На изготовление 475 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 550 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей в час делает первый рабочий?
Спрятать решение
Решение.
Обозначим n − число деталей, которые изготавливает за час первый рабочий, тогда второй рабочий за час изготавливает деталей, На изготовление 475 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 550 таких же деталей, отсюда имеем:
Таким образом, первый рабочий делает 25 деталей в час
Ответ: 25.
Источник: Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1.
На изготовление 475 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 550 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей в час делает первый рабочий?
Спрятать решение
Решение.
Обозначим n − число деталей, которые изготавливает за час первый рабочий, тогда второй рабочий за час изготавливает деталей, На изготовление 475 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 550 таких же деталей, отсюда имеем:
Таким образом, первый рабочий делает 25 деталей в час
Ответ: 25.
Источник: Пробный экзамен Санкт-Петербург 2015. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1., ЕГЭ по математике 07.06.2021. Основная волна. Подмосковье
Каталог заданий
Версия для печати и копирования в MS Word
1
Тип 9 № 26594
На изготовление 475 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 550 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей в час делает первый рабочий?
Аналоги к заданию № 26594: 5861 39745 39749 5863 5865 5867 5869 5871 5873 5875 … Все
Источник: Пробный экзамен Санкт-Петербург 2015. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1., ЕГЭ по математике 07.06.2021. Основная волна. Подмосковье
Кодификатор ФИПИ/Решу ЕГЭ: Задачи на совместную работу
Решение
·
·
Курс Д. Д. Гущина
·
Сообщить об ошибке · Помощь
Авторы: Светин Андрей Валентинович
Издательство: Просвещение
Математика. Летние задания. Переходим в 4 класс. ФГОС
«
В пособии представлены задания в соответствии с темами, изученными школьниками по учебнику «»Математика. 3 класс»» С.И.Моро и др. Цель пособия — помочь родителям детей, перешедших в 4-й класс, организовать занятия математикой в период летних каникул. В конце пособия даны ответы к заданиям, которые взрослые при необходимости могут вырезать.
Пособие соответствует федеральному государственному образовательному стандарту начального общего образования.
2-е издание, стереотипное.
»
У вас появилась уникальная возможность скачать бесплатно правильные ответы к новому сборнику 1 полугодие и 2 полугодие обучения в средней школе. Новый сборник — решебник предназначен для учащихся, учителей школы и родителей, которые хотят помочь своим детям освоить предмет на хорошую оценку! Надеемся, что новые задания из сборника ГДЗ подойдут на следующий 2024 — 2025 учебный год. Полную версию учебника с ответами можно бесплатно скачать в формате ВОРД / WORD или PDF / ПДФ и потом легко распечатать на принтере, а так же читать онлайн. Также здесь можно скачать и распечатать ответы для родителей на домашнее задание, примеры, решения, страница, вопросы, пояснения и объяснения к онлайн заданиям из нового учебника.
Купить этот сборник недорого за наличный или безналичный расчет с доставкой можно в Интернет-магазине или просто нажать кнопку КУПИТЬ
Официальный сайт. 2022 — 2023 учебный год. Открытый банк заданий. Полная версия. ВПР. РП. ФИПИ ШКОЛЕ. ФГОС. ОРКСЭ. МЦКО. ФИОКО. ОГЭ. ЕГЭ. ПНШ. ДОУ. УМК. СПО. 2023 — 2024 учебный год. КДР. Контрольный срез знаний. РДР. 1 четверть. Стартовый контроль. Школа России. 2 четверть. Школа 21 век. ГДЗ. 3 четверть. Решебник. Перспектива. КРС. Школа 2100. Таблица. Планета знаний. 4 четверть. Страница. Экзамен. Россия. Беларусь. ЛНР. Казахстан. РБ. Татарстан. Башкортостан. ДНР
Вид поставки: Электронная книга. Официальная лицензия. Полная версия издательства с фото и картинками
Способ доставки: электронная доставка, оплата после доставки книги
Язык книги: Русский
Возможные варианты формата книги: Word, PDF, TXT, EPUB, FB2, PDF, MOBI, DOC, RTF, DJVU, LRF
Книги | Учебная, методическая литература и словари | Книги для школы | Математика | Математика. 3 класс
СКАЧАТЬ ОТВЕТЫ | КУПИТЬ | ЧИТАТЬ ОНЛАЙН | ОТЗЫВЫ | ОБСУДИТЬ
- ЗАДАЧИ ЕГЭ С ОТВЕТАМИ
- АНГЛИЙСКИЙ без ГРАНИЦ
2012-07-12
НЕ ОТКЛАДЫВАЙ! Заговори на английском!
ДОЛОЙ обидные ошибки на ЕГЭ!!
Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!
Конструктор упражнений для позвоночника!
Отзывов (2)
-
Andrey
2013-02-17 в 12:03
Зачем так все усложнять
можно решить по другому
допустим искомое значение х тогда ВН=13-х
высота являеться средним геометрическим тоесть СН=у
у=кв корень из x (13-x)
tgA=CH/x=y/x
y/x=1/5 выходит система
{y=Vx (13-x)
{x=5y
Решаем
y=V5y (13-5y)
y^2=65y-25y^2
26y^2=65y
26y=65
y=5/2
x=5*5/2
x=25/2
x=12.5
Ответить
-
Александр Крутицких
2013-02-17 в 22:16
Андрей, ни какого усложнения. Обычные действия с тригонометрическими формулами и определениями синуса и косинуса. Угол дан ведь не прсто так. Конечно, путь решения длиноват. Согласен, что способ ваш на много проще и рациональней. Спасибо, что написали. Если ещё что-то более рациональное покажете, буду рад. С уважением!!!
Ответить
-
Добавить комментарий
*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.
- РубрикиРубрики
- Задачи по номерам!
№1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16
- МЕТКИ
БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие
- ОСТЕОХОНДРОЗУ-НЕТ!
Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.
Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.
Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.
Задачи из сборников Ященко, 2021 год
Квадратные уравнения
Показательные уравнения
Логарифмические уравнения
Модуль числа
Уравнения с модулем
Тригонометрический круг
Формулы тригонометрии
Формулы приведения
Простейшие тригонометрические уравнения 1
Простейшие тригонометрические уравнения 2
Тригонометрические уравнения
Что необходимо помнить при решении уравнений?
1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть — помним, что он существует, только если
2) Стараемся записывать решение в виде цепочки равносильных переходов.
3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.
4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.
5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.
Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка . От нее и будем отсчитывать. Получим:
6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!
Давайте потренируемся.
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие промежутку
Упростим левую часть по формуле приведения.
Вынесем за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.
б) Отметим на тригонометрическом круге найденные серии решений и отрезок
Видим, что указанному отрезку принадлежат решения
Ответ:
Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.
Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка От нее и отсчитываем.
Получим:
2. а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.
а)
Степени равны, их основания равны. Значит, равны и показатели.
Это ответ в пункте (а).
б) Отберем корни, принадлежащие отрезку
Отметим на тригонометрическом круге отрезок и найденные серии решений.
Видим, что указанному отрезку принадлежат точки и из серии
Точки серии не входят в указанный отрезок.
А из серии в указанный отрезок входит точка
Ответ в пункте (б):
3. а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
а)
Применим формулу косинуса двойного угла:
Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.
Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.
б) Для разнообразия отберем корни на отрезке с помощью двойного неравенства.
Сначала серия
Теперь серия
Ответ: .
Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».
Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.
Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии на отрезке Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.
4. а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
Самое сложное здесь — область допустимых значений (ОДЗ). Условие заметно сразу. А условие появляется, поскольку в уравнении есть
ОДЗ:
Уравнение равносильно системе:
Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси .
Ответ в пункте а)
б) Отметим на тригонометрическом круге найденные серии решений и отрезок
Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки
и
5. а) Решите уравнение
б) Найдите корни, принадлежащие отрезку
Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.
Это значит, что уравнение равносильно системе:
Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых или . Заметим, что среди них находятся и углы, для которых
Числа серии не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие . Остальные серии решений нас устраивают.
Тогда в ответ в пункте (а) войдут серии решений:
б) Отберем корни, принадлежащие отрезку любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.
На отрезке нам подходит корень .
На отрезке нам подходят корни .
На отрезке — корни
Ответ в пункте б):
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задание №12. Уравнения u0026#8212; профильный ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023