Решу егэ математика 26617


Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

Сайты, меню, вход, новости

Задания

Версия для печати и копирования в MS Word

Теплоход рассчитан на 750 пассажиров и 25 членов команды. Каждая спасательная шлюпка может вместить 70 человек. Какое наименьшее число шлюпок должно быть на теплоходе, чтобы в случае необходимости в них можно было разместить всех пассажиров и всех членов команды?

Спрятать решение

Решение.

Всего на теплоходе 775 человек. Разделим 775 на 70:

 дробь: числитель: 775, знаменатель: 70 конец дроби = дробь: числитель: 770 плюс 5, знаменатель: 70 конец дроби = дробь: числитель: 770, знаменатель: 70 конец дроби плюс дробь: числитель: 5, знаменатель: 70 конец дроби = целая часть: 11, дробная часть: числитель: 1, знаменатель: 14 .

Значит, на судне должно быть 12 шлюпок.

Ответ: 12.

Спрятать решение

·

·

Курс Д. Д. Гущина

·

Гость 07.05.2014 09:16

с решением ответ сошелся, но меня мучает вопрос.. весть капитан(1из25людей в команде) обычно не покидает корабль в случае катастрофы (есть у них такие правила не писаные) , так стоит ли тут учитывать, что капитан может остаться на корабле? или ориентироваться только на математический расчет?

Сергей Никифоров

Капитан не остаётся на тонущем корабле, он просто покидает его последним.

Гость 27.05.2014 18:17

ответ пра­виль­ный 11 так как 775/70= 11,007 округ­ля­ем до 11

Сергей Никифоров

Нужно, чтобы все могли поместиться на шлюпках, если взять 11 шлюпок для одного человека не хватит места.

  • ЗАДАЧИ ЕГЭ С ОТВЕТАМИ

  • АНГЛИЙСКИЙ без ГРАНИЦ

2012-07-06

НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Конструктор упражнений для позвоночника!

Добавить комментарий

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

  • РубрикиРубрики
  • Задачи по номерам!

    №1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16

  • МЕТКИ

    БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие

  • ОСТЕОХОНДРОЗУ-НЕТ!

Дата: 2015-05-14

7189

Категория: Округление

Метка: №1-БАЗА

26617. Теплоход рассчитан на 750 пассажиров и 25 членов команды. Каждая спасательная шлюпка может вместить 70 человек. Какое наименьшее число шлюпок должно быть на теплоходе, чтобы в случае необходимости в них можно было разместить всех пассажиров и всех членов команды?

Найдём общее число человек, которые могут находиться на теплоходе:

750+25=775 человек.

Можно построить рассуждение следующим образом: сразу видно, что в 10-ти шлюпках уместится 700 человек. Значит в 11-ти 700+70=770 человек, для пяти человек тоже необходима шлюпка. Таким образом, нужно минимум 12 шлюпок, чтобы в случае необходимости разместить 775 человек.

Или можно 775 разделить на 70:

Получили одиннадцать целых одну четырнадцатую шлюпки. Значит, для размещения 775 человек необходимо 12 шлюпок (округляем в большую сторону).

Или делим столбиком:

Получается, что 775=11∙70+5, то есть 11 шлюпок будут загружены полностью, и ещё останется 5 человек, для которых нужна будет 12-ая шлюпка.

Ответ: 12

Используя этот сайт, Вы соглашаетесь с тем, что мы сохраняем и используем файлы cookies, а также используем похожие технологии для улучшения работы сайта.

Ok

Перейти к контенту

Найдите наименьшее значение функции y=6 косинус x плюс дробь: числитель: 24, знаменатель: Пи конец дроби x плюс 5 на отрезке  левая квадратная скобка минус дробь: числитель: 2 Пи , знаменатель: 3 конец дроби ;0 правая квадратная скобка .

Спрятать решение

Решение.

Найдем производную заданной функции y=6 косинус x плюс дробь: числитель: 24, знаменатель: Пи конец дроби x плюс 5, y'= минус 6 синус x плюс дробь: числитель: 24, знаменатель: Пи конец дроби . Уравнение y'=0 не имеет решений, производная положительна при всех значениях переменной, поэтому заданная функция является возрастающей. Следовательно, наименьшим значением функции на заданном отрезке является

y левая круглая скобка минус дробь: числитель: 2 Пи , знаменатель: 3 конец дроби правая круглая скобка =6 косинус левая круглая скобка минус дробь: числитель: 2 Пи , знаменатель: 3 конец дроби правая круглая скобка плюс дробь: числитель: 24, знаменатель: Пи конец дроби левая круглая скобка минус дробь: числитель: 2 Пи , знаменатель: 3 конец дроби правая круглая скобка плюс 5= минус 14.

Ответ: −14.

Источник: Пробный экзамен Санкт-Петербург 2015. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1.

Спрятать решение

·

·

Курс Д. Д. Гущина

·

Андрей Анатольевич 04.11.2017 22:56

Непонятно между чем и чем происходит выбор! Действительно, Yнаим.=-14., но вот почему:

Y(0)=6*cos(0)+24/П*0+5=6*1+0+5=11>-14, и только поэтому.

С уважением, Андрей Анатольевич

Александр Иванов

Если функция возрастает на отрезке, то наименьшее значение на левом крае, а наибольшее на правом

  • ЗАДАЧИ ЕГЭ С ОТВЕТАМИ

  • АНГЛИЙСКИЙ без ГРАНИЦ

2012-07-26

НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Конструктор упражнений для позвоночника!

Отзывов (2)

  1. Ирина

    2013-02-08 в 19:29

    Почему у вас Sin х получился отрицательным? На мой взгляд это не верно. Sin x положительный.

    Ответить

    • Александр Крутицких

      2013-02-09 в 20:45

      Ирина, спасибо! Исправлено.

      Ответить

Добавить комментарий

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

  • РубрикиРубрики
  • Задачи по номерам!

    №1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16

  • МЕТКИ

    БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие

  • ОСТЕОХОНДРОЗУ-НЕТ!

brthe711

Вопрос по математике:

1) 26698+1363-31×1575÷9765×5411-5.

2) 97+102×966-7439×13-56978÷62.

3) 22528÷176×502÷4÷(4373+4796-9153).

4) 8470-32314÷(71+16086)×3778+23387÷
257.

5) (98969+895)÷1387+5889-14×(8+354).

6.) 2962+3001-10×991÷(47211-17×2777).

Решите пожалуйста решать нужно всё столбиком.Заранее спасибо огромное.

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

xpreawn416

Надеюсь что нибудь поймёшь

Изображение к ответу

Знаете ответ? Поделитесь им!

Гость ?

Как написать хороший ответ?

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете
    правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не
    побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и
    пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся
    уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
    знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к
    пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Математика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи —
смело задавайте вопросы!

Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

задание 11 егэ 2022 профиль математика

Задание №11 решу ЕГЭ 2022 по математике 11 класс профильный уровень (профиль) все задания с ответами и решением, которые могут попасться на реальном ЕГЭ 2022.

  • Степенные иррациональные функции
  • Логарифмические функции
  • Показательные функции
  • Тригонометрические функции
  • Исследование функции без производной

Задание 11 часть 1 профильного ЕГЭ по математике — это нахождение точек максимума и минимума функции, а также наибольших и наименьших значений функции с помощью производной. Вот какие типы задач могут встретиться в этом задании:

  • Нахождение точек максимума и минимума функций
  • Исследование сложных функций
  • Нахождение наибольших и наименьших значений функций на отрезке

Степенные иррациональные функции ЕГЭ 2022 профиль математика:

Логарифмические функции ЕГЭ 2022 профиль математика:

Показательные функции ЕГЭ 2022 профиль математика:

Тригонометрические функции ЕГЭ 2022 профиль математика:

Исследование функции ЕГЭ 2022 профиль математика:

Видео как решать 11 задание в ЕГЭ по математике профиль:

задание 11 егэ 2022 профиль

задание 11 егэ 2022 профиль

задание 11 егэ 2022 профиль

1)Найдите наименьшее значение функции y=−2ln(x+3)5+10x на отрезке [−2,5;−1].

2)Найдите наибольшее значение функции y=ln(x+7)3−3x на отрезке [−6,5;−4].

3)Найдите наибольшее значение функции y=ln(4−2x)+2x−7 на отрезке [0;1,7].

4)Найдите точку максимума функции y=−8√x+12ln(x−4)−11.

5)Найдите точку максимума функции y=2lnx−√x−17.

6)Найдите наибольшее значение функции y=√−2log0,5(5x+1) на отрезке [12,6;51].

7)Найдите точку минимума функции y=x2−21x+6+55lnx.

8)Найдите точку максимума функции y=x2−11x−17+15lnx.

9)Найдите точку максимума функции y=(5×2−3x−3)ex+5.

10)Найдите наименьшее значение функции y=−4x−4cosx+5 на отрезке [−π;0].

Тренировочные варианты ЕГЭ 2022 по математике профиль 11 класс

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ


Автор Сообщение

Заголовок сообщения: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 09:59 

Не в сети
Администратор
  • Центр пользователя

Зарегистрирован: 10 июн 2010, 15:00
Сообщений: 6119

https://alexlarin.net/ege/2023/trvar421.html

Вернуться наверх 

OlegTheMath

Заголовок сообщения: Re: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 11:42 

Не в сети
  • Центр пользователя

Зарегистрирован: 06 май 2012, 21:09
Сообщений: 67

Спасибо за интересный вариант!
421.17

Подробности:

надеюсь, правильно.

Вернуться наверх 

hpbhpb

Заголовок сообщения: Re: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 11:57 

Не в сети
Аватар пользователя
  • Центр пользователя

Зарегистрирован: 18 ноя 2015, 07:49
Сообщений: 1730
Откуда: Ставрополь

OlegTheMath писал(а):

Спасибо за интересный вариант!
421.17

Подробности:

надеюсь, правильно.

Да, правильно.

Вернуться наверх 
Показать сообщения за:  Сортировать по:  

Шкалирование

Первичный Тестовый Оценка
5-6 27-34 3
7-8 40-46 4
9-10 52-58
11-12-13 64-66-68 5
14-15-16 70-72-74
17-18-19 76-78-80
20-21-22 82-84-86
23-24-25 88-90-92
26-27-28 94-96-98
29-30-31 100
Первичный балл
/
Тестовый балл
5/27 6/34 7/40 8/46 9/52 10/58 11/64 12/66 13/68 14/70
15/72 16/74 17/76 18/78 19/80 20/82 X / 2X+42 29+ / 100

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Задачи из сборников Ященко, 2021 год

Квадратные уравнения

Показательные уравнения

Логарифмические уравнения

Модуль числа

Уравнения с модулем

Тригонометрический круг

Формулы тригонометрии

Формулы приведения

Простейшие тригонометрические уравнения 1

Простейшие тригонометрические уравнения 2

Тригонометрические уравнения

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть tg x — помним, что он существует, только если {cos xne 0}.

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi}{3}+2pi n , где n — целое, а найти надо корни на отрезке left [frac{5 pi}{2};frac{9 pi}{2} right ]. На указанном промежутке лежит точка 4 pi. От нее и будем отсчитывать. Получим: x=4 pi +frac{pi}{3}=frac{13 pi}{3}.

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

Давайте потренируемся.

а) Решите уравнение 2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

б) Найдите все корни этого уравнения, принадлежащие промежутку left[-3pi right.;left.-frac{3pi }{2}right]

2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

Упростим левую часть по формуле приведения.

2{{cos}^2 x+sqrt{3}{cos x}=0}

Вынесем {cos x} за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-3pi right.;left.-frac{3pi }{2}right].

Видим, что указанному отрезку принадлежат решения -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Ответ: -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi }{3}+2pi n, где n — целое, а найти надо корни на отрезке [frac{5pi }{2};frac{9pi }{2}]. На указанном промежутке лежит точка 4 pi. От нее и отсчитываем.

Получим: x=4pi +frac{pi }{3}=frac{13pi }{3}.

2. а) Решите уравнение {({27}^{{cos x}})}^{{sin x}}=3^{frac{3{cos x}}{2}}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

а) 3^{3{cos x{sin x}}}=3^{frac{3{cos x}}{2}}

Степени равны, их основания равны. Значит, равны и показатели.

3{cos x{sin x}}=frac{3{cos x}}{2}

2{cos x{sin x-{cos x=0}}}

{cos x({sin x-frac{1}{2})=0}}

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Отметим на тригонометрическом круге отрезок left[-pi ;frac{pi }{2}right] и найденные серии решений.

Видим, что указанному отрезку принадлежат точки x=-frac{pi }{2} и x=frac{pi }{2} из серии x=frac{pi }{2}+pi n,nin z.

Точки серии x=frac{5pi }{6}+2pi n,nin z не входят в указанный отрезок.

А из серии x=frac{pi }{6}+2pi n,nin z в указанный отрезок входит точка x=frac{pi }{6}.

Ответ в пункте (б): -frac{pi }{2},frac{pi }{6} , frac{pi }{2}.

3. а) Решите уравнение {cos 2x}+{{sin}^2 x=0,5}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{7pi }{2}right.;left.-2pi right].

а)
{cos 2x}+{{sin}^2 x=0,5}

Применим формулу косинуса двойного угла: boldsymbol{cos2alpha =1-{2sin}^2alpha }

1-2{{sin}^2 x}+{{sin}^2 x}=0,5

{{-sin}^2 x=-0,5}

{{sin}^2 x=0,5}

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке left[-frac{7pi }{2}right.;left.-2pi right] с помощью двойного неравенства.

Сначала серия x=frac{pi }{4}+pi n,nin Z.

-frac{7pi }{2}le frac{pi }{4}+pi nle -2pi

-frac{7}{2}le frac{1}{4}+nle -2

-3,75le nle -2,25

n=-3, x_1=frac{pi }{4}-3pi =-frac{11pi }{4}

Теперь серия x=-frac{pi }{4}+pi n,nin Z

-frac{7pi }{2}le -frac{pi }{4}+pi nle -2pi

-frac{7}{2}le -frac{1}{4}+nle -2

-3,25le nle -1,75

n=-3, x_2=-frac{pi }{4}-3pi =-frac{13pi }{4}

n=-2, x_3=-frac{pi }{4}-2pi =-frac{9pi }{4}

Ответ: -frac{13pi }{4};-frac{11pi }{4};-frac{9pi }{4} .

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии x=-frac{pi }{4}+2pi n,nin Z на отрезке left[-frac{pi }{2}right.;left.20pi right]. Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение left({tg}^2x-3right)sqrt{11{cos x}}=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{5pi }{2};-pi right].

Самое сложное здесь — область допустимых значений (ОДЗ). Условие {11cos x}ge 0 заметно сразу. А условие {cos x}ne 0 появляется, поскольку в уравнении есть {tg x=frac{{sin x}}{{cos x}}}.

ОДЗ:

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси Y.

Ответ в пункте а) x=pm frac{pi }{3}+2pi n, nin z

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-frac{5pi }{2};-pi right].

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

x=frac{pi }{3}-2pi =-frac{5pi }{3} и x=-frac{pi }{3}-2pi =-frac{7pi }{3}.

5. а) Решите уравнение sqrt{{cos x+{sin x}}}({{cos}^2 x-frac{1}{2})=0}

б) Найдите корни, принадлежащие отрезку [-pi ;4pi ].

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых {cos x}=frac{sqrt{2}}{2} или {cos x}=-frac{sqrt{2}}{2}. Заметим, что среди них находятся и углы, для которых tgx=-1.

Числа серии x=-frac{3pi }{4}+2pi n не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие {cos x+{sin x}}ge 0. Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку [-pi ;4pi ] любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

На отрезке left[-pi ;0right] нам подходит корень x =-frac{pi }{4}.

На отрезке left[0;2pi right] нам подходят корни x=frac{pi }{4};frac{3pi }{4};frac{7pi }{4}.

На отрезке left[2pi ;4pi right] — корни x= frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Ответ в пункте б): -frac{pi }{4};frac{3pi }{4};frac{7pi }{4};frac{pi }{4};frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задание №12. Уравнения u0026#8212; профильный ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

Текстовые задачи ( B1 — B2)

В данном разделе решены все прототипы задания B1 ЕГЭ по математике. Условия заданий взяты с сайта mathege.ru. Кроме прототипов здесь размещены решения заданий B1 из различных сборников для подготовки к ЕГЭ по математике и из реальных вариантов ЕГЭ разных лет.

Задание B1 (№2443) (Прототип задания B1 № 26616)

Сырок стоит 7 рублей 20 копеек. Какое наибольшее число сырков можно купить на 60 рублей?

Решение

60 : 7,2 = 8,33333…

Т.к. купить можно только целое число сырков, то на 60 рублей можно купить только 8 сырков (на 9 уже денег не хватит).

Ответ : 8

Прототип задания B1 (№26617)

Теплоход рассчитан на 750 пассажиров и 25 членов команды. Каждая спасательная шлюпка может вместить 70 человек. Какое наименьшее число шлюпок должно быть на теплоходе, чтобы в случае необходимости в них можно было разместить всех пассажиров и всех членов команды?

Решение

Всего человек:

750+25 = 775.

Т.к. каждая спасательная шлюпка может вместить 70 человек, то:

775:70 = 11,07

и т.к. взять можно только целое число шлюпок, то всего потребуется 12 шлюпок.

Ответ: 12

Задание B1 (ЕГЭ 2013)

Одна таблетка лекарства весит 70 мг и содержит 4 % активного вещества. Ребенку в возрасте до 6 месяцев врач прописывает 1,05 мг активного вещества на каждый килограмм веса в сутки. Сколько таблеток этого лекарства следует дать ребенку в возрасте 5 месяцев и весом 8 кг в течение суток?

Решение

Найдем, сколько мг активного вещества содержится в одной таблетке:

(70 *4)/100 = 2,8 (мг).

Так как ребенок в возрасте до 6 месяцев, то ему полагается 1,05 мг активного вещества на каждый килограмм веса в сутки. Найдем, сколько нужно мг активного вещества ребенку весом 8 кг каждые сутки:

8*1,05 = 8,4 (мг).

Так как в одной таблетке содержится 0,28 мг активного вещества, то ребенку нужно дать

8,4 : 2,8 = 3 таблетки.

Ответ: 3

Задание B1 (ЕГЭ 2013)

Одна таблетка лекарства весит 20 мг и содержит 5 % активного вещества. Ребенку в возрасте до 6 месяцев врач прописывает 0,4 мг активного вещества на каждый килограмм веса в сутки. Сколько таблеток этого лекарства следует дать ребенку в возрасте трех месяцев и весом 5 кг в течение суток?

Решение

Найдем, сколько мг активного вещества содержится в одной таблетке:

(20 *5)/100 = 1 (мг).

Так как ребенок в возрасте до 6 месяцев, то ему полагается 0,4 мг активного вещества на каждый килограмм веса в сутки. Найдем, сколько нужно мг активного вещества ребенку весом 5 кг каждые сутки:

5*0,4 = 2 (мг).

Так как в одной таблетке содержится 1 мг активного вещества, то ребенку нужно дать

2 : 1 = 2 таблетки.

Ответ: 2

Прототип задания B1 (№26618)

Флакон шампуня стоит 160 рублей. Какое наибольшее число флаконов можно купить на 1000 рублей во время распродажи, когда скидка составляет 25%?

Решение

Если скидка составляет 25%, то стоимость шампуня во время распродажи будет составлять 75 % от первоначальной цены. Тогда цена шампуня будет равна

(160*75)/100 = 160*0,75 = 120 (рублей).

1000/120 = 8,(3)

Т.е. во время распродажи можно купить 8 флаконов шампуня.

Ответ: 8.

Прототип задания B1 (№26619)

Шариковая ручка стоит 40 рублей. Какое наибольшее число таких ручек можно будет купить на 900 рублей после повышения цены на 10%?

Решение

Найдем на сколько рублей повысилась цена: (40*10)/100 = 40*0,1 = 4 (рубля).

Значит новая цена ручки после повышения равна 40+4 = 44 рубля.

900/44 = 20,(45).

Значит, на 900 рублей после повышения цены можно будет купить 20 ручек.

Ответ: 20.

Прототип задания B1 (№26620)

Тетрадь стоит 40 рублей. Какое наибольшее число таких тетрадей можно будет купить на 750 рублей после понижения цены на 10%?

Решение

Найдем, на сколько рублей понизилась цена: (40*10)/100 = 4 (рубля).

Новая стоимость тетради составит 40-4 = 36 рублей.

750/36 = 20,8(3).

Значит на 750 рублей после понижения цены можно купить 20 тетрадей.

Ответ: 20.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Понравилась статья? Поделить с друзьями:
  • Решу егэ математика 26594
  • Решу егэ математика 26593
  • Решу егэ математика 25881
  • Решу егэ математика 25721
  • Решу егэ математика 25701