( {0; — 1} right)) и (left( {2;1} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 1 = {a^0} + b}\{1 = {a^2} + b}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{b =  — 2,,,,,,}\{1 = {a^2} + b}end{array}} right.,,,,,, Leftrightarrow ,,,,,,,,{a^2} = 3,,,,,,,, Leftrightarrow ,,,,,,,,a = sqrt 3 .)

Таким образом:   (fleft( x right) = {sqrt 3 ^x} — 2)    и    (fleft( 8 right) = {sqrt 3 ^8} — 2 = 79.)

Ответ: 79.

Задача 19. На рисунке изображён график функции  (fleft( x right) = {a^x} + b.)   Найдите  (fleft( { — 5} right).)

Ответ

ОТВЕТ: 28.

Решение

График показательной функции  (fleft( x right) = {a^x} + b) проходит через точки (left( {0; — 3} right)) и (left( { — 1; — 2} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 3 = {a^0} + b}\{ — 2 = {a^{ — 1}} + b}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{b =  — 4,,,,,,}\{ — 2 = frac{1}{a} + b}end{array}} right.,,,,,, Leftrightarrow ,,,,,,,,a = frac{1}{2}.)

Таким образом:   (fleft( x right) = {left( {frac{1}{2}} right)^x} — 4)    и    (fleft( { — 5} right) = {left( {frac{1}{2}} right)^{ — 5}} — 4 = 32 — 4 = 28.)

Ответ: 28.

Задача 20. На рисунке изображён график функции  (fleft( x right) = {a^x} + b.)   Найдите  (fleft( { — 8} right).)

Ответ

ОТВЕТ: 77.

Решение

График показательной функции  (fleft( x right) = {a^x} + b) проходит через точки (left( {0; — 3} right)) и (left( { — 2; — 1} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 3 = {a^0} + b}\{ — 1 = {a^{ — 2}} + b}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{b =  — 4,,,,,,}\{ — 1 = frac{1}{{{a^2}}} + b}end{array}} right.,,,,,,,, Leftrightarrow ,,,,,,,,,,frac{1}{{{a^2}}} = 3,,,,,,,, Leftrightarrow ,,,,,,,,a = frac{1}{{sqrt 3 }}.)

Таким образом:   (fleft( x right) = {left( {frac{1}{{sqrt 3 }}} right)^x} — 4)    и    (fleft( { — 8} right) = {left( {frac{1}{{sqrt 3 }}} right)^{ — 8}} — 4 = 81 — 4 = 77.)

Ответ: 77.

Задача 21. На рисунке изображён график функции  (fleft( x right) = {a^x} + b.)  Найдите значение x, при котором  (fleft( x right) = 13.)

Ответ

ОТВЕТ: 8.

Решение

График показательной функции  (fleft( x right) = {a^x} + b) проходит через точки (left( {0; — 2} right)) и (left( {4;1} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 2 = {a^0} + b}\{1 = {a^4} + b}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{b =  — 3,,,,,,}\{1 = {a^4} + b}end{array}} right.,,,,,,,, Leftrightarrow ,,,,,,,,,,{a^4} = 4,,,,,,,, Leftrightarrow ,,,,,,,,a = sqrt 2 .)

Таким образом:   (fleft( x right) = {sqrt 2 ^x} — 3)    и     ({left( {sqrt 2 } right)^x} — 3 = 13,,,,,,, Leftrightarrow ,,,,,,,,{2^{frac{x}{2}}} = 16,,,,,,,,, Leftrightarrow ,,,,,,,,,,x = 8.)

Ответ: 8.

Задача 22. На рисунке изображён график функции  (fleft( x right) = {a^x} + b.)  Найдите значение x, при котором  (fleft( x right) = 25.)

Ответ

ОТВЕТ: 6.

Решение

График показательной функции  (fleft( x right) = {a^x} + b) проходит через точки (left( {0; — 1} right)) и (left( {2;1} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 1 = {a^0} + b}\{1 = {a^2} + b}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{b =  — 2,,,,,,}\{1 = {a^2} + b}end{array}} right.,,,,,,,, Leftrightarrow ,,,,,,,,,,{a^2} = 3,,,,,,,, Leftrightarrow ,,,,,,,,a = sqrt 3 .)

Таким образом:   (fleft( x right) = {sqrt 3 ^x} — 2)    и    ({sqrt 3 ^x} — 2 = 25,,,,,,, Leftrightarrow ,,,,,,,,{3^{frac{x}{2}}} = 27,,,,,,,,, Leftrightarrow ,,,,,,,,,,x = 6.)

Ответ: 6.

Задача 23. На рисунке изображён график функции  (fleft( x right) = {a^x} + b.)  Найдите значение x, при котором  (fleft( x right) = 12.)

Ответ

ОТВЕТ: — 4.

Решение

График показательной функции  (fleft( x right) = {a^x} + b) проходит через точки (left( {0; — 3} right)) и (left( { — 1; — 2} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 3 = {a^0} + b}\{ — 2 = {a^{ — 1}} + b}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{b =  — 4,,,,,,}\{ — 2 = frac{1}{a} + b}end{array}} right.,,,,,,,, Leftrightarrow ,,,,,,,,,,frac{1}{a} = 2,,,,,,,, Leftrightarrow ,,,,,,,,a = frac{1}{2}.)

Таким образом:   (fleft( x right) = {left( {frac{1}{2}} right)^x} — 4)    и     ({left( {frac{1}{2}} right)^x} — 4 = 12,,,,,,, Leftrightarrow ,,,,,,,,{2^{ — x}} = 16,,,,,,,,, Leftrightarrow ,,,,,,,,,,x =  — 4.)

Ответ: – 4.

Задача 24. На рисунке изображён график функции  (fleft( x right) = {a^x} + b.)  Найдите значение x, при котором  (fleft( x right) = 23.)

Ответ

ОТВЕТ: — 6.

Решение

График показательной функции  (fleft( x right) = {a^x} + b) проходит через точки (left( {0; — 3} right)) и (left( { — 2; — 1} right)). Следовательно:

(left{ {begin{array}{*{20}{c}}{ — 3 = {a^0} + b}\{ — 1 = {a^{ — 2}} + b}end{array}} right.,,,,,,, Leftrightarrow ,,,,,,left{ {begin{array}{*{20}{c}}{b =  — 4,,,,,,}\{ — 1 = frac{1}{{{a^2}}} + b}end{array}} right.,,,,,,,, Leftrightarrow ,,,,,,,,,,frac{1}{{{a^2}}} = 3,,,,,,,, Leftrightarrow ,,,,,,,,a = frac{1}{{sqrt 3 }}.)

Таким образом:   (fleft( x right) = {left( {frac{1}{{sqrt 3 }}} right)^x} — 4)    и     ({left( {frac{1}{{sqrt 3 }}} right)^x} — 4 = 23,,,,,,, Leftrightarrow ,,,,,,,,{3^{ — frac{x}{2}}} = {3^3},,,,,,,,, Leftrightarrow ,,,,,,,,,,x =  — 6.)

Ответ: – 6.

Задача 25. На рисунке изображён график функции  (fleft( x right) = {a^{x + b}}.)   Найдите  (fleft( { — 5} right).)

Ответ

ОТВЕТ: 0,125.

Решение

График показательной функции  (fleft( x right) = {a^{x + b}}) проходит через точки (left( {3;2} right)) и (left( {5;4} right)).

Следовательно:   (left{ {begin{array}{*{20}{c}}{2 = {a^{3 + b}}}\{4 = {a^{5 + b}}}end{array}} right.)

Разделим второе уравнение на первое:    (frac{{{a^{5 + b}}}}{{{a^{3 + b}}}} = frac{4}{2},,,,,,,,, Leftrightarrow ,,,,,,,,,{a^2} = 2,,,,,,,,, Leftrightarrow ,,,,,,,,,a = sqrt 2 .)

Тогда:     ({sqrt 2 ^{3 + b}} = 2,,,,,,,,, Leftrightarrow ,,,,,,,,,{2^{frac{{3 + b}}{2}}} = {2^1},,,,,,, Leftrightarrow ,,,,,,,,frac{{3 + b}}{2} = 1,,,,,,,,, Leftrightarrow ,,,,,,,,b =  — 1.)

Таким образом:   (fleft( x right) = {sqrt 2 ^{,x — 1}})    и    (fleft( { — 5} right) = {sqrt 2 ^{ ,- 5 — 1}} = {2^{frac{1}{2} cdot left( { — 6} right)}} = {2^{ — 3}} = frac{1}{8} = 0,125.)

Ответ: 0,125.

Задача 26. На рисунке изображён график функции  (fleft( x right) = {a^{x + b}}.)   Найдите  (fleft( 6 right).)

Ответ

ОТВЕТ: 81.

Решение

График показательной функции  (fleft( x right) = {a^{x + b}}) проходит через точки (left( { — 2;1} right)) и (left( {2;9} right)).

Следовательно:     (left{ {begin{array}{*{20}{c}}{1 = {a^{ — 2 + b}}}\{9 = {a^{2 + b}}}end{array}} right.)

Разделим второе уравнение на первое:   (frac{{{a^{2 + b}}}}{{{a^{ — 2 + b}}}} = frac{9}{1},,,,,,,,, Leftrightarrow ,,,,,,,,,{a^4} = 9,,,,,,,,, Leftrightarrow ,,,,,,,,,a = sqrt 3 .)

Тогда:    ({sqrt 3 ^{ ,- 2 + b}} = 1,,,,,,,,, Leftrightarrow ,,,,,,,,,{sqrt 3 ^{ ,- 2 + b}} = {sqrt 3 ^0},,,,,,, Leftrightarrow ,,,,,,,, — 2 + b = 0,,,,,,,,, Leftrightarrow ,,,,,,,,b = 2.)

Таким образом:    (fleft( x right) = {sqrt 3 ^{,x + 2}})    и    (fleft( 6 right) = {sqrt 3 ^{,6 + 2}} = {sqrt 3 ^8} = {3^4} = 81.)

Ответ: 81.

Задача 27. На рисунке изображён график функции  (fleft( x right) = {a^{x + b}}.)  Найдите  (fleft( { — 9} right).)

Ответ

ОТВЕТ: 16.

Решение

График показательной функции  (fleft( x right) = {a^{x + b}})  проходит через точки (left( { — 1;1} right)) и (left( { — 3;2} right)).

Следовательно:     (left{ {begin{array}{*{20}{c}}{1 = {a^{ — 1 + b}}}\{2 = {a^{ — 3 + b}}}end{array}} right.)

Разделим первое уравнение на второе:   (frac{{{a^{, — 1 + b}}}}{{{a^{, — 3 + b}}}} = frac{1}{2},,,,,,,,, Leftrightarrow ,,,,,,,,,{a^2} = frac{1}{2},,,,,,,,, Leftrightarrow ,,,,,,,,,a = frac{1}{{sqrt 2 }}.)

Тогда:    ({left( {frac{1}{{sqrt 2 }}} right)^{, — 1 + b}} = 1,,,,,,,,, Leftrightarrow ,,,,,,,,,{left( {frac{1}{{sqrt 2 }}} right)^{, — 1 + b}} = {left( {frac{1}{{sqrt 2 }}} right)^0},,,,,,, Leftrightarrow ,,,,,,,, — 1 + b = 0,,,,,,,,, Leftrightarrow ,,,,,,,,b = 1.)

Таким образом:    (fleft( x right) = {left( {frac{1}{{sqrt 2 }}} right)^{,x + 1}})    и    (fleft( { — 9} right) = {left( {frac{1}{{sqrt 2 }}} right)^{, — 9 + 1}} = {left( {frac{1}{{sqrt 2 }}} right)^{, — 8}} = {2^4} = 16.)

Ответ: 16.

Задача 28. На рисунке изображён график функции  (fleft( x right) = {a^{x + b}}.)  Найдите  (fleft( { — 2} right).)

Ответ

ОТВЕТ: 32.

Решение

График показательной функции  (fleft( x right) = {a^{x + b}}) проходит через точки (left( {1;4} right)) и (left( {3;1} right)).

Следовательно:     (left{ {begin{array}{*{20}{c}}{4 = {a^{1 + b}}}\{1 = {a^{3 + b}}}end{array}} right.)

Разделим второе уравнение на первое:    (frac{{{a^{3 + b}}}}{{{a^{1 + b}}}} = frac{1}{4},,,,,,,,, Leftrightarrow ,,,,,,,,,{a^2} = frac{1}{4},,,,,,,,, Leftrightarrow ,,,,,,,,,a = frac{1}{2}.)

Тогда: ({left( {frac{1}{2}} right)^{3 + b}} = 1,,,,,,,,, Leftrightarrow ,,,,,,,,,{left( {frac{1}{2}} right)^{3 + b}} = {left( {frac{1}{2}} right)^0},,,,,,, Leftrightarrow ,,,,,,,,3 + b = 0,,,,,,,,, Leftrightarrow ,,,,,,,,b =  — 3.)

Таким образом:    (fleft( x right) = {left( {frac{1}{2}} right)^{x — 3}})    и    (fleft( { — 2} right) = {left( {frac{1}{2}} right)^{ — 2 — 3}} = {2^5} = 32.)

Ответ: 32.

Задача 29. На рисунке изображён график функции  (fleft( x right) = {a^{x + b}}.)  Найдите значение x, при котором  (fleft( x right) = 16.)

Ответ

ОТВЕТ: 5.

Решение

График показательной функции  (fleft( x right) = {a^{x + b}}) проходит через точки (left( {1;4} right)) и (left( { — 3;1} right)).

Следовательно:    (left{ {begin{array}{*{20}{c}}{4 = {a^{1 + b}}}\{1 = {a^{ — 3 + b}}}end{array}} right.)

Разделим первое уравнение на второе:   (frac{{{a^{1 + b}}}}{{{a^{ — 3 + b}}}} = frac{4}{1},,,,,,,,, Leftrightarrow ,,,,,,,,,{a^4} = 4,,,,,,,,, Leftrightarrow ,,,,,,,,,a = sqrt 2 .)

Тогда:    ({left( {sqrt 2 } right)^{ — 3 + b}} = 1,,,,,,,,, Leftrightarrow ,,,,,,,,,{left( {sqrt 2 } right)^{ — 3 + b}} = {sqrt 2 ^0},,,,,,, Leftrightarrow ,,,,,,,, — 3 + b = 0,,,,,,,,, Leftrightarrow ,,,,,,,,b = 3.)

Таким образом:    (fleft( x right) = {sqrt 2 ^{,x + 3}})    и     ({sqrt 2 ^{,x + 3}} = 16,,,,,, Leftrightarrow ,,,,,,,{2^{frac{{x + 3}}{2}}} = {2^4},,,,,, Leftrightarrow ,,,,,,,,frac{{x + 3}}{2} = 4,,,,,,, Leftrightarrow ,,,,,,,,,x = 5.)

Ответ: 5.

Задача 30. На рисунке изображён график функции  (fleft( x right) = {a^{x + b}}.)  Найдите значение x, при котором  (fleft( x right) = 0,125.)

Ответ

ОТВЕТ: — 5.

Решение

График показательной функции  (fleft( x right) = {a^{x + b}}) проходит через точки (left( {3;2} right)) и (left( {5;4} right)).

Следовательно:    (left{ {begin{array}{*{20}{c}}{2 = {a^{3 + b}}}\{4 = {a^{5 + b}}}end{array}} right.)

Разделим второе уравнение на первое:   (frac{{{a^{5 + b}}}}{{{a^{3 + b}}}} = frac{4}{2},,,,,,,,, Leftrightarrow ,,,,,,,,,{a^2} = 2,,,,,,,,, Leftrightarrow ,,,,,,,,,a = sqrt 2 .)

Тогда: ({sqrt 2 ^{,3 + b}} = 2,,,,,,,,, Leftrightarrow ,,,,,,,,,{sqrt 2 ^{,3 + b}} = {sqrt 2 ^{,2}},,,,,,, Leftrightarrow ,,,,,,,,3 + b = 2,,,,,,,,, Leftrightarrow ,,,,,,,,b =  — 1.)

Таким образом:    (fleft( x right) = {sqrt 2 ^{,x — 1}})    и    ({sqrt 2 ^{,x — 1}} = frac{1}{8},,,,,,,,, Leftrightarrow ,,,,,,,,{2^{frac{{x — 1}}{2}}} = {2^{ — 3}},,,,,,, Leftrightarrow ,,,,,,,,,x =  — 5.)

Ответ: – 5.

Задача 31. На рисунке изображён график функции  (fleft( x right) = {a^{x + b}}.)  Найдите значение x, при котором  (fleft( x right) = 64.)

Ответ

ОТВЕТ: — 3.

Решение

График показательной функции  (fleft( x right) = {a^{x + b}}) проходит через точки (left( {3;1} right)) и (left( {1;4} right)).

Следовательно:    (left{ {begin{array}{*{20}{c}}{1 = {a^{3 + b}}}\{4 = {a^{1 + b}}}end{array}} right.)

Разделим первое уравнение на второе:   (frac{{{a^{3 + b}}}}{{{a^{1 + b}}}} = frac{1}{4},,,,,,,,, Leftrightarrow ,,,,,,,,,{a^2} = frac{1}{4},,,,,,,,, Leftrightarrow ,,,,,,,,,a = frac{1}{2}.)

Тогда: ({left( {frac{1}{2}} right)^{3 + b}} = 1,,,,,,,,, Leftrightarrow ,,,,,,,,,{left( {frac{1}{2}} right)^{3 + b}} = {left( {frac{1}{2}} right)^0},,,,,,, Leftrightarrow ,,,,,,,,3 + b = 0,,,,,,,,, Leftrightarrow ,,,,,,,,b =  — 3.)

Таким образом:    

(fleft( x right) = {left( {frac{1}{2}} right)^{x — 3}})    и     ({left( {frac{1}{2}} right)^{x — 3}} = 64,,,,,, Leftrightarrow ,,,,,,,{left( {frac{1}{2}} right)^{x — 3}} = {left( {frac{1}{2}} right)^{ — 6}},,,,,, Leftrightarrow ,,,,,,,,x — 3 =  — 6,,,,,,, Leftrightarrow ,,,,,,,,,x =  — 3.)

Ответ: – 3.

Задача 32. На рисунке изображён график функции  (fleft( x right) = {a^{x + b}}.)  Найдите значение x, при котором  (fleft( x right) = 81.)

Ответ

ОТВЕТ: — 6.

Решение

График показательной функции  (fleft( x right) = {a^{x + b}}) проходит через точки (left( { — 2;9} right)) и (left( {2;1} right)).

Следовательно:    (left{ {begin{array}{*{20}{c}}{9 = {a^{ — 2 + b}}}\{1 = {a^{2 + b}}}end{array}} right.)

Разделим второе уравнение на первое:   (frac{{{a^{2 + b}}}}{{{a^{ — 2 + b}}}} = frac{1}{9},,,,,,,,, Leftrightarrow ,,,,,,,,,{a^4} = frac{1}{9},,,,,,,,, Leftrightarrow ,,,,,,,,,a = frac{1}{{sqrt 3 }}.)

Тогда: ({left( {frac{1}{{sqrt 3 }}} right)^{2 + b}} = 1,,,,,,,,, Leftrightarrow ,,,,,,,,,{left( {frac{1}{{sqrt 3 }}} right)^{2 + b}} = {left( {frac{1}{{sqrt 3 }}} right)^0},,,,,,, Leftrightarrow ,,,,,,,,2 + b = 0,,,,,,,,, Leftrightarrow ,,,,,,,,b =  — 2.)

Таким образом:   

(fleft( x right) = {left( {frac{1}{{sqrt 3 }}} right)^{x — 2}})  и  ({left( {frac{1}{{sqrt 3 }}} right)^{x — 2}} = 81,,,,,,,,, Leftrightarrow ,,,,,,,,{3^{ — ,frac{{x — 2}}{2}}} = {2^4},,,,,,, Leftrightarrow ,,,,,,,,,,, — ,,frac{{x — 2}}{2} = 4,,,,,,,,, Leftrightarrow ,,,,,,,,,x =  — 6.)

Ответ: – 6.

В ЕГЭ 2022 года добавили новую задачу на графики функций. Для решения этой задачи нужно сначала определить формулу функции, а затем вычислить ответ на вопрос задачи. И если вычисление ответа по известной формуле обычно не составляет труда, то вот определение самой формулы часто ставит школьников в тупик. Поэтому мы разберем три разных подхода к этому вопросу.

Замечание. Про то как определяется формула у прямой и параболы я написала в этой и этой статьях. Поэтому здесь в примерах я буду использовать другие функции – дробные, иррациональные, показательные и логарифмические, но все три описанных здесь способа работают и для линейных, и для квадратичных функций в том числе.

1 способ – находим формулу по точкам

Этот способ подходит вообще для любой девятой задачи, но занимает достаточно много времени и требует хорошего навыка решения систем уравнений.

Давайте разберем алгоритм на примере конкретной 9-ой задачи ЕГЭ:

задача с гиперболой

Алгоритм:

1. Находим 2 точки с целыми координатами. Обычно они выделены жирно, но если это не так, то не проблема найти их самому.
Пример:

находим две точки с целыми координатами

2. Подставляем эти координаты в «полуфабрикат» функции. Вместо (f(x))– координату игрек, вместо (x) – икс. Получается система.

составляем уравнения

3. Решаем эту систему и получаем готовую формулу.

решаем систему

4. Готово, функция найдена, можно переходить ко второму этапу – вычислению (f(-8)). Если вы вдруг не знаете, что это значит – в конце статьи я рассматриваю этот момент более подробно.

отвечаем на вопрос задачи

Давайте посмотрим метод еще раз на примере с логарифмической функцией.
Пример:

Пример с логарифмической функцией

2 способ – преобразование графиков функций

Этот способ сильно быстрее первого, но требует больше знаний. Для использования преобразований функций нужно знать, как выглядят функции без изменения и как преобразования их меняют. Наиболее удобно использовать этот способ для иррациональной функции ((y=sqrt{x}) ) и функции обратной пропорциональности ((y=frac{1}{x})).

Вот как выглядит применение этого способа:

преобразование графиков функций

Для использования этого способа надо знать, как выглядят изначальные функции:

Виды функций

И понимать, как меняются функции от преобразований:

Преобразование графиков функций

примеры преобразований функций

Преобразование показательной функции Преобразование гипербол

Часто даже по «полуфабрикату» функции понятно, какие преобразования сделали с функцией:

как по формуле определить какие были преобразования с функцией

Пример:

пример с функцией обратной пропорциональности

3 способ – гибридный

Идеально подходит для логарифмических и показательных функций, так как обычно у таких функций неизвестно основание и с помощью преобразований его не найти. С другой стороны, независимо от оснований любая показательная функция должна проходить через точку ((0;1)), а любая логарифмическая — через точку ((1;0)).

показательная и логарифмическая функция

По смещению этих точек легко понять, как именно двигали функцию, но только если ее не растягивали, а лишь перемещали вверх-вниз, влево-вправо (как обычно и бывает в задачах на ЕГЭ).

Основание же лучше находить уже следующим действием, используя подстановку координат точки в «полуфабрикат» функции.

пример с логарифмической функцией

пример с логарифмической функцией

Как отвечать на вопросы в задаче, когда уже определили функцию

— Если просят найти (f)(любое число), то нужно это число подставить в готовую функцию вместо икса.
Пример:

что значит найти f от числа

— Если просят найти «при каком значении x значение функции равно *любому числу*», то надо решить уравнение, в одной части которого будет функция, а в другой — то самое число. Аналогично надо поступить, если просят «найти корень уравнения (f(x)=) *любое число*».
Пример:

найдите, при каком значении x значение функции равно 8

— Если просят найти абсциссу точки пересечения – надо приравнять 2 функции и решить получившееся уравнение. Корень уравнения и будет искомой абсциссой. Аналогично надо делать в задачах, где даны две точки пересечения (A)(*любое число*;*другое число*) и (B(x_0;y_0)) и просят найти (x_0).
Пример:

найдите точку пересечения функций

— Если просят найти ординату точки пересечения – надо приравнять 2 функции, найти иксы и подставить подходящий икс в любую функцию. Точно также решаем если просят найти (y_0) точки пересечения двух функций.
Пример:

найдите ординату точки пересечения

— Иногда просят найти просто какой-либо из коэффициентов функции. Тогда надо просто восстановить функцию и записать в ответ то, о чем спросили:
Пример:

найдите k

Понравилась статья? Поделить с друзьями:
  • Решу егэ личный кабинет учителя
  • Решу егэ математика 113443
  • Решу егэ личный кабинет ученика вход
  • Решу егэ математика 113079
  • Решу егэ личное письмо