Решу егэ математика 13173

Задания

Версия для печати и копирования в MS Word

Тип 5 № 13173

Найдите корень уравнения:  косинус дробь: числитель: Пи левая круглая скобка x плюс 1 правая круглая скобка , знаменатель: 4 конец дроби = дробь: числитель: корень из 2, знаменатель: 2 конец дроби . В ответе запишите наибольший отрицательный корень.

Спрятать решение

Решение.

Решим уравнение:

 косинус дробь: числитель: Пи левая круглая скобка x плюс 1 правая круглая скобка , знаменатель: 4 конец дроби = дробь: числитель: корень из 2, знаменатель: 2 конец дроби равносильно дробь: числитель: Пи левая круглая скобка x плюс 1 правая круглая скобка , знаменатель: 4 конец дроби =pm дробь: числитель: Пи , знаменатель: 4 конец дроби плюс 2 Пи n равносильно x плюс 1 =pm 1 плюс 8n равносильно совокупность выражений  новая строка x= 8 n;  новая строка x= минус 2 плюс 8 n,  конец совокупности .

где n  — целое число.

Значениям n больше 0 соответствуют положительные корни.

Если n=0, то x=0 или x= минус 2.

Значениям n меньше или равно 0 соответствуют меньшие значения корней.

Следовательно, наибольшим отрицательным корнем является число  минус 2.

Ответ: −2.

Аналоги к заданию № 26669: 12891 12957 13173 13371 13373 13375 13377 13381 12893 12895 … Все

Классификатор алгебры: Тригонометрические уравнения

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения

Спрятать решение

·

Прототип задания

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь

Задание 13062

В ходе распада радиоактивного изотопа его масса уменьшается вдвое каждые 8 минут. В начальный момент масса изотопа составляла 200 мг. Найдите массу изотопа через 32 минуты. Ответ дайте в миллиграммах.

Ответ: 12,5

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 13085

В ходе распада радиоактивного изотопа его масса уменьшается вдвое каждые 6 минут. В начальный момент масса изотопа составляла 640 мг. Найдите массу изотопа через 42 минуты. Ответ дайте в миллиграммах.

Ответ: 5

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 13151

В ходе биологического эксперимента в чашку Петри с питательной средой поместили колонию микроорганизмов массой 3 мг. Каждые 20 минут масса колонии увеличивается в 3 раза. Найдите массу колонии микроорганизмов через 80 минут после начала эксперимента. Ответ дайте в миллиграммах.

Ответ: 243

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 13173

В ходе биологического эксперимента в чашку Петри с питательной средой поместили колонию микроорганизмов массой 16 мг. Каждые 20 минут масса колонии увеличивается в 3 раза. Найдите массу колонии микроорганизмов через 60 минут после начала эксперимента. Ответ дайте в миллиграммах.

Ответ:

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 13194

В результате трёхкратного повышения цены на некоторый товар на одно и то же число процентов цена товара стала превышать первоначальную цену на 72,8%. На сколько процентов повышалась цена на товар каждый раз?

Ответ: 20

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 13237

В результате трёхкратного повышения цены на некоторый товар на одно и то же число процентов цена товара стала превышать первоначальную цену на 119,7%. На сколько процентов повышалась цена на товар каждый раз?

Ответ: 30

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 13263

Камень бросают в глубокое ущелье. При этом в первую секунду он пролетает 13 метров, а в каждую следующую секунду на 10 метров больше, чем в предыдущую, до тех пор, пока не достигнет дна ущелья. Сколько метров пролетит камень за первые пять секунд?

Ответ: 165

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 13284

Камень бросают в глубокое ущелье. При этом в первую секунду он пролетает 7 метров, а в каждую следующую секунду на 10 метров больше, чем в предыдущую, до тех пор, пока не достигнет дна ущелья. Сколько метров пролетит камень за первые шесть секунд?

Ответ: 192

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 13348

У Кати есть попрыгунчик (каучуковый шарик). Она со всей силы бросила его об асфальт. После первого отскока попрыгунчик подлетел на высоту 400 см, а после каждого следующего отскока от асфальта подлетал на высоту в два раза меньше предыдущей. После какого по счёту отскока высота, на которую подлетит попрыгунчик, станет меньше 20 см?

Ответ: 6

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!

Задание 13812

Каждое простейшее одноклеточное животное инфузория-туфелька размножается делением, на 2 части. Сколько инфузорий было первоначально, если после шестикратного деления их стало 1280?

Ответ: 20

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 13917

Каждое простейшее одноклеточное животное инфузория-туфелька размножается делением на 2 части. Сколько инфузорий было первоначально, если после пятикратного деления их стало 960?

Ответ: 30

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 16124

Бизнесмен Печенов получил в 2000 году прибыль в размере 1 000 млн руб. Каждый следующий год его прибыль увеличивалась на 10% по сравнению с предыдущим годом. Сколько млн рублей заработал Печенов за 2003 год?

Ответ: 1331

Скрыть

Прибыль каждый год увеличивалась на 10%, т.е. становилась равна 110% от прошлого года = 1,1.

Прибыль за 2000 год = 1000 млн рублей.

Прибыль за 2001 год:

$$1000cdot1,1 = 1100$$ млн рублей

Прибыль за 2002 год:

$$1100cdot1,1 = 1210$$ млн рублей

Прибыль за 2003 год:

$$1210cdot1,1 = 1331$$ млн рублей

Задание 16246

В ходе распада радиоактивного изотопа его масса уменьшается вдвое каждые 9 минут. В начальный момент масса изотопа составляла 320 мг. Найдите массу изотопа через 63 минуты. Ответ дайте в миллиграммах.

Ответ: 2,5

Скрыть

Можно записать следующую зависимость оставшейся массы $$m$$ изотопа от времени $$t$$ мин, зная исходную массу $$M = 320$$ мг и период полураспада $$T = 9$$ мин:

$$m=frac{M}{2^{frac{t}{T}}}$$ мг.

Подставим в эту формулу время $$t=63$$ мин и вычислим массу $$m$$, получим:

$$m=frac{320}{2^{frac{63}{9}}}=frac{320}{2^7}=frac{320}{128}=2,5$$ мг.

Задание 16701

У Яны есть попрыгунчик (каучуковый шарик). Она со всей силы бросила его об асфальт. После первого отскока попрыгунчик подлетел на высоту 240 см, а после каждого следующего отскока от асфальта подлетал на высоту в два раза меньше предыдущей. После какого по счёту отскока высота, на которую подлетит попрыгунчик, станет меньше 5 см?

Ответ: 7

Скрыть

Задание 16722

У Юли есть теннисный мячик. Она со всей силы бросила его об асфальт. После первого отскока мячик подлетел на высоту 450 см, а после каждого следующего отскока от асфальта подлетал на высоту в три раза меньше предыдущей. После какого по счёту отскока высота, на которую подлетит мячик, станет меньше 20 см?

Ответ: 4

Скрыть

Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.

Линейные уравнения

Линейным называется такое уравнение, в котором неизвестное $x$ находится в числителе уравнения и без показателей. Например: $2х – 5 = 3$

Линейные уравнения сводятся к виду $ax = b$, которое получается при помощи раскрытия скобок, приведения подобных слагаемых, переноса слагаемых из одной части уравнения в другую, а также умножения или деления обеих частей уравнения на число, отличное от нуля.

$5 (5 + 3х) — 10х = 8$

Раскроем скобки.

$25 + 15х — 10х = 8$

Перенесем неизвестные слагаемые в левую часть уравнения, а известные в правую. При переносе из одной части в другую, у слагаемого меняется знак на противоположный.

$15х — 10х = 8 — 25$

Приведем подобные слагаемые.

$5х = -17$ — это конечный результат преобразований.

После преобразований к виду $ax = b$, где, a=0, корень уравнения находим по формуле $х = {b}/{a}$

$х=-{17}/{5}$

$х = — 3,4$

Ответ: $- 3,4$

Квадратные уравнения

Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.

Числа $a, b, c$ называются коэффициентами квадратного уравнения.

  • $a$ — старший коэффициент;
  • $b$ — средний коэффициент;
  • $c$ — свободный член.

Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.

Решение неполных квадратных уравнений

Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.

1. Вынесем общий множитель $x$ за скобки.

Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:

$x = 0; ax + b = 0$

2. Решаем получившиеся уравнения каждое отдельно.

Мы получим $x = 0$ и $x={-b}/{a}$. Следовательно, данное квадратное уравнение имеет два корня $x = 0$ и $x={-b}/{a}$

$4х^2 — 5х = 0$

Вынесем х как общий множитель за скобки:

$х (4х — 5) = 0$

Приравняем каждый множитель к нулю и найдем корни уравнения.

$x = 0$ или $4х — 5 = 0$

$х_1 = 0   х_2 = 1,25$

Ответ: $х_1 = 0; х_2 = 1,25$

Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$

Для решения данного неполного квадратного уравнения выразим $x^2$.

$ax^2 + c = 0$

$ax^2 = — c$

$x_2 = {-c}/{a}$

При решении последнего уравнения возможны два случая:

если ${-c}/{a}>0$, то получаем два корня: $x = ±v{{-c}/{a}}$

если ${-c}/{a}<0$, то уравнение во множестве действительных числе не имеет решений.

$x^2 — 16 = 0$

$x^2 = 16$

$x = ±4$

Ответ: $х_1 = 4, х_2 = — 4$

Решение полного квадратного уравнения

Решение с помощью дискриминанта

Дискриминантом квадратного уравнения D называется выражение

$b^2 — 4ac$.

При решении уравнения с помощью дискриминанта возможны три случая:

1. $D > 0$. Тогда корни уравнения равны:

$x_{1,2}={-b±√D}/{2a}$

2. $D = 0$. В данном случае решение даёт два двукратных корня:

$x_{1}=x_{2}={-b}/{2a}$

3. $D < 0$. В этом случае уравнение не имеет корней.

$3х^2 — 11 = -8х$

Соберем все слагаемые в левую часть уравнения и расставим в порядке убывания степеней

$3х^2 + 8х — 11 = 0$

$a = 3 ,b = 8, c = — 11$

$D = b^2- 4ac = 82- 4 · 3 · (-11) = 196 = 142$

$x_{1}={-b+√D}/{2a}={-8+14}/{6}=1$

$x_{2}={-b-√D}/{2a}={-8-14}/{6}=-3{2}/{3}$

Ответ: $x_1=1, x_2=-3{2}/{3}$

Устные способы

Если сумма коэффициентов равна нулю $(а + b + c = 0)$, то $х_1= 1, х_2={с}/{а}$

$4х^2+ 3х — 7 = 0$

$4 + 3 — 7 = 0$, следовательно $х_1= 1, х_2=-{7}/{4}$

Ответ: $х_1= 1, х_2 = -{7}/{4}$

Если старший коэффициент в сумме со свободным равен среднему коэффициенту $(a + c = b)$, то $х_1= — 1, х_2=-{с}/{а}$

$5х^2+ 7х + 2 = 0$

$5 + 2 = 7$, следовательно, $х_1= -1, х_2 =-{2}/{5}$

Ответ: $х_1= -1, х_2 = -{2}/{5}$

Кубические уравнения

Для решения простых кубических уравнений необходимо обе части представить в виде основания в третьей степени. Далее извлечь кубический корень и получить простое линейное уравнение.

$(x — 3)^3 = 27$

Представим обе части как основания в третьей степени

$(x — 3)^3 = $33

Извлечем кубический корень из обеих частей

$х — 3 = 3$

Соберем известные слагаемые в правой части

$x = 6$

Ответ: $х = 6$

Дробно рациональные уравнения

Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.

Чтобы решить дробное уравнение, необходимо:

  1. найти общий знаменатель дробей, входящих в уравнение;
  2. умножить обе части уравнения на общий знаменатель;
  3. решить получившееся целое уравнение;
  4. исключить из его корней те, которые обращают в ноль общий знаменатель.

$4x + 1 — {3}/{x} = 0$

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

$4x + 1 — {3}/{x}= 0¦· x$

$4x · x + 1 · x — {3·x}/{x} = 0$

3. решаем полученное уравнение

$4x^2 + x — 3 = 0$

Решим вторым устным способом, т.к. $а + с = b$

Тогда $х_1 = — 1, х_2 = {3}/{4}$

4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $х_1 = — 1, х_2 = {3}/{4}$

При решении уравнения с двумя дробями можно использовать основное свойство пропорции.

Основное свойство пропорции: Если ${a}/{b} = {c}/{d}$, то $a · d = b · c$

${3х-5}/{-2}={1}/{х}$

Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

Воспользуемся основным свойством пропорции

$х (3х — 5) = -2$

Раскроем скобки и соберем все слагаемые в левой части уравнения

$3х^2- 5х + 2 = 0$

Решим данное квадратное уравнение первым устным способом, т.к.

$a + b + c = 0$

$x_1 = 1, x_2 = {2}/{3}$

В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $x_1 = 1, x_2 = {2}/{3}$

Рациональное уравнение – это уравнение вида $f(x)=g(x)$, где $f(x)$ и $g(x)$ — рациональные выражения.

Рациональные выражения — это целые и дробные выражения, соединённые между собой знаками арифметических действий: деления, умножения, сложения или вычитания, возведения в целую степень и знаками последовательности этих выражений.

Например,

${2}/{x}+5x=7$ – рациональное уравнение

$3x+√x=7$ — иррациональное уравнение (содержит корень)

Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно рациональным.

Чтобы решить дробно рациональное уравнение, необходимо:

  1. Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ);
  2. Найти общий знаменатель дробей, входящих в уравнение;
  3. Умножить обе части уравнения на общий знаменатель;
  4. Решить получившееся целое уравнение;
  5. Исключить из его корней те, которые обращают в ноль общий знаменатель.

Решить уравнение: $4x+1-{3}/{x}=0$

Решение:

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x ≠ 0$

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

$4x+1-{3}/{x}=0|·x$

$4x·x+1·x-{3·x}/{x}=0$

3. решаем полученное уравнение

$4x^2+x-3=0$

Решим вторым устным способом, т.к. $а+с=b$

Тогда, $x_1=-1, x_2=-{3}/{4}$

4. исключаем те корни, при которых общий знаменатель равен нулю

В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $x_1=-1, x_2=-{3}/{4}$

При решении уравнения с двумя дробями, можно использовать основное свойство пропорции.

Основное свойство пропорции: Если ${a}/{b}={c}/{d}$ — пропорция, то $a·d=b·c$

Решить уравнение ${3x-5}/{-2}={1}/{x}$

Решение:

Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

Воспользуемся основным свойством пропорции

$х(3х-5)=-2$

Раскроем скобки и соберем все слагаемые в левой стороне

$3х^2-5х+2=0$

Решим данное квадратное уравнение первым устным способом, т.к. $a+b+c=0$

$x_1=1, x_2={2}/{3}$

В первом пункте получилось, что при x = 0 уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $x_1=1, x_2={2}/{3}$

Уравнения, содержащие неизвестную под знаком корня, называются иррациональными.

Чтобы решить иррациональное уравнение, необходимо:

  1. Преобразовать заданное иррациональное уравнение к виду: $√{f(x)}=g(x)$ или $√{f(x)}=√{g(x)}$
  2. Обе части уравнение возвести в квадрат: $√{f(x)}^2=(g(x))^2$ или $√{f(x)}^2=√{g(x)}^2$
  3. Решить полученное рациональное уравнение.
  4. Сделать проверку корней, так как возведение в четную степень может привести к появлению посторонних корней. (Проверку можно сделать при помощи подстановки найденных корней в исходное уравнение.)

Решите уравнение $√{4х-3}=х$. Если уравнение имеет более одного корня, укажите наименьший из них.

Решение:

Обе части уравнение возведем в квадрат:

$√{4х-3}^2=х^2$

Получаем квадратное уравнение:

$4х-3=х^2$

Перенесем все слагаемые в левую часть уравнения:

${-х}^2+4х-3=0$

Решим данное квадратное уравнение устным способом, так как

$a+b+c=0$

$-1+4-3=0$, следовательно $х_1 = 1; х_2={с}/{а}={-3}/{-1}=3$

Проведем проверку корней, подставив их вместо икса в исходное уравнение

$√{4·1-3}=1$

$1=1$, получили в результате проверки верное равенство, следовательно $х_1=1$ подходит.

$√{4·(3)-3}=3$

$√9=3$

$3=3$, получили в результате проверки верное равенство, следовательно корень $х_2=3$ подходит

$х_1=1$ наименьший корень.

Ответ: $1$

Так как в иррациональных уравнениях иногда необходимо возводить в квадрат не только число, но и целое выражение, необходимо вспомнить формулы сокращенного умножения:

  1. Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе число плюс квадрат второго числа. $(a-b)^2=a^2-2ab+b^2$
  2. Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа. $(a+b)^2=a^2+2ab+b^2$

Решить уравнение: $х-6=√{8-х}$

Возведем обе части уравнения в квадрат

$(х-6)^2=8-х$

В левой части уравнения при возведении в квадрат получаем формулу сокращенного умножения квадрат разности. В правой части уравнения квадрат и корень компенсируют друг друга и в результате остается только подкоренное выражение

$х^2-2·6·х+6^2=8-х$

$х^2-12х+36=8-х$

Получили квадратное уравнение. Все слагаемые переносим в левую часть уравнения. При переносе слагаемых через знак равно их знаки меняются на противоположные.

$х^2-12х+36-8+х=0$

Приводим подобные слагаемые:

$х^2-11х+28=0$

Найдем корни уравнения через дискриминант:

$D=b^2-4ac=121-4·28=121-112=9=3^2$

$x_{1,2}={-b±√D}/{2a}={11±3}/{2}$

$x_1=7; x_2=4$

Проведем проверку корней, подставив их вместо икса в исходное уравнение

$x_1=7$

$7-6=√{8-7}$

$1=1$, получили верное равенство, следовательно, корень нам подходит.

$x_2=4$

$4-6=√{8-4}$

$-2=2$, получили неверное равенство, следовательно, данный корень посторонний.

Ответ: $7$

Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.

$a^x=b$

При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

$a^n⋅a^m=a^{n+m}$

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются

$a^n:a^m=a^{n-m}$

3. При возведении степени в степень основание остается прежним, а показатели перемножаются

$(a^n)^m=a^{n·m}$

4. При возведении в степень произведения в эту степень возводится каждый множитель

$(a·b)^n=a^n·b^n$

5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

$({a}/{b})^n={a^n}/{b^n}$

6. При возведении любого основания в нулевой показатель степени результат равен единице

$a^0=1$

7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби

$a^{-n}={1}/{a^n}$

${a^{-n}}/{b^{-k}}={b^k}/{a^n}$

8. Радикал (корень) можно представить в виде степени с дробным показателем

$√^n{a^k}=a^{{k}/{n}}$

Показательные уравнения часто сводятся к решению уравнения $a^x=a^m$, где, $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели.

Решить уравнение $25·5^х=1$

Решение:

В левой части уравнения необходимо сделать одну степень с основанием $5$ и в правой части уравнения представить число $1$ в виде степени с основанием $5$

$5^2·5^х=5^0$

При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются

$5^{2+х}=5^0$

Далее проговариваем: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели

$2+х=0$

$х=-2$

Ответ: $-2$

Решить уравнение $2^{3х+2}-2^{3х-2}=30$

Решение:

Чтобы решить данное уравнение, вынесем степень с наименьшим показателем как общий множитель

$2^{3x+2}-2^{3x-2}=30$

$2^{3x-2}({2^{3x+2}}/{2^{3x-2}}-{2^{3x-2}}/{2^{3x-2}})=30$

$2^{3x-2}(2^{3x+2-(3x-2)}-1)=30$

$2^{3x-2}(2^4-1)=30$

$2^{3x-2}·15=30$

Разделим обе части уравнения на $15$

$2^{3х-2}=2$

$2^{3х-2}=2^1$

$3х-2=1$

$3х=3$

$х=1$

Ответ: $1$

саша плотников

саша плотников

20 октября 2022 23:28

санечкааааа

санечкааааа

12 января 2023 21:28

сериал бомба советую вова красава

саня беброу

саня беброу

14 января 2023 00:08

передаю привет поим карифанам саньку хзкову, витьку и гофану

saha

saha

14 января 2023 00:32

саша плотников,
сюдааааааааа)

sanek

sanek

14 января 2023 00:35

Евгений

Евгений

16 января 2023 16:30

w1loh

w1loh

19 января 2023 15:34

лололошка

лололошка

26 января 2023 21:30

сериал супер, но почему серии идут не по очереди… я не понимаю.. постоянно с разных мест начинаю смотреть…

алексей

алексей

27 января 2023 19:48

лололошка, не знаю что у вас там такое но серии тут идут по порядку

саня

саня

28 января 2023 06:03

почему в чате одни сани? Я тоже саня, сериал бомбический, как в Украине!

александр

александр

29 января 2023 14:45

саня,
видать всех сань реальные пацаны притягивают)

санек

санек

29 января 2023 20:18

сериал бомба всем советую лысый и рыжий лучшие

Александр

Александр

30 января 2023 11:28

Адский пиздюк

Адский пиздюк

30 января 2023 16:52

Александр

Александр

30 января 2023 21:27

сериал топ за 3 недели до 5 сезона дошел

Дмитрий

Дмитрий

3 февраля 2023 16:09

Какие же нелепые стрижки были аля Билан))))

Давид Реальный Пацан

Сериал ваще бомба , передаю привет своим близким
Ева и Антоха бетон пламенный привет вам !!!

ова красаваова красаваова красава

ова красаваова красаваова красава

8 февраля 2023 03:52

ова красаваова красаваова красаваова красава

александрик

александрик

19 февраля 2023 20:06

Сериал бомбический! Все с юмором, и большим сердцем! Герои умеют любить! Вова-невероятно добродушный. Игорь Сергеевич-невероятно харизматичный и справедливый. Прекрасные герои и актеры
Не знаю, какой сериал смотреть дальше. Посоветуйте пожалуйста)

Роман

Роман

22 февраля 2023 12:46

александрик,
«Орвилл», «Скользящие». Попробуй может зайдут.

Алекс

Алекс

25 февраля 2023 00:02

Если ваш назвали саша, хрен сосать работа ваша

Никита знмлянский

Никита знмлянский

25 февраля 2023 16:40

Helen

Helen

26 февраля 2023 18:27

Все классные, только мент как чирей на заднице, везде лезет)))

санёк хзков

санёк хзков

5 марта 2023 14:30

саня беброу, здарова брат

владислав

владислав

5 марта 2023 22:50

владик мой самый лучший друг и мы вместе смотрим реальных пацанов, а сериал про реальную жизнь 10-х.

Rakot

Артем

Артем

9 марта 2023 20:45

Какая серия, где Коляна батя женится

Ян

Ян

10 марта 2023 00:42

Главное в титрах вконец после 4-5ых сезонов… Владимир Селиванов говорит в песне (Вообще крутые нам 35 а всё холостые). Где в оригинале его песни — 25 а всё холостые

Богдан Хохлов

Богдан Хохлов

10 марта 2023 23:30

Сериал просто бомба, когда маму коляна вижу всегда шишка дымится чудо-женщина!

Регистрация   
Вход   

Форум   
Поиск   
FAQ   alexlarin.net

Текущее время: 12 мар 2023, 04:53
Часовой пояс: UTC + 3 часа

Сообщения без ответов | Активные темы
 

 Страница 1 из 1 [ Сообщений: 7 ] 

Начать новую тему»>

Ответить

Тренировочный вариант №352

 
Для печати Для печати | Известить друга Известить друга
Предыдущая тема Предыдущая тема | Следующая тема Следующая тема

Тренировочный вариант №352

Автор Сообщение

Заголовок сообщения: Тренировочный вариант №352

Сообщение Добавлено: 08 мар 2023, 17:30 

Не в сети
Администратор
  • Центр пользователя



Зарегистрирован: 10 июн 2010, 15:00
Сообщений: 6119

https://alexlarin.net/gia/trvar352_oge.html

Вернуться наверх 

AliP

Заголовок сообщения: Re: Тренировочный вариант №352

Сообщение Добавлено: 10 мар 2023, 14:04 

Не в сети
  • Центр пользователя



Зарегистрирован: 05 мар 2023, 22:01
Сообщений: 2

1)4213
2)34
3)40
4)186
5)1645
6)0,4
7)2
8)300
9)-15
10)4
11)4123
12)0,8
13)1
14)50
15)53
16)56
17)36
18)
19)13
20)20
21)9
22)[4;+беск)
23)5
25)29

Вернуться наверх 

hpbhpb

Заголовок сообщения: Re: Тренировочный вариант №352

Сообщение Добавлено: 10 мар 2023, 14:14 

Не в сети
Аватар пользователя
  • Центр пользователя



Зарегистрирован: 18 ноя 2015, 07:49
Сообщений: 1730
Откуда: Ставрополь

Подробности:

Здравствуйте, AliP!

У меня такие же ответы, кроме:

Подробности:

В 18-м у меня:

Подробности:

Вернуться наверх 

AliP

Заголовок сообщения: Re: Тренировочный вариант №352

Сообщение Добавлено: 10 мар 2023, 14:29 

Не в сети
  • Центр пользователя



Зарегистрирован: 05 мар 2023, 22:01
Сообщений: 2

hpbhpb писал(а):

Подробности:

Здравствуйте, AliP!

У меня такие же ответы, кроме:

Подробности:

В 18-м у меня:

Подробности:

Здравствуйте! Да, спасибо, в 22 такой же ответ получился. В 18 у меня было предположение насчёт 12, но я не могу обосновать, почему это так.

Последний раз редактировалось AliP 10 мар 2023, 15:21, всего редактировалось 1 раз.

Вернуться наверх 

hpbhpb

Заголовок сообщения: Re: Тренировочный вариант №352

Сообщение Добавлено: 10 мар 2023, 14:54 

Не в сети
Аватар пользователя
  • Центр пользователя



Зарегистрирован: 18 ноя 2015, 07:49
Сообщений: 1730
Откуда: Ставрополь

AliP писал(а):

Здравствуйте! Да, спасибо в 22 такой же ответ получился. В 18 у меня было предположение насчёт 12, но я не могу обосновать, почему это так.

Я тоже не могу обосновать. Может, Михаил Николаевич в вс выложит решение? Мне самому интересно.

Вернуться наверх 

antonov_m_n

Заголовок сообщения: Re: Тренировочный вариант №352

Сообщение Добавлено: Вчера, 21:55 

Не в сети
  • Центр пользователя



Зарегистрирован: 12 июн 2016, 12:25
Сообщений: 2113
Откуда: Москва

Доброй ночи . Задача 18 . Без теоремы синусов можно обойтись , если использовать » четвёртый признак равенства треугольников «

Вложения:
A38B896D-74CF-401B-9BF3-6E6A4D1A7B15_1_201_a.jpeg
A38B896D-74CF-401B-9BF3-6E6A4D1A7B15_1_201_a.jpeg [ 464.87 KIB | Просмотров: 118 ]

_________________
Чтобы добраться до источника, надо плыть против течения.

Вернуться наверх 

hpbhpb

Заголовок сообщения: Re: Тренировочный вариант №352

Сообщение Добавлено: Вчера, 23:16 

Не в сети
Аватар пользователя
  • Центр пользователя



Зарегистрирован: 18 ноя 2015, 07:49
Сообщений: 1730
Откуда: Ставрополь

Спасибо большое, Михаил Николаевич!

Вернуться наверх 

Показать сообщения за:  Сортировать по:  

 Страница 1 из 1 [ Сообщений: 7 ] 

Текущее время: 12 мар 2023, 04:53 | Часовой пояс: UTC + 3 часа

Удалить cookies форума | Наша команда | Вернуться наверх

Кто сейчас на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3

 

 

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:

Перейти:  

Понравилась статья? Поделить с друзьями:
  • Решу егэ литература мертвые души вариант
  • Решу егэ литература медный всадник вариант
  • Решу егэ литература маяковский лиличка
  • Решу егэ литература мандельштам
  • Решу егэ литература критерии оценивания