Решу егэ математика 25701

Задания

Версия для печати и копирования в MS Word

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Спрятать решение

Решение.

Площадь поверхности заданного многогранника равна сумме площадей параллелепипедов с ребрами 1, 6, 4 и 1, 4, 4 уменьшенной на удвоенную площадь квадрата стороной 4:

S=2 левая круглая скобка 4 умножить на 1 плюс 6 умножить на 1 плюс 4 умножить на 6 правая круглая скобка плюс 2 левая круглая скобка 4 умножить на 1 плюс 4 умножить на 1 плюс 4 умножить на 4 правая круглая скобка минус 2 левая круглая скобка 4 умножить на 4 правая круглая скобка =84.

Ответ: 84.

Приведем другое решение

Площадь поверхности заданного многогранника равна площади прямоугольного параллелепипеда с ребрами 6, 4, 2 уменьшенной на 4 площади квадратов со стороной 1:

S=2 левая круглая скобка 6 умножить на 2 правая круглая скобка плюс 2 левая круглая скобка 6 умножить на 4 правая круглая скобка плюс 2 левая круглая скобка 4 умножить на 2 правая круглая скобка минус 4 левая круглая скобка 1 умножить на 1 правая круглая скобка =24 плюс 48 плюс 16 минус 4=36 плюс 48=84

Практикум по теме «Площадь поверхности составного многогранника»
15 января 2020 г. 11 класс

Цель: практическое закрепление ЗУН.

Задачи из открытого банка задач.

1. Задание 8 № 25541

https://ege.sdamgia.ru/get_file?id=30688&png=1Найдите площадь поверхности
многогранника, изображенного на рисунке (все двугранные углы прямые).

Решение.

Площадь поверхности заданного многогранника равна разности площади
поверхности прямоугольного параллелепипеда с ребрами 2, 3, 1 и двух площадей
прямоугольников со сторонами 2, 1:

https://ege.sdamgia.ru/formula/75/75f223729f446d18ca26ddf60db5f84dp.png

Ответ: 18.

2. Задание 8 № 25561

https://ege.sdamgia.ru/get_file?id=29656&png=1Найдите площадь
поверхности многогранника, изображенного на рисунке (все двугранные углы
прямые).

Решение.

Площадь поверхности заданного многогранника равна разности площади
поверхности прямоугольного параллелепипеда с ребрами 3, 3, 5 и двух площадей
квадратов со стороной 1:

https://ege.sdamgia.ru/formula/95/95f7307dec58d6a23339fe563e7afb73p.png

Ответ: 76.

3. Задание 8 № 25581

https://ege.sdamgia.ru/get_file?id=29660&png=1Найдите площадь поверхности
многогранника, изображенного на рисунке (все двугранные углы прямые).

Решение.

Площадь поверхности заданного многогранника равна разности площади
поверхности прямоугольного параллелепипеда с ребрами 3, 4, 5 и площади двух
квадратов со стороной 1:

https://ege.sdamgia.ru/formula/59/5916146d75ee20405133cbf087c1e741p.png

Ответ: 92.

4. Задание 8 № 25601

https://ege.sdamgia.ru/get_file?id=29664&png=1Найдите площадь
поверхности многогранника, изображенного на рисунке (все двугранные углы
прямые).

Решение.

Площадь поверхности заданного многогранника равна площади
поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5:

https://ege.sdamgia.ru/formula/cc/cc63a44dde5ed0890e661c1a483a2e04p.png

Ответ: 110.

5. Задание 8 № 25621

https://ege.sdamgia.ru/get_file?id=29670&png=1Найдите площадь
поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Решение.

Площадь поверхности заданного многогранника равна площади
поверхности прямоугольного параллелепипеда с ребрами 3, 5, 4:

https://ege.sdamgia.ru/formula/72/7228dd78accf0577b1d13327330811f1p.png

Ответ: 94.

Примечание для тех, кто не верит в это решение.

Посчитайте площадь поверхности, сложив площади всех девяти граней
данного многогранника, и смиритесь:

https://ege.sdamgia.ru/formula/ba/ba4d93d33f6c77655f2f5024e5b806cap.png

6. Задание 8 № 25641

https://ege.sdamgia.ru/get_file?id=29673&png=1Найдите площадь
поверхности многогранника, изображенного на рисунке (все двугранные углы
прямые).

Решение.

Площадь поверхности заданного многогранника равна сумме площадей
поверхности прямоугольного параллелепипеда с ребрами 6, 4, 4 и двух
прямоугольников со сторонами 1 и 4, уменьшенной на площадь двух прямоугольников
со сторонами 1 и 2:

https://ege.sdamgia.ru/formula/07/0767b71b0bbb438e575d597b9322b64ap.png

Ответ: 132.

7. Задание 8 № 25661

https://ege.sdamgia.ru/get_file?id=29677&png=1Найдите площадь
поверхности многогранника, изображенного на рисунке (все двугранные углы
прямые).

Решение.

Площадь поверхности заданного многогранника равна сумме площадей
поверхности прямоугольного параллелепипеда с ребрами 4, 4, 5 и двух
прямоугольников со сторонами 1 и 4, уменьшенной на площадь двух прямоугольников
со сторонами 1 и 3:

https://ege.sdamgia.ru/formula/85/857113445f544aaf0108bda179231cf5p.png

Ответ: 114.

8. Задание 8 № 25681

https://ege.sdamgia.ru/get_file?id=29679&png=1Найдите площадь поверхности
многогранника, изображенного на рисунке (все двугранные углы прямые).

Решение.

Площадь поверхности заданного многогранника равна сумме площадей
прямоугольников со сторонами 1, 3, 4 и 1, 2, 3, уменьшенной на удвоенную
площадь прямоугольника со сторонами 2, 3:

https://ege.sdamgia.ru/formula/4c/4c86bad380d0a3b2386ae3bd88241aadp.png

Ответ: 48.

9. Задание 8 № 25701

https://ege.sdamgia.ru/get_file?id=32167&png=1

Найдите площадь поверхности многогранника, изображенного на
рисунке (все двугранные углы прямые).

Решение.

Площадь поверхности заданного многогранника равна сумме площадей
параллелепипедов с ребрами 1, 6, 4 и 1, 4, 4 уменьшенной на удвоенную площадь
квадрата стороной 4:

https://ege.sdamgia.ru/formula/82/82085cc6e5a2b2cdd7cd7bd0622a4b19p.png

Ответ: 84.

Приведем другое решение

Площадь поверхности заданного многогранника равна площади
прямоугольного параллелепипеда с ребрами 6, 4, 2 уменьшенной на 4 площади
квадратов со стороной 1:

https://ege.sdamgia.ru/formula/71/71d62bb3828e5e98c43045cf1e9a461ep.png

10. Задание 8 № 25721

https://ege.sdamgia.ru/get_file?id=37909&png=1Найдите площадь
поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Решение.

Площадь поверхности заданного многогранника равна сумме площадей
большого и маленького параллелепипедов с ребрами 1, 5, 7 и 1, 1, 2, уменьшенной
на 4 площади прямоугольника со сторонами 1, 2 — передней грани маленького
параллелепипеда, излишне учтенной при расчете площадей поверхности
параллелепипедов:

https://ege.sdamgia.ru/formula/e7/e7085709ce85e827252f7253351cfb7dp.png

Ответ: 96.

11. Задание 8 № 25881

https://ege.sdamgia.ru/get_file?id=29688&png=1Найдите площадь
поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Решение.

Площадь поверхности заданного многогранника равна сумме площадей
параллелепипедов со сторонами 2, 3, 3 и 5, 4, 3 уменьшенной на удвоенную
площадь прямоугольника со сторонами 3, 2:

https://ege.sdamgia.ru/formula/21/21887a4f5548fdb8550ce6a946f9ef23p.png

Ответ: 124.

12. Задание 8 № 27071

https://ege.sdamgia.ru/get_file?id=29692&png=1Найдите площадь
поверхности многогранника, изображенного на рисунке, все двугранные углы
которого прямые.

Решение.

Площадь поверхности заданного многогранника складывается из
четырех площадей квадратов со стороной 1, двух прямоугольников со сторонами 1 и
2 и двух граней (передней и задней), площади которых в свою очередь
складываются из трех единичных квадратов каждая. Всего 4 + 4 + 6 = 14.

Ответ: 14.

13. Задание 8 № 27158

https://ege.sdamgia.ru/get_file?id=29693&png=1Найдите площадь
поверхности пространственного креста, изображенного на рисунке и составленного
из единичных кубов.

Решение.

Поверхности креста составлена из шести поверхностей кубов, у
каждого из которых отсутствует одна грань. Тем самым, поверхность креста
состоит из 30 единичных квадратов, поэтому ее площадь равна 30.

Ответ: 30.

14. Задание 8 № 77155

https://ege.sdamgia.ru/get_file?id=29694&png=1Найдите площадь
поверхности многогранника, изображенного на рисунке (все двугранные углы
прямые).

Решение.

Площадь поверхности данного многогранника равна сумме площадей
поверхностей прямоугольных параллелепипедов с рёбрами 6, 6, 2 и 3, 3, 4,
уменьшенной на две площади прямоугольников со сторонами 3 и 4:

https://ege.sdamgia.ru/formula/20/208749408356ec58830218d8d19148a7p.png

Ответ: 162.

15. Задание 8 № 77156

https://ege.sdamgia.ru/get_file?id=29695&png=1Найдите площадь
поверхности многогранника, изображенного на рисунке (все двугранные углы
прямые).

Решение.

Площадь поверхности тела равна сумме поверхностей трех
составляющих ее параллелепипедов с ребрами 2, 5, 6; 2, 5, 3 и 2, 2,
3, уменьшенная на удвоенные площади прямоугольников со сторонами 5 ,3 и 2, 3:

https://ege.sdamgia.ru/formula/44/4425976507ceac43524c8942f873bb4ep.png

https://ege.sdamgia.ru/formula/8b/8b8ebc0449da2ad05a0ce561bb7eea0cp.png

Ответ: 156.

16. Задание 8 № 77157

https://ege.sdamgia.ru/get_file?id=29353&png=1Найдите площадь
поверхности многогранника, изображенного на рисунке (все двугранные углы
прямые).

Решение.

Площадь поверхности тела равна сумме поверхностей трех
составляющих его параллелепипедов с измерениями 2, 4, 6; 1, 6, 2 и 2, 2, 2:

https://ege.sdamgia.ru/formula/65/6535ccc844ea40c4e93e4fd1cda91492p.png

https://ege.sdamgia.ru/formula/a8/a817911ee6d69e3d593918b57a90bc8ep.png

https://ege.sdamgia.ru/formula/3d/3dd15ea9c6cbbde566781b6355346199p.png

Ответ: 152.

17. Задание 8 № 512330

https://ege.sdamgia.ru/get_file?id=29697&png=1Найдите площадь
поверхности многогранника, изображённого на рисунке (все двугранные углы
прямые).

Решение.

Площадь поверхности данного многогранника складывается из площадей
двух параллелепипедов со сторонами 1, 3, 2 и 1, 2, 5 за вычетом двух площадей
прямоугольников со сторонами 2 и 1, которые учитываются дважды в представленном
многограннике: https://ege.sdamgia.ru/formula/e3/e3aaf9b5da9410e5ee51668b01a8b575p.png

Ответ: 52

  • ЗАДАЧИ ЕГЭ С ОТВЕТАМИ

  • АНГЛИЙСКИЙ без ГРАНИЦ

2012-07-23

НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Конструктор упражнений для позвоночника!

Отзывов (8)

  1. adam

    2013-05-05 в 19:08

    Как нарисовать на отдельном листе все грани? Вообще не понимаю… Помогите, пожалуйста.

    Ответить

    • Александр Крутицких

      2013-05-05 в 20:07

      Адам, каждый отдельный элемент (грань) стройте по указанным размерам на листе в клетку. Подсчитайте площадь каждой грани и сложите все площади.

      Ответить

    • Александр Крутицких

      2013-05-05 в 20:10

      Ответить

  2. Влад

    2013-05-07 в 03:59

    Почему-то Получается 102 😉

    Ответ точно без опечатки?)

    Ответить

    • Александр Крутицких

      2013-05-07 в 10:28

      Влад, без опечатки. Верно решено.

      Ответить

  3. Даннил

    2013-05-22 в 23:27

    у меня получилось 94, там не нужно площадь маленького вырезанного многогранника вычитать?

    Ответить

    • Александр Крутицких

      2013-05-23 в 07:12

      Не нужно, считается вся площадь поверхности.

      Ответить

    • Ирина

      2014-10-28 в 15:40

      Даннил, для нахождения объема, ты бы вычитал из общего объема — объем маленького вырезанного многогранника, а для площади — точно не надо!

      Представь, что ты хочешь покрасить краской заданную фигуру — ты что вырезанную часть не будешь красить? Будешь! И на нее пойдет такой же расход краски (соответственно и такая же площадь), как и у вырезанного многогранника.

      Ответить

Добавить комментарий

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

  • РубрикиРубрики
  • Задачи по номерам!

    №1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16

  • МЕТКИ

    БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие

  • ОСТЕОХОНДРОЗУ-НЕТ!

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Задачи из сборников Ященко, 2021 год

Квадратные уравнения

Показательные уравнения

Логарифмические уравнения

Модуль числа

Уравнения с модулем

Тригонометрический круг

Формулы тригонометрии

Формулы приведения

Простейшие тригонометрические уравнения 1

Простейшие тригонометрические уравнения 2

Тригонометрические уравнения

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть tg x — помним, что он существует, только если {cos xne 0}.

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi}{3}+2pi n , где n — целое, а найти надо корни на отрезке left [frac{5 pi}{2};frac{9 pi}{2} right ]. На указанном промежутке лежит точка 4 pi. От нее и будем отсчитывать. Получим: x=4 pi +frac{pi}{3}=frac{13 pi}{3}.

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

Давайте потренируемся.

а) Решите уравнение 2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

б) Найдите все корни этого уравнения, принадлежащие промежутку left[-3pi right.;left.-frac{3pi }{2}right]

2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

Упростим левую часть по формуле приведения.

2{{cos}^2 x+sqrt{3}{cos x}=0}

Вынесем {cos x} за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-3pi right.;left.-frac{3pi }{2}right].

Видим, что указанному отрезку принадлежат решения -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Ответ: -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi }{3}+2pi n, где n — целое, а найти надо корни на отрезке [frac{5pi }{2};frac{9pi }{2}]. На указанном промежутке лежит точка 4 pi. От нее и отсчитываем.

Получим: x=4pi +frac{pi }{3}=frac{13pi }{3}.

2. а) Решите уравнение {({27}^{{cos x}})}^{{sin x}}=3^{frac{3{cos x}}{2}}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

а) 3^{3{cos x{sin x}}}=3^{frac{3{cos x}}{2}}

Степени равны, их основания равны. Значит, равны и показатели.

3{cos x{sin x}}=frac{3{cos x}}{2}

2{cos x{sin x-{cos x=0}}}

{cos x({sin x-frac{1}{2})=0}}

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Отметим на тригонометрическом круге отрезок left[-pi ;frac{pi }{2}right] и найденные серии решений.

Видим, что указанному отрезку принадлежат точки x=-frac{pi }{2} и x=frac{pi }{2} из серии x=frac{pi }{2}+pi n,nin z.

Точки серии x=frac{5pi }{6}+2pi n,nin z не входят в указанный отрезок.

А из серии x=frac{pi }{6}+2pi n,nin z в указанный отрезок входит точка x=frac{pi }{6}.

Ответ в пункте (б): -frac{pi }{2},frac{pi }{6} , frac{pi }{2}.

3. а) Решите уравнение {cos 2x}+{{sin}^2 x=0,5}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{7pi }{2}right.;left.-2pi right].

а)
{cos 2x}+{{sin}^2 x=0,5}

Применим формулу косинуса двойного угла: boldsymbol{cos2alpha =1-{2sin}^2alpha }

1-2{{sin}^2 x}+{{sin}^2 x}=0,5

{{-sin}^2 x=-0,5}

{{sin}^2 x=0,5}

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке left[-frac{7pi }{2}right.;left.-2pi right] с помощью двойного неравенства.

Сначала серия x=frac{pi }{4}+pi n,nin Z.

-frac{7pi }{2}le frac{pi }{4}+pi nle -2pi

-frac{7}{2}le frac{1}{4}+nle -2

-3,75le nle -2,25

n=-3, x_1=frac{pi }{4}-3pi =-frac{11pi }{4}

Теперь серия x=-frac{pi }{4}+pi n,nin Z

-frac{7pi }{2}le -frac{pi }{4}+pi nle -2pi

-frac{7}{2}le -frac{1}{4}+nle -2

-3,25le nle -1,75

n=-3, x_2=-frac{pi }{4}-3pi =-frac{13pi }{4}

n=-2, x_3=-frac{pi }{4}-2pi =-frac{9pi }{4}

Ответ: -frac{13pi }{4};-frac{11pi }{4};-frac{9pi }{4} .

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии x=-frac{pi }{4}+2pi n,nin Z на отрезке left[-frac{pi }{2}right.;left.20pi right]. Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение left({tg}^2x-3right)sqrt{11{cos x}}=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{5pi }{2};-pi right].

Самое сложное здесь — область допустимых значений (ОДЗ). Условие {11cos x}ge 0 заметно сразу. А условие {cos x}ne 0 появляется, поскольку в уравнении есть {tg x=frac{{sin x}}{{cos x}}}.

ОДЗ:

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси Y.

Ответ в пункте а) x=pm frac{pi }{3}+2pi n, nin z

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-frac{5pi }{2};-pi right].

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

x=frac{pi }{3}-2pi =-frac{5pi }{3} и x=-frac{pi }{3}-2pi =-frac{7pi }{3}.

5. а) Решите уравнение sqrt{{cos x+{sin x}}}({{cos}^2 x-frac{1}{2})=0}

б) Найдите корни, принадлежащие отрезку [-pi ;4pi ].

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых {cos x}=frac{sqrt{2}}{2} или {cos x}=-frac{sqrt{2}}{2}. Заметим, что среди них находятся и углы, для которых tgx=-1.

Числа серии x=-frac{3pi }{4}+2pi n не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие {cos x+{sin x}}ge 0. Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку [-pi ;4pi ] любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

На отрезке left[-pi ;0right] нам подходит корень x =-frac{pi }{4}.

На отрезке left[0;2pi right] нам подходят корни x=frac{pi }{4};frac{3pi }{4};frac{7pi }{4}.

На отрезке left[2pi ;4pi right] — корни x= frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Ответ в пункте б): -frac{pi }{4};frac{3pi }{4};frac{7pi }{4};frac{pi }{4};frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задание №12. Уравнения u0026#8212; профильный ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

3069 а) Решите уравнение 2sin^3(pi+x)=1/2cos(x-(3pi)/2) б) Найдите все корни уравнения, принадлежащие отрезку [-(7pi)/2; -(5pi)/2].
Решение     График
а) Решите уравнение 2sin 3 (pi +x) =1/2 cos(x — 3/2 pi) ! 36 вариантов ФИПИ Ященко 2022 Вариант 1 Задание 12 ...X
3068 Решите неравенство (4^x-5*2^x)^2-20(4^x-5*2^x) <= 96
Решение     График
Решите неравенство (4 x -5 2 x) 2 -20(4 x-5 2 x) <= 96 ! 36 вариантов ФИПИ Ященко 2022 Вариант 1 Задание 14 ...X
2859 Решите неравенство (25^x-4*5^x)^2+8*5^x < 2*25^x+15
Решение     График
Решите неравенство (25 x -4 5 x) 2 + 8 5 x < 2 25 x + 15 ! ЕГЭ по математике профильного уровня 07-06-2021 основная волна Задание 15 (15.3) # Математика 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 2 Задание 14 ...X
2549 а) Решите уравнение sin^4(x/4)-cos^4(x/4)=cos(x-pi/2) б) Найдите все корни этого уравнения, принадлежащие отрезку [-(3pi)/2; pi].
Решение     График
Решите уравнение sin^4(x/4) -cos^4(x/4) = cos(x-pi/2) ! 36 вариантов ФИПИ Ященко 2022 Вариант 15 Задание 12 #36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 5 Задание 13 ...X
2548 Решите неравенство (2*0.5^(x+2)-0.5*2^(x+2)). (2log_{0.5)^2(x+2)-0.5log_{2}(x+2)) <= 0.
Решение     График
Решите неравенство (2*0.5^(x+2)- 0.5*2^(x+ 2)) (2log^2_{0.5)(x+2)- 0.5log_{2}(x+ 2)) <= 0 ! 36 вариантов ФИПИ Ященко 2022 Вариант 15 Задание 14 #36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 5 Задание 15 ...X
2543 Решите неравенство lg^4(x^2-26)^4-4lg^2(x^2-26)^2 <= 240.
Решение     График
Решите неравенство lg^4(x^2 -26)^4 -4lg^2(x^2 -26)^2 <= 240 ! 36 вариантов ФИПИ Ященко 2022 Вариант 14 Задание 14 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 4 Задание 15 ...X
2532 а) Решите уравнение (x^2+2x-1)(log_{2}(x^2-3)+log_{0.5}(sqrt(3)-x))=0 б) Найдите все корни этого уравнения, принадлежащие отрезку [-2.5; -1.5]
Решение     График
Решите уравнение (x^2+ 2x -1)(log_{2}(x^2 -3)+ log_{0.5}(sqrt(3) -x))=0 ! 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 3 Задание 13 ...X
2531 Решите неравенство (4^(x-0.5)+1)/(9*4^x-16^(x+0.5)-2) <= 0.5
Решение     График
Решите неравенство (4^(x-0,5)+ 1)/ (9*4^x-16^(x+0,5) -2) <= 0,5 ! 36 вариантов ФИПИ Ященко 2022 Вариант 13 Задание 14 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 3 Задание 15 ...X
2524 Решите неравенство x^2*log_{243}(-x-3) >= log_{3}(x^2+6x+9)
Решение     График
Решите неравенство x^2* log_{243}(-x- 3) >= log_{3}(x^2+ 6x+9) ! 36 вариантов ФИПИ Ященко 2022 Вариант 12 Задание 14 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 2 Задание 15 # Задача-Аналог   2367   ...X

Понравилась статья? Поделить с друзьями:
  • Решу егэ математика 25661
  • Решу егэ математика 25621
  • Решу егэ математика 25581
  • Решу егэ математика 25561
  • Решу егэ математика 245382