- ЗАДАЧИ ЕГЭ С ОТВЕТАМИ
- АНГЛИЙСКИЙ без ГРАНИЦ
2012-07-14
НЕ ОТКЛАДЫВАЙ! Заговори на английском!
ДОЛОЙ обидные ошибки на ЕГЭ!!
Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!
Конструктор упражнений для позвоночника!
Добавить комментарий
*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.
- РубрикиРубрики
- Задачи по номерам!
№1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16
- МЕТКИ
БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие
- ОСТЕОХОНДРОЗУ-НЕТ!
Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.
Линейные уравнения
Линейным называется такое уравнение, в котором неизвестное $x$ находится в числителе уравнения и без показателей. Например: $2х – 5 = 3$
Линейные уравнения сводятся к виду $ax = b$, которое получается при помощи раскрытия скобок, приведения подобных слагаемых, переноса слагаемых из одной части уравнения в другую, а также умножения или деления обеих частей уравнения на число, отличное от нуля.
$5 (5 + 3х) — 10х = 8$
Раскроем скобки.
$25 + 15х — 10х = 8$
Перенесем неизвестные слагаемые в левую часть уравнения, а известные в правую. При переносе из одной части в другую, у слагаемого меняется знак на противоположный.
$15х — 10х = 8 — 25$
Приведем подобные слагаемые.
$5х = -17$ — это конечный результат преобразований.
После преобразований к виду $ax = b$, где, a=0, корень уравнения находим по формуле $х = {b}/{a}$
$х=-{17}/{5}$
$х = — 3,4$
Ответ: $- 3,4$
Квадратные уравнения
Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.
Числа $a, b, c$ называются коэффициентами квадратного уравнения.
- $a$ — старший коэффициент;
- $b$ — средний коэффициент;
- $c$ — свободный член.
Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.
Решение неполных квадратных уравнений
Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.
1. Вынесем общий множитель $x$ за скобки.
Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:
$x = 0; ax + b = 0$
2. Решаем получившиеся уравнения каждое отдельно.
Мы получим $x = 0$ и $x={-b}/{a}$. Следовательно, данное квадратное уравнение имеет два корня $x = 0$ и $x={-b}/{a}$
$4х^2 — 5х = 0$
Вынесем х как общий множитель за скобки:
$х (4х — 5) = 0$
Приравняем каждый множитель к нулю и найдем корни уравнения.
$x = 0$ или $4х — 5 = 0$
$х_1 = 0 х_2 = 1,25$
Ответ: $х_1 = 0; х_2 = 1,25$
Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$
Для решения данного неполного квадратного уравнения выразим $x^2$.
$ax^2 + c = 0$
$ax^2 = — c$
$x_2 = {-c}/{a}$
При решении последнего уравнения возможны два случая:
если ${-c}/{a}>0$, то получаем два корня: $x = ±v{{-c}/{a}}$
если ${-c}/{a}<0$, то уравнение во множестве действительных числе не имеет решений.
$x^2 — 16 = 0$
$x^2 = 16$
$x = ±4$
Ответ: $х_1 = 4, х_2 = — 4$
Решение полного квадратного уравнения
Решение с помощью дискриминанта
Дискриминантом квадратного уравнения D называется выражение
$b^2 — 4ac$.
При решении уравнения с помощью дискриминанта возможны три случая:
1. $D > 0$. Тогда корни уравнения равны:
$x_{1,2}={-b±√D}/{2a}$
2. $D = 0$. В данном случае решение даёт два двукратных корня:
$x_{1}=x_{2}={-b}/{2a}$
3. $D < 0$. В этом случае уравнение не имеет корней.
$3х^2 — 11 = -8х$
Соберем все слагаемые в левую часть уравнения и расставим в порядке убывания степеней
$3х^2 + 8х — 11 = 0$
$a = 3 ,b = 8, c = — 11$
$D = b^2- 4ac = 82- 4 · 3 · (-11) = 196 = 142$
$x_{1}={-b+√D}/{2a}={-8+14}/{6}=1$
$x_{2}={-b-√D}/{2a}={-8-14}/{6}=-3{2}/{3}$
Ответ: $x_1=1, x_2=-3{2}/{3}$
Устные способы
Если сумма коэффициентов равна нулю $(а + b + c = 0)$, то $х_1= 1, х_2={с}/{а}$
$4х^2+ 3х — 7 = 0$
$4 + 3 — 7 = 0$, следовательно $х_1= 1, х_2=-{7}/{4}$
Ответ: $х_1= 1, х_2 = -{7}/{4}$
Если старший коэффициент в сумме со свободным равен среднему коэффициенту $(a + c = b)$, то $х_1= — 1, х_2=-{с}/{а}$
$5х^2+ 7х + 2 = 0$
$5 + 2 = 7$, следовательно, $х_1= -1, х_2 =-{2}/{5}$
Ответ: $х_1= -1, х_2 = -{2}/{5}$
Кубические уравнения
Для решения простых кубических уравнений необходимо обе части представить в виде основания в третьей степени. Далее извлечь кубический корень и получить простое линейное уравнение.
$(x — 3)^3 = 27$
Представим обе части как основания в третьей степени
$(x — 3)^3 = $33
Извлечем кубический корень из обеих частей
$х — 3 = 3$
Соберем известные слагаемые в правой части
$x = 6$
Ответ: $х = 6$
Дробно рациональные уравнения
Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.
Чтобы решить дробное уравнение, необходимо:
- найти общий знаменатель дробей, входящих в уравнение;
- умножить обе части уравнения на общий знаменатель;
- решить получившееся целое уравнение;
- исключить из его корней те, которые обращают в ноль общий знаменатель.
$4x + 1 — {3}/{x} = 0$
1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
$x≠0$
2. находим общий знаменатель дробей и умножаем на него обе части уравнения
$4x + 1 — {3}/{x}= 0¦· x$
$4x · x + 1 · x — {3·x}/{x} = 0$
3. решаем полученное уравнение
$4x^2 + x — 3 = 0$
Решим вторым устным способом, т.к. $а + с = b$
Тогда $х_1 = — 1, х_2 = {3}/{4}$
4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
Ответ: $х_1 = — 1, х_2 = {3}/{4}$
При решении уравнения с двумя дробями можно использовать основное свойство пропорции.
Основное свойство пропорции: Если ${a}/{b} = {c}/{d}$, то $a · d = b · c$
${3х-5}/{-2}={1}/{х}$
Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
$x≠0$
Воспользуемся основным свойством пропорции
$х (3х — 5) = -2$
Раскроем скобки и соберем все слагаемые в левой части уравнения
$3х^2- 5х + 2 = 0$
Решим данное квадратное уравнение первым устным способом, т.к.
$a + b + c = 0$
$x_1 = 1, x_2 = {2}/{3}$
В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
Ответ: $x_1 = 1, x_2 = {2}/{3}$
Рациональное уравнение – это уравнение вида $f(x)=g(x)$, где $f(x)$ и $g(x)$ — рациональные выражения.
Рациональные выражения — это целые и дробные выражения, соединённые между собой знаками арифметических действий: деления, умножения, сложения или вычитания, возведения в целую степень и знаками последовательности этих выражений.
Например,
${2}/{x}+5x=7$ – рациональное уравнение
$3x+√x=7$ — иррациональное уравнение (содержит корень)
Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно рациональным.
Чтобы решить дробно рациональное уравнение, необходимо:
- Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ);
- Найти общий знаменатель дробей, входящих в уравнение;
- Умножить обе части уравнения на общий знаменатель;
- Решить получившееся целое уравнение;
- Исключить из его корней те, которые обращают в ноль общий знаменатель.
Решить уравнение: $4x+1-{3}/{x}=0$
Решение:
1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
$x ≠ 0$
2. находим общий знаменатель дробей и умножаем на него обе части уравнения
$4x+1-{3}/{x}=0|·x$
$4x·x+1·x-{3·x}/{x}=0$
3. решаем полученное уравнение
$4x^2+x-3=0$
Решим вторым устным способом, т.к. $а+с=b$
Тогда, $x_1=-1, x_2=-{3}/{4}$
4. исключаем те корни, при которых общий знаменатель равен нулю
В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
Ответ: $x_1=-1, x_2=-{3}/{4}$
При решении уравнения с двумя дробями, можно использовать основное свойство пропорции.
Основное свойство пропорции: Если ${a}/{b}={c}/{d}$ — пропорция, то $a·d=b·c$
Решить уравнение ${3x-5}/{-2}={1}/{x}$
Решение:
Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
$x≠0$
Воспользуемся основным свойством пропорции
$х(3х-5)=-2$
Раскроем скобки и соберем все слагаемые в левой стороне
$3х^2-5х+2=0$
Решим данное квадратное уравнение первым устным способом, т.к. $a+b+c=0$
$x_1=1, x_2={2}/{3}$
В первом пункте получилось, что при x = 0 уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
Ответ: $x_1=1, x_2={2}/{3}$
Уравнения, содержащие неизвестную под знаком корня, называются иррациональными.
Чтобы решить иррациональное уравнение, необходимо:
- Преобразовать заданное иррациональное уравнение к виду: $√{f(x)}=g(x)$ или $√{f(x)}=√{g(x)}$
- Обе части уравнение возвести в квадрат: $√{f(x)}^2=(g(x))^2$ или $√{f(x)}^2=√{g(x)}^2$
- Решить полученное рациональное уравнение.
- Сделать проверку корней, так как возведение в четную степень может привести к появлению посторонних корней. (Проверку можно сделать при помощи подстановки найденных корней в исходное уравнение.)
Решите уравнение $√{4х-3}=х$. Если уравнение имеет более одного корня, укажите наименьший из них.
Решение:
Обе части уравнение возведем в квадрат:
$√{4х-3}^2=х^2$
Получаем квадратное уравнение:
$4х-3=х^2$
Перенесем все слагаемые в левую часть уравнения:
${-х}^2+4х-3=0$
Решим данное квадратное уравнение устным способом, так как
$a+b+c=0$
$-1+4-3=0$, следовательно $х_1 = 1; х_2={с}/{а}={-3}/{-1}=3$
Проведем проверку корней, подставив их вместо икса в исходное уравнение
$√{4·1-3}=1$
$1=1$, получили в результате проверки верное равенство, следовательно $х_1=1$ подходит.
$√{4·(3)-3}=3$
$√9=3$
$3=3$, получили в результате проверки верное равенство, следовательно корень $х_2=3$ подходит
$х_1=1$ наименьший корень.
Ответ: $1$
Так как в иррациональных уравнениях иногда необходимо возводить в квадрат не только число, но и целое выражение, необходимо вспомнить формулы сокращенного умножения:
- Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе число плюс квадрат второго числа. $(a-b)^2=a^2-2ab+b^2$
- Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа. $(a+b)^2=a^2+2ab+b^2$
Решить уравнение: $х-6=√{8-х}$
Возведем обе части уравнения в квадрат
$(х-6)^2=8-х$
В левой части уравнения при возведении в квадрат получаем формулу сокращенного умножения квадрат разности. В правой части уравнения квадрат и корень компенсируют друг друга и в результате остается только подкоренное выражение
$х^2-2·6·х+6^2=8-х$
$х^2-12х+36=8-х$
Получили квадратное уравнение. Все слагаемые переносим в левую часть уравнения. При переносе слагаемых через знак равно их знаки меняются на противоположные.
$х^2-12х+36-8+х=0$
Приводим подобные слагаемые:
$х^2-11х+28=0$
Найдем корни уравнения через дискриминант:
$D=b^2-4ac=121-4·28=121-112=9=3^2$
$x_{1,2}={-b±√D}/{2a}={11±3}/{2}$
$x_1=7; x_2=4$
Проведем проверку корней, подставив их вместо икса в исходное уравнение
$x_1=7$
$7-6=√{8-7}$
$1=1$, получили верное равенство, следовательно, корень нам подходит.
$x_2=4$
$4-6=√{8-4}$
$-2=2$, получили неверное равенство, следовательно, данный корень посторонний.
Ответ: $7$
Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.
$a^x=b$
При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.
$a^n⋅a^m=a^{n+m}$
2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются
$a^n:a^m=a^{n-m}$
3. При возведении степени в степень основание остается прежним, а показатели перемножаются
$(a^n)^m=a^{n·m}$
4. При возведении в степень произведения в эту степень возводится каждый множитель
$(a·b)^n=a^n·b^n$
5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель
$({a}/{b})^n={a^n}/{b^n}$
6. При возведении любого основания в нулевой показатель степени результат равен единице
$a^0=1$
7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби
$a^{-n}={1}/{a^n}$
${a^{-n}}/{b^{-k}}={b^k}/{a^n}$
8. Радикал (корень) можно представить в виде степени с дробным показателем
$√^n{a^k}=a^{{k}/{n}}$
Показательные уравнения часто сводятся к решению уравнения $a^x=a^m$, где, $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели.
Решить уравнение $25·5^х=1$
Решение:
В левой части уравнения необходимо сделать одну степень с основанием $5$ и в правой части уравнения представить число $1$ в виде степени с основанием $5$
$5^2·5^х=5^0$
При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются
$5^{2+х}=5^0$
Далее проговариваем: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели
$2+х=0$
$х=-2$
Ответ: $-2$
Решить уравнение $2^{3х+2}-2^{3х-2}=30$
Решение:
Чтобы решить данное уравнение, вынесем степень с наименьшим показателем как общий множитель
$2^{3x+2}-2^{3x-2}=30$
$2^{3x-2}({2^{3x+2}}/{2^{3x-2}}-{2^{3x-2}}/{2^{3x-2}})=30$
$2^{3x-2}(2^{3x+2-(3x-2)}-1)=30$
$2^{3x-2}(2^4-1)=30$
$2^{3x-2}·15=30$
Разделим обе части уравнения на $15$
$2^{3х-2}=2$
$2^{3х-2}=2^1$
$3х-2=1$
$3х=3$
$х=1$
Ответ: $1$
саша плотников
20 октября 2022 23:28
санечкааааа
12 января 2023 21:28
сериал бомба советую вова красава
саня беброу
14 января 2023 00:08
передаю привет поим карифанам саньку хзкову, витьку и гофану
saha
14 января 2023 00:32
саша плотников,
сюдааааааааа)
sanek
14 января 2023 00:35
Евгений
16 января 2023 16:30
w1loh
19 января 2023 15:34
лололошка
26 января 2023 21:30
сериал супер, но почему серии идут не по очереди… я не понимаю.. постоянно с разных мест начинаю смотреть…
алексей
27 января 2023 19:48
лололошка, не знаю что у вас там такое но серии тут идут по порядку
саня
28 января 2023 06:03
почему в чате одни сани? Я тоже саня, сериал бомбический, как в Украине!
александр
29 января 2023 14:45
саня,
видать всех сань реальные пацаны притягивают)
санек
29 января 2023 20:18
сериал бомба всем советую лысый и рыжий лучшие
Александр
30 января 2023 11:28
Адский пиздюк
30 января 2023 16:52
Александр
30 января 2023 21:27
сериал топ за 3 недели до 5 сезона дошел
Дмитрий
3 февраля 2023 16:09
Какие же нелепые стрижки были аля Билан))))
Сериал ваще бомба , передаю привет своим близким
Ева и Антоха бетон пламенный привет вам !!!
ова красаваова красаваова красава
8 февраля 2023 03:52
ова красаваова красаваова красаваова красава
александрик
19 февраля 2023 20:06
Сериал бомбический! Все с юмором, и большим сердцем! Герои умеют любить! Вова-невероятно добродушный. Игорь Сергеевич-невероятно харизматичный и справедливый. Прекрасные герои и актеры
Не знаю, какой сериал смотреть дальше. Посоветуйте пожалуйста)
Роман
22 февраля 2023 12:46
александрик,
«Орвилл», «Скользящие». Попробуй может зайдут.
Алекс
25 февраля 2023 00:02
Если ваш назвали саша, хрен сосать работа ваша
Никита знмлянский
25 февраля 2023 16:40
Helen
26 февраля 2023 18:27
Все классные, только мент как чирей на заднице, везде лезет)))
санёк хзков
5 марта 2023 14:30
саня беброу, здарова брат
владислав
5 марта 2023 22:50
владик мой самый лучший друг и мы вместе смотрим реальных пацанов, а сериал про реальную жизнь 10-х.
Артем
9 марта 2023 20:45
Какая серия, где Коляна батя женится
Ян
10 марта 2023 00:42
Главное в титрах вконец после 4-5ых сезонов… Владимир Селиванов говорит в песне (Вообще крутые нам 35 а всё холостые). Где в оригинале его песни — 25 а всё холостые
Богдан Хохлов
10 марта 2023 23:30
Сериал просто бомба, когда маму коляна вижу всегда шишка дымится чудо-женщина!
Андрей Ведищев (в центре) с сыном Петром, руководители Единой лиги президент Сергей Кущенко и гендиректор Илона Корстин / Пресс-служба ПБК «Локомотив-Кубань»
Андрей Ведищев, президент Профессионального баскетбольного клуба (ПБК) «Локомотив-Кубань» (Краснодар)
Бывший игрок сборной России и ряда клубов высшего дивизиона чемпионата России, выступал на позиции атакующего защитника, демонстрировал высокий процент реализации трехочковых бросков в самые ответственные моменты матчей. Но больше, нежели как игрок, преуспел в баскетбольном менеджменте, один из самых успешных и прогрессивных руководителей ведущих клубов.
В 2003 году в качестве генерального директора возглавил команду «Локомотив», впоследствии перебравшуюся из Ростова-на-Дону в Краснодар и поменявшую название на «Локомотив-Кубань».
При Ведищеве эта команда стала одной из сильнейших в стране, завоевала Кубок Европы (2013), стала бронзовым призером Евролиги (2016), брала медали чемпионата Единой лиги ВТБ. И все же главным достижением Ведищева на посту руководителя «Локо» объективно считаются не чисто спортивные результаты основной команды, а создание мощнейшей клубной пирамиды, где главное внимание уделяется подготовке резерва, воспитанию игроков, способных пополнить ряды российских сборных разных возрастов — от юниорской до национальной дружины.
Во время последних товарищеских матчей сборной с клубами Сербии ровно треть от состава представляли баскетболисты «Локомотива-Кубани» — лучший молодой игрок Единой лиги ВТБ сезона 2021/22, лучший бомбардир «Матча Всех Звезд» 2023 Андрей Мартюк, Владислав Емченко, Александр Щербенев и старший сын Ведищева Захар.
Среди главных организационных и новаторских достижений Андрея Ведищева — функционирование ежегодной Школьной лиги «Локобаскет», открытие в 2022 году крупнейшего в России Молодежного баскетбольного тренировочного Центра в Краснодаре.
Кстати, еще один сын Андрея Ведищева Михаил выступает в молодежном составе «Локомотива-Кубани», а младший сын Петр тоже занимается баскетболом и в феврале принял участие в предшествующем «Матчу Всех Звезд» Единой лиги «Матчу друзей». Тандем Ведищевых тогда даже получил специальную награду MVP («самый ценный игрок»).
Владимир Родионов, президент БК «Автодор» (Саратов)
С 1982 года — бессменный президент, и в отдельные периоды даже весьма успешный главный тренер команды «Автодор», до 1996 года называвшийся «Автодорожник». Команда четырежды становилась серебряным призером чемпионата России, воспитала массу игроков для сборной России. «Автодор» испытывал сложнейшие времена, выступал в низших дивизионах, но усилиями Родионова сова возвращался в элиту. В сезоне 2013/14 саратовцы выиграли чемпионат Суперлиги (второй уровень), а со следующего сезона выступают в Единой лиге.
Александр Каун, бронзовый призер Олимпиады-2012, выступал на позиции центрового
Воспитанник томского баскетбола в составе команды Университета Канзас стал чемпионом Студенческой лиги США в 2008 году, после чего вернулся в Россию и вошел в состав национальной сборной. В нашей стране играл за ЦСКА и пять раз становился чемпионом Единой лиги, а титулов чемпиона России у Александра больше — семь. После нового отъезда из России за океан в сезоне 2015/16 выиграл чемпионский титул НБА в составе «Кливленда» и в 31 год завершил карьеру.
Димитрис Итудис, греческий специалист, главный тренер ЦСКА в 2014-2022 годах
Главный тренер ЦСКА Димитрис Итудис Фото: Алексей Филиппов/РИА Новости
Шесть раз приводил столичных армейцев к чемпионским титулам в Единой лиге, дважды с командой выигрывал Евролигу. Четырежды признавался лучшим тренером Единой лиги и еще два раза — лучшим наставником клубов Евролиги. В настоящее время возглавляет сборную Греции и одну из ведущих команд Старого света турецкий «Фенербахче» (Стамбул).
Эрик Макколлум, Джордан Мики, американские игроки, оставившие яркий след в истории Единой лиги
Атакующий защитник Эрик Макколлум выступал за казанский УНИКС (2018-2020), подмосковные «Химки» (2020-2021), краснодарский «Локомотив-Кубань» (2021-2022). Отличался высокой результативностью. Двукратный участник «Матча Всех Звезд» Единой лиги, лучший бомбардир нашего чемпионата 2021/22.
Тяжелый форвард Джордан Мики играл за «Химки» (2018-19, 2020-21), санкт-петербургский «Зенит» (2021-22). Трехкратный участник «Матча Всех Звезд», чемпион Единой лиги 2022, в победном для питерцев сезоне был признан самым ценным игроком (MVP) плей-офф и лучшим обороняющимся баскетболистом.
Доступность
Смотреть видеоурок ЕГЭ по математике профильного уровня можно в любое время и в любом месте.
Достаточно иметь какое-либо устройство с выходом в Интернет:
- Персональный компьютер
- Ноутбук
- Планшет
- Смартфон
Удобство
Видеоуроки для подготовки к ЕГЭ по математике позволяют максимально рационально использовать свободное от учебы время. Вам не придется тратить драгоценные минуты на поездки к репетитору или в какие-либо обучающие центры. Видеоуроки ЕГЭ по математике, посмотреть которые вы можете на образовательном портале «Школково», содержат весь необходимый материал для эффективной подготовки к экзамену. Кроме того, наш ресурс позволяет каждому ученику выстроить коммуникацию со своим преподавателем.
Информативность
Каждый школьник может выбрать именно тот видеоурок ЕГЭ по математике, тема которого соответствует изучаемому или повторяемому им материалу. Таким образом, выпускник может быстрее и легче усвоить новую информацию или восполнить пробелы в знаниях.
При подготовке к экзамену нужно делать упор не на его сдачу как самоцель, а на повышение уровня знаний учащегося. Для этого необходимо изучать теорию, отрабатывать навыки, решая разнообразные варианты профильного ЕГЭ по математике нестандартными способами с развернутыми ответами, следить за динамикой обучения.
А поможет вам во всем этом образовательный проект «Школково».