Решу егэ математика 109209

Имеется два сплава. Первый сплав содержит 5% меди, второй  — 13% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Спрятать решение

Решение.

Пусть масса первого сплава m кг, а масса второго  — m плюс 9 кг. Тогда масса третьего сплава равна 2m плюс 9 кг. Первый сплав содержит 5% меди, второй  — 13% меди, третий сплав  — 10% меди. Таким образом,

0,05m плюс 0,13 левая круглая скобка m плюс 9 правая круглая скобка =0,1 левая круглая скобка 2m плюс 9 правая круглая скобка равносильно 0,18m плюс 1,17=0,2m плюс 0,9 равносильно m=13,5.

Следовательно, масса третьего сплава равна 2m плюс 9=2 умножить на 13,5 плюс 9=36 кг.

Ответ: 36.

Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 1

Шкалирование

Первичный Тестовый Оценка
5-6 27-34 3
7-8 40-46 4
9-10 52-58
11-12-13 64-66-68 5
14-15-16 70-72-74
17-18-19 76-78-80
20-21-22 82-84-86
23-24-25 88-90-92
26-27-28 94-96-98
29-30-31 100
Первичный балл
/
Тестовый балл
5/27 6/34 7/40 8/46 9/52 10/58 11/64 12/66 13/68 14/70
15/72 16/74 17/76 18/78 19/80 20/82 X / 2X+42 29+ / 100

501044 решу егэ математика профиль

Задание 10 № 508780

Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?

Воспользуемся формулой Бернулли. Найдем вероятность события А, состоящего в том, что при десяти бросаниях выпадет ровно 5 орлов:

Аналогично найдем вероятность события B, состоящего в том, что при десяти бросаниях выпадет ровно 4 орла:

Приведем решение Ирины Шраго.

Вероятность того, что выпадет ровно 5 орлов, равна отношению количества вариантов, при которых выпадает ровно 5 орлов, к общему количеству вариантов: Вероятность того, что выпадет ровно 4 орла, равна отношению количества вариантов, при которых выпадает ровно 4 орла, к общему количеству вариантов: Тогда отношение этих вероятностей

Задание 10 № 508780

Задание 10 508780.

Math-ege. sdamgia. ru

08.11.2017 2:12:44

2017-11-08 02:12:44

Источники:

Https://math-ege. sdamgia. ru/problem? id=508780

14.05.2022 Пробный ЕГЭ 2022 профиль математика 3 варианта с ответами | ЕГЭ ОГЭ СТАТГРАД ВПР 100 баллов » /> » /> .keyword { color: red; } 501044 решу егэ математика профиль

14.05.2022 Пробный ЕГЭ 2022 профиль математика 3 варианта с ответами

14.05.2022 Пробный ЕГЭ 2022 профиль математика 3 варианта с ответами

2)На олимпиаде по экономике 300 участников разместили в четырнадцати аудиториях. В первых тринадцати удалось разместить по 22 участника, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории? Ответ округлите до сотых.

3)В четырёхугольник ABCD вписана окружность, АВ = 19, ВС = 18 и CD = 32. Найдите длину четвёртой стороны четырёхугольника.

5)Площадь поверхности правильной треугольной призмы равна 70, а боковой – 62. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь поверхности отсечённой треугольной призмы.

6)На рисунке изображены график функции y = f(x) и касательная к этому графику, проведённая в точке x0. Найдите значение производной функции g(x) = 6f(x) − 3x в точке x0.

8)Имеется два сплава. Первый содержит 5% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

10)В ящике 14 красных и 12 синих фломастеров. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что первый раз синий фломастер появится третьим по счету?

13)В правильной четырёхугольной пирамиде SABCD точка К является серединой ребра SD, а точка L – серединой стороны ВС основания ABCD. Плоскость AKL пересекает ребро SC в точке N. а) Докажите, что SN : NC = 2 : 1. б) Найдите угол между плоскостями AKL и ABC, если АВ = 10, а высота пирамиды равна 20.

15)Антон является владельцем двух заводов в разных городах. На заводах производятся абсолютно одинаковые товары при использовании одинаковых технологий. Если рабочие на одном из заводов трудятся суммарно t2 часов в неделю, то за эту неделю они производят t единиц товара. За каждый час работы на заводе, расположенном в первом городе, Антон платит рабочему 250 рублей, а на заводе, расположенном во втором городе, – 200 рублей. Антон готов выделять 900 000 рублей в неделю на оплату труда рабочих. Какое наибольшее количество единиц товара можно произвести за неделю на этих двух заводах?

Задания с 2 варианта

2)На олимпиаде по экономике 355 участников разместили в шестнадцати аудиториях. В первых пятнадцати удалось разместить по 23 участника, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории? Ответ округлите до сотых.

3)В четырёхугольник ABCD вписана окружность, АВ = 18, ВС = 17 и CD = 33. Найдите длину четвёртой стороны четырёхугольника.

5)Площадь поверхности правильной треугольной призмы равна 102, а боковой – 78. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь поверхности отсечённой треугольной призмы.

8)Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 125 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

10)В ящике 7 красных и 9 синих фломастеров. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что первый раз синий фломастер появится третьим по счету?

13)В правильной четырёхугольной пирамиде SABCD точка К является серединой ребра SD, а точка L – серединой стороны ВС основания ABCD. Плоскость AKL пересекает ребро SC в точке N. а) Докажите, что SN : NC = 2 : 1. б) Найдите угол между плоскостями AKL и ABC, если АВ = 9, а высота пирамиды равна 15.

15)Антон является владельцем двух заводов в разных городах. На заводах производятся абсолютно одинаковые товары при использовании одинаковых технологий. Если рабочие на одном из заводов трудятся суммарно t2 часов в неделю, то за эту неделю они производят t единиц товара. За каждый час работы на заводе, расположенном в первом городе, Антон платит рабочему 600 рублей, а на заводе, расположенном во втором городе, – 300 рублей. Антон готов выделять 720 000 рублей в неделю на оплату труда рабочих. Какое наибольшее количество единиц товара можно произвести за неделю на этих двух заводах?

Задания с 3 варианта

2)На олимпиаде по экономике 310 участников разместили в четырнадцати аудиториях. В первых тринадцати удалось разместить по 23 участника, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории? Ответ округлите до сотых.

3)В четырёхугольник ABCD вписана окружность, АВ = 17, ВС = 16 и CD = 34. Найдите длину четвёртой стороны четырёхугольника.

5)Площадь поверхности правильной треугольной призмы равна 88, а боковой – 72. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь поверхности отсечённой треугольной призмы.

8)Имеется два сплава. Первый содержит 5% никеля, второй — 40% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

10)В ящике 9 красных и 7 синих фломастеров. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что первый раз синий фломастер появится третьим по счету?

15)Антон является владельцем двух заводов в разных городах. На заводах производятся абсолютно одинаковые товары при использовании одинаковых технологий. Если рабочие на одном из заводов трудятся суммарно t2 часов в неделю, то за эту неделю они производят t единиц товара. За каждый час работы на заводе, расположенном в первом городе, Антон платит рабочему 250 рублей, а на заводе, расположенном во втором городе, – 200 рублей. Антон готов выделять 900 000 рублей в неделю на оплату труда рабочих. Какое наибольшее количество единиц товара можно произвести за неделю на этих двух заводах?

05.2022 Пробный ЕГЭ 2022 профиль математика 3 варианта с ответами

2)На олимпиаде по экономике 300 участников разместили в четырнадцати аудиториях. В первых тринадцати удалось разместить по 22 участника, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории? Ответ округлите до сотых.

3)В четырёхугольник ABCD вписана окружность, АВ = 19, ВС = 18 и CD = 32. Найдите длину четвёртой стороны четырёхугольника.

5)Площадь поверхности правильной треугольной призмы равна 70, а боковой – 62. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь поверхности отсечённой треугольной призмы.

6)На рисунке изображены график функции y = f(x) и касательная к этому графику, проведённая в точке x0. Найдите значение производной функции g(x) = 6f(x) − 3x в точке x0.

8)Имеется два сплава. Первый содержит 5% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

10)В ящике 14 красных и 12 синих фломастеров. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что первый раз синий фломастер появится третьим по счету?

13)В правильной четырёхугольной пирамиде SABCD точка К является серединой ребра SD, а точка L – серединой стороны ВС основания ABCD. Плоскость AKL пересекает ребро SC в точке N. а) Докажите, что SN : NC = 2 : 1. б) Найдите угол между плоскостями AKL и ABC, если АВ = 10, а высота пирамиды равна 20.

15)Антон является владельцем двух заводов в разных городах. На заводах производятся абсолютно одинаковые товары при использовании одинаковых технологий. Если рабочие на одном из заводов трудятся суммарно t2 часов в неделю, то за эту неделю они производят t единиц товара. За каждый час работы на заводе, расположенном в первом городе, Антон платит рабочему 250 рублей, а на заводе, расположенном во втором городе, – 200 рублей. Антон готов выделять 900 000 рублей в неделю на оплату труда рабочих. Какое наибольшее количество единиц товара можно произвести за неделю на этих двух заводах?

Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.

100ballnik. com

16.08.2018 13:09:57

2020-01-15 22:41:25

Источники:

Https://100ballnik. com/14-05-2022-%D0%BF%D1%80%D0%BE%D0%B1%D0%BD%D1%8B%D0%B9-%D0%B5%D0%B3%D1%8D-2022-%D0%BF%D1%80%D0%BE%D1%84%D0%B8%D0%BB%D1%8C-%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0-3-%D0%B2%D0%B0/

Задание 4 решу ЕГЭ 2022 математика профильный уровень 100 заданий с ответами | ЕГЭ ОГЭ СТАТГРАД ВПР 100 баллов » /> » /> .keyword { color: red; } 501044 решу егэ математика профиль

Задание 4 решу ЕГЭ 2022 математика профильный уровень 100 заданий с ответами

Задание 4 решу ЕГЭ 2022 математика профильный уровень 100 заданий с ответами

Более 100 тренировочных прототипов задания №4 решу ЕГЭ 2022 по математике 11 класс профильный уровень с ответами и решением для практики. Задание №4 профильного ЕГЭ по математике – вычисления и преобразования.

На ЕГЭ вам могут встретиться и совсем простые задачи (на сложение дробей), и задания, которые не решить без подготовки.

Рациональные выражения ЕГЭ 2022 по математике профиль:

Иррациональные выражения ЕГЭ 2022 по математике профиль:

Степенные выражения ЕГЭ 2022 по математике профиль:

Логарифмические выражения ЕГЭ 2022 по математике профиль:

Тригонометрические выражения ЕГЭ 2022 по математике профиль:

1)Найдите значение выражения log 5 27⋅log 3 25.

2)Найдите значение выражения 14 sin225°+cos2205° .

3)Найдите значение выражения 5 cos233°+cos2123° .

4)Найдите значение выражения 18(sin216°−cos216°) cos32°

5)Найдите значение выражения (1−log318)(1−log618).

6)Найдите значение выражения log336 2+log34 .

7)Найдите значение выражения log2(log5625).

8)Найдите значение выражения 7log550 7log52 .

9)Найдите значение выражения log723 log4923 .

10)Найдите значение выражения 15cos19° cos341° .

11)Найдите значение выражения 3cos39° sin51° .

12)Найдите значение выражения 15√x−3 √x + 3√x x +2x−8 при x=3.

13)Найдите значение выражения f(x+3) f(x−3) , если f(x)=5x.

14)Найдите значение выражения (√23−√15)(√23+√15).

15)Найдите значение выражения 63√2+2·62√2 65√2−1 .

16)Найдите значение выражения 83√5−1⋅81−√5:82√5−1.

17)Найдите значение выражения 6x⋅(2×9)4:(4×12)3 при x=5.

18)Найдите значение выражения x⋅52x+1⋅25−x при x=3.

19)Найдите значение выражения 3sinβ+15cosβ−8 sinβ+5cosβ+2 , если tgβ=−5.

20)Найдите значение выражения −6√3 cos390°⋅sin(−750°) .

21)Найдите значение выражения 5√14⋅5√16 5√7 .

22)Найдите значение выражения log0,85⋅log51,25.

23)Найдите значение выражения 18 √6 tg π 3 ⋅sin π 4 .

24)Найдите значение выражения 12√6tg π 6 ⋅cos π 4 .

25)Найдите значение выражения 5tg125°⋅tg35°.

26)Найдите значение выражения 7tg27°⋅tg117°.

27)Найдите значение выражения a+7b+12 a+5b+10 , если a b =5.

28)Найдите значение выражения a b, если 5a+2b 2a+5b =3.

Рациональные выражения ЕГЭ 2022 по математике профиль:

1)Найдите значение выражения log 5 27⋅log 3 25.

2)Найдите значение выражения 14 sin225°+cos2205° .

3)Найдите значение выражения 5 cos233°+cos2123° .

4)Найдите значение выражения 18(sin216°−cos216°) cos32°

5)Найдите значение выражения (1−log318)(1−log618).

6)Найдите значение выражения log336 2+log34 .

7)Найдите значение выражения log2(log5625).

8)Найдите значение выражения 7log550 7log52 .

9)Найдите значение выражения log723 log4923 .

10)Найдите значение выражения 15cos19° cos341° .

11)Найдите значение выражения 3cos39° sin51° .

12)Найдите значение выражения 15√x−3 √x + 3√x x +2x−8 при x=3.

13)Найдите значение выражения f(x+3) f(x−3) , если f(x)=5x.

14)Найдите значение выражения (√23−√15)(√23+√15).

15)Найдите значение выражения 63√2+2·62√2 65√2−1 .

16)Найдите значение выражения 83√5−1⋅81−√5:82√5−1.

17)Найдите значение выражения 6x⋅(2×9)4:(4×12)3 при x=5.

18)Найдите значение выражения x⋅52x+1⋅25−x при x=3.

19)Найдите значение выражения 3sinβ+15cosβ−8 sinβ+5cosβ+2 , если tgβ=−5.

20)Найдите значение выражения −6√3 cos390°⋅sin(−750°) .

21)Найдите значение выражения 5√14⋅5√16 5√7 .

22)Найдите значение выражения log0,85⋅log51,25.

23)Найдите значение выражения 18 √6 tg π 3 ⋅sin π 4 .

24)Найдите значение выражения 12√6tg π 6 ⋅cos π 4 .

25)Найдите значение выражения 5tg125°⋅tg35°.

26)Найдите значение выражения 7tg27°⋅tg117°.

27)Найдите значение выражения a+7b+12 a+5b+10 , если a b =5.

28)Найдите значение выражения a b, если 5a+2b 2a+5b =3.

Иррациональные выражения ЕГЭ 2022 по математике профиль.

100ballnik. com

19.08.2017 20:35:50

2017-08-19 20:35:50

Источники:

Https://100ballnik. com/%D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B5-4-%D1%80%D0%B5%D1%88%D1%83-%D0%B5%D0%B3%D1%8D-2022-%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0-%D0%BF%D1%80%D0%BE%D1%84%D0%B8%D0%BB%D1%8C/

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Задачи из сборников Ященко, 2021 год

Квадратные уравнения

Показательные уравнения

Логарифмические уравнения

Модуль числа

Уравнения с модулем

Тригонометрический круг

Формулы тригонометрии

Формулы приведения

Простейшие тригонометрические уравнения 1

Простейшие тригонометрические уравнения 2

Тригонометрические уравнения

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть tg x — помним, что он существует, только если {cos xne 0}.

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi}{3}+2pi n , где n — целое, а найти надо корни на отрезке left [frac{5 pi}{2};frac{9 pi}{2} right ]. На указанном промежутке лежит точка 4 pi. От нее и будем отсчитывать. Получим: x=4 pi +frac{pi}{3}=frac{13 pi}{3}.

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

Давайте потренируемся.

а) Решите уравнение 2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

б) Найдите все корни этого уравнения, принадлежащие промежутку left[-3pi right.;left.-frac{3pi }{2}right]

2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

Упростим левую часть по формуле приведения.

2{{cos}^2 x+sqrt{3}{cos x}=0}

Вынесем {cos x} за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-3pi right.;left.-frac{3pi }{2}right].

Видим, что указанному отрезку принадлежат решения -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Ответ: -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi }{3}+2pi n, где n — целое, а найти надо корни на отрезке [frac{5pi }{2};frac{9pi }{2}]. На указанном промежутке лежит точка 4 pi. От нее и отсчитываем.

Получим: x=4pi +frac{pi }{3}=frac{13pi }{3}.

2. а) Решите уравнение {({27}^{{cos x}})}^{{sin x}}=3^{frac{3{cos x}}{2}}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

а) 3^{3{cos x{sin x}}}=3^{frac{3{cos x}}{2}}

Степени равны, их основания равны. Значит, равны и показатели.

3{cos x{sin x}}=frac{3{cos x}}{2}

2{cos x{sin x-{cos x=0}}}

{cos x({sin x-frac{1}{2})=0}}

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Отметим на тригонометрическом круге отрезок left[-pi ;frac{pi }{2}right] и найденные серии решений.

Видим, что указанному отрезку принадлежат точки x=-frac{pi }{2} и x=frac{pi }{2} из серии x=frac{pi }{2}+pi n,nin z.

Точки серии x=frac{5pi }{6}+2pi n,nin z не входят в указанный отрезок.

А из серии x=frac{pi }{6}+2pi n,nin z в указанный отрезок входит точка x=frac{pi }{6}.

Ответ в пункте (б): -frac{pi }{2},frac{pi }{6} , frac{pi }{2}.

3. а) Решите уравнение {cos 2x}+{{sin}^2 x=0,5}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{7pi }{2}right.;left.-2pi right].

а)
{cos 2x}+{{sin}^2 x=0,5}

Применим формулу косинуса двойного угла: boldsymbol{cos2alpha =1-{2sin}^2alpha }

1-2{{sin}^2 x}+{{sin}^2 x}=0,5

{{-sin}^2 x=-0,5}

{{sin}^2 x=0,5}

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке left[-frac{7pi }{2}right.;left.-2pi right] с помощью двойного неравенства.

Сначала серия x=frac{pi }{4}+pi n,nin Z.

-frac{7pi }{2}le frac{pi }{4}+pi nle -2pi

-frac{7}{2}le frac{1}{4}+nle -2

-3,75le nle -2,25

n=-3, x_1=frac{pi }{4}-3pi =-frac{11pi }{4}

Теперь серия x=-frac{pi }{4}+pi n,nin Z

-frac{7pi }{2}le -frac{pi }{4}+pi nle -2pi

-frac{7}{2}le -frac{1}{4}+nle -2

-3,25le nle -1,75

n=-3, x_2=-frac{pi }{4}-3pi =-frac{13pi }{4}

n=-2, x_3=-frac{pi }{4}-2pi =-frac{9pi }{4}

Ответ: -frac{13pi }{4};-frac{11pi }{4};-frac{9pi }{4} .

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии x=-frac{pi }{4}+2pi n,nin Z на отрезке left[-frac{pi }{2}right.;left.20pi right]. Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение left({tg}^2x-3right)sqrt{11{cos x}}=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{5pi }{2};-pi right].

Самое сложное здесь — область допустимых значений (ОДЗ). Условие {11cos x}ge 0 заметно сразу. А условие {cos x}ne 0 появляется, поскольку в уравнении есть {tg x=frac{{sin x}}{{cos x}}}.

ОДЗ:

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси Y.

Ответ в пункте а) x=pm frac{pi }{3}+2pi n, nin z

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-frac{5pi }{2};-pi right].

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

x=frac{pi }{3}-2pi =-frac{5pi }{3} и x=-frac{pi }{3}-2pi =-frac{7pi }{3}.

5. а) Решите уравнение sqrt{{cos x+{sin x}}}({{cos}^2 x-frac{1}{2})=0}

б) Найдите корни, принадлежащие отрезку [-pi ;4pi ].

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых {cos x}=frac{sqrt{2}}{2} или {cos x}=-frac{sqrt{2}}{2}. Заметим, что среди них находятся и углы, для которых tgx=-1.

Числа серии x=-frac{3pi }{4}+2pi n не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие {cos x+{sin x}}ge 0. Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку [-pi ;4pi ] любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

На отрезке left[-pi ;0right] нам подходит корень x =-frac{pi }{4}.

На отрезке left[0;2pi right] нам подходят корни x=frac{pi }{4};frac{3pi }{4};frac{7pi }{4}.

На отрезке left[2pi ;4pi right] — корни x= frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Ответ в пункте б): -frac{pi }{4};frac{3pi }{4};frac{7pi }{4};frac{pi }{4};frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задание №12. Уравнения u0026#8212; профильный ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

Целое вещественное

число 109209
является составным числом.

Сумма цифр: 21. Произведение цифр: 0.
У числа 8 делителей.

Обратное число для 109209 — это 0.00000915675447994213.

Данное число представляется произведением: 3 * 59 * 617.

Перевод числа 109209 в другие системы счисления:
двоичная система: 11010101010011001, троичная система: 12112210210, восьмеричная система: 325231, шестнадцатеричная система: 1AA99.
Количество информации в числе байт 109209 это 106 килобайтов 665 байтов .

В виде кода азбуки Морзе: .—- —— —-. ..— —— —-.

Число 109209 не является числом Фибоначчи.

Косинус числа: 0.5766, синус числа: 0.8170, тангенс числа: 1.4168.
Натуральный логарифм числа 109209 равен 11.6010.
Десятичный логарифм числа равен 5.0383.
330.4679 это корень квадратный, 47.7991 — кубический.
Возведение в квадрат: 1.1927e+10.

1 день 6 часов 20 минут 9 секунд представляет из себя число секунд 109209.
Нумерологическая цифра этого числа — 3.

Вариант МА2210301 и ответы

Скачать ответы и
решения для вариантов

1.          
Каждый день во время конференции расходуется 60 пакетиковчая.
Конференция длится 9 дней. В пачке чая 50 пакетиков. Какого наименьшего
количества пачек чая хватит на все дни конференции?

2.          
Установите соответствие между величинами и их
возможнымизначениями: к каждому элементу первого столбца подберите
соответствующий элемент из второго столбца.

3.          
В таблице показано расписание пригородных электропоездовпо
направлению Москва Курская – Крутое – Петушки. Владислав пришёл на станцию
Москва Курская в 18:20 и хочет уехать в Петушки на электропоезде без пересадок.
Найдите номер ближайшего электропоезда, который ему подходит.

5. В коробке вперемешку лежат чайные пакетики с
чёрным и зелёным чаем, одинаковые на вид, причём пакетиков с чёрным чаем в 4
раза больше, чем пакетиков с зелёным. Найдите вероятность того, что случайно
выбранный из этой коробки пакетик окажется пакетиком с чёрным чаем.

8.          
Некоторые учащиеся 10-х классов школы ходили в апреле наспектакль
«Гроза». В мае некоторые десятиклассники пойдут на постановку по пьесе
«Бесприданница», причём среди них не будет тех, кто ходил в апреле на спектакль
«Гроза». Выберите утверждения, которые будут верны при указанных условиях
независимо от того, кто из десятиклассников пойдёт на постановку по пьесе
«Бесприданница».

    
1) Каждый учащийся 10-х классов, который не ходил на спектакль
«Гроза», пойдёт на постановку по пьесе «Бесприданница».

    
2) Нет ни одного десятиклассника, который ходил на спектакль
«Гроза» и пойдёт на постановку по пьесе «Бесприданница».

    
3) Среди учащихся 10-х классов этой школы, которые не пойдут на
постановку по пьесе «Бесприданница», есть хотя бы один, который ходил на
спектакль «Гроза».

    
4) Найдётся десятиклассник, который не ходил на спектакль «Гроза»
и не пойдёт на постановку по пьесе «Бесприданница».

9.          
На фрагменте географической карты схематично изображеныграницы
деревни Покровское и очертания озёр (площадь одной клетки равна одному
гектару). Оцените приближённо площадь озера Малого. Ответ дайте в гектарах с
округлением до целого значения.

10.       
Диагональ прямоугольного экрана ноутбука равна 40 см, аширина
экрана ― 32 см. Найдите высоту экрана. Ответ дайте в сантиметрах.

11.       
Пирамида Снофру имеет форму правильной четырёхугольнойпирамиды,
сторона основания которой равна 220 м, а высота — 104 м. Сторона основания
точной музейной копии этой пирамиды равна 55 см. Найдите высоту музейной копии.
Ответ дайте в сантиметрах.

12.       
В треугольнике ABC проведена биссектриса AL, угол ALC равен 112°
, угол ABC равен 106° . Найдите угол ACB . Ответ дайте в градусах.

13.       
Даны два цилиндра. Радиус основания и высота первогоцилиндра
равны соответственно 2 и 6, а второго — 6 и 4. Во сколько раз объём второго
цилиндра больше объёма первого?

15. В школе мальчики составляют 55 % от числа всех
учащихся. Сколько в этой школе мальчиков, если их на 50 человек больше, чем
девочек?

19.       
Цифры четырёхзначного числа, кратного 5, записали вобратном
порядке и получили второе четырёхзначное число. Затем из исходного числа вычли
второе и получили 3366. В ответе укажите какое-нибудь одно такое исходное
число.

20.       
Имеется два сплава. Первый содержит 45 % никеля, второй —5 %
никеля. Из этих двух сплавов получили третий сплав, содержащий 15 % никеля.
Масса первого сплава равна 40 кг. На сколько килограммов масса первого сплава
была меньше массы второго?

21.       
Прямоугольник разбит на четыре меньших прямоугольникадвумя
прямолинейными разрезами. Периметры трёх из них, начиная с левого верхнего и
далее по часовой стрелке, равны 2, 3 и 18. Найдите периметр четвёртого
прямоугольника.

Вариант МА2210305 и ответы

Скачать ответы и
решения для вариантов

1. Для покраски 1 кв. м потолка требуется 230 г
краски. Краска продаётся в банках по 2 кг. Какое наименьшее количество банок
краски нужно для покраски потолка площадью 44 кв. м?

3. В таблице представлены налоговые ставки на
автомобили в Москве с 1 января 2013 года. Какова налоговая ставка (в рублях за
1 л. с. в год) на автомобиль мощностью 115 л. с.?

5.          
Помещение освещается двумя лампами. Вероятностьперегорания одной
лампы в течение года равна 0,3. Найдите вероятность того, что в течение года
обе лампы перегорят.

6.          
В таблице даны результаты олимпиад по русскому языку ибиологии в
9 «А» классе. Похвальные грамоты дают тем школьникам, у кого суммарный балл по
двум олимпиадам больше 110 или хотя бы по одному предмету набрано не меньше 60
баллов. Укажите номера учащихся 9 «А» класса, набравших меньше 60 баллов по
русскому языку и получивших похвальные грамоты, без пробелов, запятых и других
дополнительных символов.

7.          
На рисунке изображены график функции и касательные,проведённые к
нему в точках с абсциссами A, B, C и D. В правом столбце указаны значения
производной функции в точках A, B, C и D. Пользуясь графиком, поставьте в
соответствие каждой точке значение производной функции в ней.

8.          
Некоторые учащиеся 10-х классов школы ходили в ноябре наоперу
«Евгений Онегин». В марте некоторые десятиклассники пойдут на оперу «Руслан и
Людмила», причём среди них не будет тех, кто ходил в ноябре на оперу «Евгений
Онегин». Выберите утверждения, которые будут верны при указанных условиях независимо
от того, кто из десятиклассников пойдёт на оперу «Руслан и Людмила».

    
1) Каждый учащийся 10-х классов, который не ходил на оперу
«Евгений Онегин», пойдёт на оперу «Руслан и Людмила».

    
2) Нет ни одного десятиклассника, который ходил на оперу «Евгений
Онегин» и пойдёт на оперу «Руслан и Людмила».

    
3) Найдётся десятиклассник, который не ходил на оперу

«Евгений Онегин» и не пойдёт на оперу «Руслан и
Людмила».

    
4) Среди учащихся 10-х классов этой школы, которые не пойдут на
оперу «Руслан и Людмила», есть хотя бы один, который ходил на оперу «Евгений
Онегин».

9.          
План местности разбит на клетки. Каждая клетка обозначаетквадрат
1м×1м . Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных
метрах.

10.       
Пожарную лестницу длиной 10 м приставили к окну дома.Нижний конец
лестницы отстоит от стены на 6 м. На какой высоте находится верхний конец
лестницы? Ответ дайте в метрах.

11.       
Прямолинейный участок трубы длиной 4 м, имеющей всечении
окружность, необходимо покрасить снаружи (торцы трубы открыты, их красить не
нужно). Найдите площадь поверхности, которую необходимо покрасить, если внешний
обхват трубы равен 19 см. Ответ дайте в квадратных сантиметрах.

12.       
В треугольнике ABC стороны AC и BC равны. Внешний угол при
вершине B равен 146° . Найдите угол C. Ответ дайте в градусах.

13.       
Даны два шара радиусами 4 и 2. Во сколько раз объёмбольшего шара
больше объёма меньшего?

15. Число больных гриппом в школе уменьшилось за
месяц в пять раз. На сколько процентов уменьшилось число больных гриппом?

19.       
Найдите пятизначное число, кратное 15, любые две соседниецифры
которого отличаются на 3. В ответе укажите какое-нибудь одно такое число.

20.       
Теплоход, скорость которого в неподвижной воде равна 19 км/ч,
проходит по течению реки и после стоянки возвращается в исходный пункт.
Скорость течения равна 3 км/ч, стоянка длится 5 часов, а в исходный пункт
теплоход возвращается через 43 часа после отправления из него. Сколько
километров проходит теплоход за весь рейс?

21.       
На кольцевой дороге расположены четыре бензоколонки: А, Б,В и Г.
Расстояние между А и Б — 55 км, между А и В — 40 км, между В и Г — 40 км, между
Г и А — 30 км (все расстояния измеряются вдоль кольцевой дороги по кратчайшей
дуге). Найдите расстояние (в километрах) между Б и В.

Вариант МА2210309 и ответы

Скачать ответы и
решения для вариантов

2.          
Прямоугольный параллелепипед описан около цилиндра,радиус
основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту
цилиндра.

3.          
В группе 16 человек, среди них — Анна и Татьяна. Группуслучайным
образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность
того, что Анна и Татьяна окажутся в одной подгруппе.

4.          
Агрофирма закупает куриные яйца только в двух домашниххозяйствах.
Известно, что 40 % яиц из первого хозяйства — яйца высшей категории, а из
второго хозяйства — 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей
категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы,
окажется из первого хозяйства.

9. Пристани A и B расположены на озере, расстояние
между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На
следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч
больше прежней, сделав по пути остановку на 8 часов. В результате она затратила
на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость
баржи на пути из A в B. Ответ дайте в км/ч.

13. Основанием правильной пирамиды PABCD является
квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD
перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра
пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если AB
= 30.

15.       
По вкладу «А» банк в конце каждого года планируетувеличивать на
13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать
эту сумму на 7 % в первый год и на целое число n процентов за второй год.
Найдите наименьшее значение n , при котором за два года хранения вклад «Б»
окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

16.       
В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M
. Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б)
Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22 .

18. У Ани есть 800 рублей. Ей нужно купить конверты
(большие и маленькие). Большой конверт стоит 32 рубля, а маленький — 25 рублей.
При этом число маленьких конвертов не должно отличаться от числа больших
конвертов больше чем на пять. а) Может ли Аня купить 24 конверта? б) Может ли
Аня купить 29 конвертов? в) Какое наибольшее число конвертов может купить Аня?

Вариант МА2210311 и ответы

Скачать ответы и
решения для вариантов

1.          
Найдите периметр прямоугольника, если его площадь равна 12,а
отношение соседних сторон равно 1:3.

2.          
Шар вписан в цилиндр. Площадь полной поверхностицилиндра равна
78. Найдите площадь поверхности шара.

3.          
В магазине в среднем из 120 сумок 15 имеют скрытые
дефекты.Найдите вероятность того, что выбранная в магазине сумка окажется со
скрытыми дефектами.

4.          
Игральный кубик бросают дважды. Известно, что в суммевыпало 11
очков. Найдите вероятность того, что во второй раз выпало 5 очков.

9. Игорь и Паша, работая вместе, могут покрасить
забор за 40 часов. Паша и Володя, работая вместе, могут покрасить этот же забор
за 48 часов, а Володя и Игорь, работая вместе, — за 60 часов. За сколько часов
мальчики покрасят забор, работая втроём?

13. Основанием правильной пирамиды PABCD является
квадрат ABCD . Сечение пирамиды проходит через вершину В и середину ребра PD
перпендикулярно этому ребру. а) Докажите, что угол наклона бокового ребра
пирамиды к её основанию равен 60° . б) Найдите площадь сечения пирамиды, если
AB = 24 .

15.       
По вкладу «А» банк в конце каждого года планируетувеличивать на
11 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» — увеличивать
эту сумму на 7 % в первый год и на целое число n процентов за второй год.
Найдите наименьшее значение n , при котором за два года хранения вклад «Б»
окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

16.       
В треугольнике ABC медианы AA1 , BB1 и CC1 пересекаются в точке M
. Известно, что AC MB = 3 . а) Докажите, что треугольник ABC прямоугольный. б)
Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 18.

18. У Ани есть 400 рублей. Ей нужно купить конверты
(большие и маленькие). Большой конверт стоит 22 рубля, а маленький — 17 рублей.
При этом число маленьких конвертов не должно отличаться от числа больших
конвертов больше чем на пять. а) Может ли Аня купить 19 конвертов? б) Может ли
Аня купить 23 конверта? в) Какое наибольшее число конвертов может купить Аня?

Скачать ответы и
решения для вариантов

Понравилась статья? Поделить с друзьями:
  • Решу егэ литература февральские варианты
  • Решу егэ математика 108663
  • Решу егэ литература тютчев фет
  • Решу егэ математика 105691
  • Решу егэ литература тихий дон вариант