Решу егэ математика профиль 515183


Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

Сайты, меню, вход, новости

Задания

Версия для печати и копирования в MS Word

На рисунке изображен график производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y  =  f(x) параллельна прямой y  =  6x или совпадает с ней.

Спрятать решение

Решение.

Поскольку касательная параллельна прямой y  =  6x или совпадает с ней, она имеет угловой коэффициент равный 6. Значение производной в точке касания равно угловому коэффициенту касательной. Осталось найти, в какой точке x производная принимает значение 6: искомая точка x  =  5.

Ответ: 5.

Тренировочные варианты профильного ЕГЭ 2022 по математике с ответами.admin2022-04-17T20:59:36+03:00

Варият ЕГЭ 2016г. Базовы.

Учитель математики Магометова Х. Н.

1. За­да­ние 1 Вы­чис­ли­те:

По­яс­не­ние.

Найдём зна­че­ние вы­ра­же­ния:

 Ответ: 2,65.

2. За­да­ние 2 .

Най­ди­те зна­че­ние вы­ра­же­ния .

По­яс­не­ние.

Вы­пол­ним пре­об­ра­зо­ва­ния:

Ответ: 80.

3. За­да­ние 3  В на­ча­ле года число або­нен­тов те­ле­фон­ной ком­па­нии «Во­сток» со­став­ля­ло 400 тыс. че­ло­век, а в конце года их стало 480 тыс. че­ло­век. На сколь­ко про­цен­тов уве­ли­чи­лось за год число або­нен­тов этой ком­па­нии?

По­яс­не­ние.

Число або­нен­тов ком­па­нии «Во­сток» к концу года уве­ли­чи­лось на 480 − 400 = 80 тыс. че­ло­век. Зна­чит, число або­нен­тов ком­па­нии уве­ли­чи­лось на 80 : 400 · 100% = 20%.

Ответ: 20

4. За­да­ние 4 № 506737. Сред­нее квад­ра­ти­че­ское трёх чисел и вы­чис­ля­ет­ся по фор­му­ле . Най­ди­те сред­нее квад­ра­тич­ное чисел и .

По­яс­не­ние.

Найдём сред­нее квад­ра­тич­ное число:

Ответ: 10.

5. За­да­ние 5 . Най­ди­те , если .

По­яс­не­ние.

Вы­пол­ним пре­об­ра­зо­ва­ния:

.

Ответ: -14.

6. За­да­ние 6  Ба­ноч­ка йо­гур­та стоит 14 руб­лей 60 ко­пе­ек. Какое наи­боль­шее ко­ли­че­ство ба­но­чек йо­гур­та можно ку­пить на 100 руб­лей?

По­яс­не­ние.

Раз­де­лим 100 на 14,6:

Сле­до­ва­тель­но, на 100 руб­лей можно при­об­ре­сти 6 ба­но­чек йо­гур­та.

Ответ: 6.

7. За­да­ние 7 . Най­ди­те ко­рень урав­не­ния .

По­яс­не­ние.

Пе­рей­дем к од­но­му ос­но­ва­нию сте­пе­ни:

Ответ: −1.

8. За­да­ние 8 

План мест­но­сти раз­бит на клет­ки. Каж­дая клет­ка обо­зна­ча­ет квад­рат 1 м × 1 м. Най­ди­те пло­щадь участ­ка, изоб­ражённого на плане. Ответ дайте в квад­рат­ных мет­рах.

По­яс­не­ние.

Уча­сток, изоб­ра­жен­ный на плане, пред­став­ля­ет собой пря­мо­уголь­ник, пло­щадь ко­то­ро­го равна про­из­ве­де­нию длин его сто­рон. Таким об­ра­зом пло­щадь участ­ка: 3 · 3 − 1= 8.

Ответ: 8.

9. За­да­ние 9 . Уста­но­ви­те со­от­вет­ствие между ве­ли­чи­на­ми и их воз­мож­ны­ми зна­че­ни­я­ми: к каж­до­му эле­мен­ту пер­во­го столб­ца под­бе­ри­те со­от­вет­ству­ю­щий эле­мент из вто­ро­го столб­ца.

ВЕ­ЛИ­ЧИ­НЫ

ВОЗ­МОЖ­НЫЕ ЗНА­ЧЕ­НИЯ

А) пло­щадь тер­ри­то­рии Рос­сии

Б) пло­щадь по­верх­но­сти тум­боч­ки

В) пло­щадь поч­то­вой марки

Г) пло­щадь бас­кет­боль­ной пло­щад­ки

1) 364 кв. м

2) 0,2 кв. м

3) 17,1 млн. кв. км

4) 6,8 кв. см

В таб­ли­це под каж­дой бук­вой, со­от­вет­ству­ю­щей ве­ли­чи­не, ука­жи­те номер её воз­мож­но­го зна­че­ния.

По­яс­не­ние.

Пло­щадь Рос­сии ко­лос­саль­на и со­став­ля­ет 17,1 млн. кв. км, пло­щадь бас­кет­боль­ной пло­щад­ки ори­ен­ти­ро­воч­но 364 кв. м., пло­щадь по­верх­но­сти тум­боч­ки 0,2 кв. м = 2000 кв. см., а пло­щадь поч­то­вой марки нав­скид­ку 6,8 кв. см. По­лу­чи­ли со­от­вет­ствие А — 3, Г — 1, Б — 2 и В — 4. Окон­ча­тель­но по­лу­чим 3241.

Ответ: 3241.

10. За­да­ние 10 . В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют три­жды. Най­ди­те ве­ро­ят­ность того, что орёл вы­па­дет ровно один раз

По­яс­не­ние.

Рав­но­воз­мож­ны 8 ис­хо­дов экс­пе­ри­мен­та: орел-орел-орёл, орел-орёл-решка, орёл-решка-орел, орёл-решка-решка решка-орёл-решка, решка-орёл-орёл, решка-решка-орёл, решка-решка-решка. Орел вы­па­да­ет ровно один раз в трёх слу­ча­ях: решка-решка-орёл, решка-орел-решка, орёл-решка-решка. По­это­му ве­ро­ят­ность того, что орел вы­па­дет ровно 1 раз, равна

.

Ответ: 0,375.

11. За­да­ние 11 . На диа­грам­ме по­ка­за­на сред­не­ме­сяч­ная тем­пе­ра­ту­ра в Ниж­нем Нов­го­ро­де (Горь­ком) за каж­дый месяц 1994 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся ме­ся­цы, по вер­ти­ка­ли — тем­пе­ра­ту­ра в гра­ду­сах Цель­сия. Опре­де­ли­те по диа­грам­ме наи­мень­шую сред­не­ме­сяч­ную тем­пе­ра­ту­ру в 1994 году. Ответ дайте в гра­ду­сах Цель­сия.

По­яс­не­ние.

Из диа­грам­мы видно, что наи­мень­шая сред­не­ме­сяч­ная тем­пе­ра­ту­ра со­став­ля­ет −14 °C (см. ри­су­нок).

Ответ: −14.

12. За­да­ние 12 . В таб­ли­це ука­за­ны сред­ние цены (в руб­лях) на не­ко­то­рые ос­нов­ные про­дук­ты пи­та­ния в трех го­ро­дах Рос­сии (по дан­ным на на­ча­ло 2010 года).

На­име­но­ва­ние про­дук­та

Тверь

Ли­пецк

Бар­на­ул

Пше­нич­ный хлеб (батон)

11

12

14

Мо­ло­ко (1 литр)

26

23

25

Кар­то­фель (1 кг)

9

13

16

Сыр (1 кг)

240

215

260

Мясо (го­вя­ди­на) (1 кг)

260

280

300

Под­сол­неч­ное масло (1 литр)

38

44

50

Опре­де­ли­те, в каком из этих го­ро­дов ока­жет­ся самым де­ше­вым сле­ду­ю­щий набор про­дук­тов: 2 ба­то­на пше­нич­но­го хлеба, 3 кг кар­то­фе­ля, 1,5 кг го­вя­ди­ны, 1 л под­сол­неч­но­го масла. В ответ за­пи­ши­те сто­и­мость дан­но­го на­бо­ра про­дук­тов в этом го­ро­де (в руб­лях).

По­яс­не­ние.

В Твери сто­и­мость 2 ба­то­нов пше­нич­но­го хлеба, 3 кг кар­то­фе­ля, 1,5 кг го­вя­ди­ны, 1 л под­сол­неч­но­го масла со­ста­вит 11 2 + 9 3 + 1,5 260 + 1 38 = 477 руб.

В Ли­пец­ке сто­и­мость 2 ба­то­нов пше­нич­но­го хлеба, 3 кг кар­то­фе­ля, 1,5 кг го­вя­ди­ны, 1 л под­сол­неч­но­го масла со­ста­вит 12 2 + 13 3 + 1,5 280 + 1 44 = 527 руб.

В Бар­нау­ле сто­и­мость 2 ба­то­нов пше­нич­но­го хлеба, 3 кг кар­то­фе­ля, 1,5 кг го­вя­ди­ны, 1 л под­сол­неч­но­го масла со­ста­вит 14 2 + 16 3 + 1,5 300 + 1 50 = 576 руб.

 Самый дешёвый набор про­дук­тов можно ку­пить в Твери по цене 477 руб.

13. За­да­ние 13 .

Вы­со­та ко­ну­са равна 4, а диа­метр ос­но­ва­ния — 6. Най­ди­те об­ра­зу­ю­щую ко­ну­са.

По­яс­не­ние.

Рас­смот­рим осе­вое се­че­ние ко­ну­са. По тео­ре­ме Пи­фа­го­ра

.

Ответ: 5.

14. За­да­ние 14 На ри­сун­ке изоб­ражён гра­фик функ­ции y = f(x) . Точки a, b, c, d и e за­да­ют на оси Ox ин­тер­ва­лы. Поль­зу­ясь гра­фи­ком, по­ставь­те в со­от­вет­ствие каж­до­му ин­тер­ва­лу ха­рак­те­ри­сти­ку функ­ции или её про­из­вод­ной.

Поль­зу­ясь гра­фи­ком, по­ставь­те в со­от­вет­ствие каж­до­му ин­тер­ва­лу вре­ме­ни ха­рак­те­ри­сти­ку дви­же­ния ав­то­мо­би­ля на этом ин­тер­ва­ле.

ИН­ТЕР­ВА­ЛЫ ВРЕ­МЕ­НИ

ХА­РАК­ТЕ­РИ­СТИ­КИ

А) ( a; b)

Б) (b; c )

В) (c; d )

Г) ( d ; e)

1) Зна­че­ния функ­ции по­ло­жи­тель­ны в каж­дой точке ин­тер­ва­ла.

2) Зна­че­ния про­из­вод­ной функ­ции по­ло­жи­тель­ны в каж­дой точке ин­тер­ва­ла.

3) Зна­че­ния функ­ции от­ри­ца­тель­ны в каж­дой точке ин­тер­ва­ла.

4) Зна­че­ния про­из­вод­ной функ­ции от­ри­ца­тель­ны в каж­дой точке ин­тер­ва­ла.

За­пи­ши­те в ответ цифры, рас­по­ло­жив их в по­ряд­ке, со­от­вет­ству­ю­щем бук­вам:

По­яс­не­ние.

Если функ­ция воз­рас­та­ет, то про­из­вод­ная по­ло­жи­тель­на и на­о­бо­рот.

На ин­тер­ва­ле (a;b) зна­че­ния функ­ции по­ло­жи­тель­ны в каж­дой точке ин­тер­ва­ла.

На ин­тер­ва­ле (b;c) зна­че­ния про­из­вод­ной функ­ции от­ри­ца­тель­ны в каж­дой точке ин­тер­ва­ла.

На ин­тер­ва­ле (c;d) зна­че­ния функ­ции от­ри­ца­тель­ны в каж­дой точке ин­тер­ва­ла.

На ин­тер­ва­ле (d;e) зна­че­ния про­из­вод­ной функ­ции по­ло­жи­тель­ны в каж­дой точке ин­тер­ва­ла.

Таким об­ра­зом, по­лу­ча­ем со­от­вет­ствие А — 1, Б — 4, В — 3 и Г — 2.

Ответ: 1432.

15. За­да­ние 15 

В тре­уголь­ни­ке ABC угол C равен 90°, , . Най­ди­те вы­со­ту CH.

По­яс­не­ние.

По­сле­до­ва­тель­но по­лу­ча­ем:

.

Ответ: 25,2.

6. За­да­ние 16 . В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA1B1C1D1 ребро CD = 2, ребро ребро CC1 = 2. Точка K — се­ре­ди­на ребра DD1. Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через точки C1, B1 и К

По­яс­не­ние.

Се­че­ние пе­ре­се­ка­ет па­рал­лель­ные грани по па­рал­лель­ным от­рез­кам. По­это­му че­ты­рех­уголь­ник  — па­рал­ле­ло­грамм. Кроме того, ребро пер­пен­ди­ку­ляр­но гра­ням и , по­это­му углы и — пря­мые. Сле­до­ва­тель­но, се­че­ние  — пря­мо­уголь­ник.

Из пря­мо­уголь­но­го тре­уголь­ни­ка по тео­ре­ме Пи­фа­го­ра най­дем

Тогда пло­щадь пря­мо­уголь­ни­ка равна:

Ответ:5.

17. За­да­ние 17 На ко­ор­ди­нат­ной пря­мой от­ме­че­ны числа и :

Рас­по­ло­жи­те числа в по­ряд­ке воз­рас­та­ния:

По­яс­не­ние.

За­ме­тим, что , тогда , а

Ответ: 4132.

18. За­да­ние 18  Школа при­об­ре­ла стол, доску, маг­ни­то­фон и прин­тер. Из­вест­но, что прин­тер до­ро­же маг­ни­то­фо­на, а доска де­шев­ле маг­ни­то­фо­на и де­шев­ле стола. Вы­бе­ри­те утвер­жде­ния, ко­то­рые сле­ду­ют из при­ведённых дан­ных.

1) Маг­ни­то­фон де­шев­ле стола.

2) Прин­тер до­ро­же доски.

3) Доска — самая дешёвая из по­ку­пок.

4) Прин­тер и стол точно не стоят оди­на­ко­во.

В от­ве­те за­пи­ши­те но­ме­ра вы­бран­ных утвер­жде­ний без про­бе­лов, за­пя­тых и

дру­гих до­пол­ни­тель­ных сим­во­лов.

По­яс­не­ние.

П М Д

1) И маг­ни­то­фон, и стол до­ро­же доски. Боль­ше про за­ви­си­мость между ними ни­че­го не ска­за­но.

2) Прин­тер до­ро­же маг­ни­то­фо­на, а маг­ни­то­фон до­ро­же доски. Зна­чит, прин­тер до­ро­же доски.

3) Да, так как все осталь­ные вещи до­ро­же неё.

4) Они могут сто­ить оди­на­ко­во.

19. За­да­ние 19 . При­ве­ди­те при­мер трёхзнач­но­го на­ту­раль­но­го числа, боль­ше­го 600, ко­то­рое при де­ле­нии на 4, на 5 и на 6 даёт в остат­ке 3 и цифры ко­то­ро­го рас­по­ло­же­ны в по­ряд­ке убы­ва­ния слева на­пра­во. В от­ве­те ука­жи­те ровно одно такое число.

По­яс­не­ние.

Так как число даёт оди­на­ко­вый оста­ток по мо­ду­лям 4, 5 и 6, то оно также даёт такой же оста­ток и по мо­ду­лю 60. То есть число имеет вид Все такие числа: 603, 663, 723, 783, 843, 903, 963. Из них под­хо­дят под по­след­нее усло­вие толь­ко 843 и 963.

20. За­да­ние 20  Хо­зя­ин до­го­во­рил­ся с ра­бо­чи­ми, что они ко­па­ют ко­ло­дец на сле­ду­ю­щих усло­ви­ях: за пер­вый метр он за­пла­тит им 3500 руб­лей, а за каж­дый сле­ду­ю­щий метр — на 1600 руб­лей боль­ше, чем за преды­ду­щий. Сколь­ко денег хо­зя­ин дол­жен будет за­пла­тить ра­бо­чим, если они вы­ко­па­ют ко­ло­дец глу­би­ной 9 мет­ров?

По­яс­не­ние.

По­сле­до­ва­тель­ность цен за метр — ариф­ме­ти­че­ская про­грес­сия с пер­вым эле­мен­том и раз­но­стью Сумма пер­вых эле­мен­тов ариф­ме­ти­че­ской про­грес­сии — То есть в нашем слу­чае имеем

Ответ: 89100

Новый тренировочный вариант №41054182 решу ЕГЭ 2022 по математике профильный уровень 11 класс для подготовки, данный вариант составлен по новой демоверсии ФИПИ экзамена ЕГЭ 2022 года, к тренировочным заданиям прилагаются решения и правильные ответы.

скачать вариант ЕГЭ 2022

скачать ответы и решения

Решу ЕГЭ 2022 по математике профиль тренировочный вариант №41054182

Ответы и решения для варианта:

Задание 2 решу ЕГЭ № 1001 На экзамен вынесено 60 вопросов, Андрей не выучил 3 из них. Найдите вероятность того, что ему попадется выученный вопрос.

Ответ: 0,95

Задание 3 решу ЕГЭ № 27913 Сторона ромба равна 1, острый угол равен 30 градусов. Найдите радиус вписанной окружности этого ромба.

Ответ: 0,25

Задание 6 решу ЕГЭ № 515183 На рисунке изображен график производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y = f(x) параллельна прямой y = 6x или совпадает с ней.

Ответ: 5

Задание 8 решу ЕГЭ № 99595 Два пешехода отправляются одновременно в одном направлении из одного и того же места на прогулку по аллее парка. Скорость первого на 1,5 км/ч больше скорости второго. Через сколько минут расстояние между пешеходами станет равным 300 метрам?

Ответ: 12

Задание 10 решу ЕГЭ № 320177 Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства— яйца высшей категории, а из второго хозяйства— 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Ответ: 0,75

Задание 13 решу ЕГЭ № 514655 В основании прямой треугольной призмы ABCA1B1C1 лежит прямоугольный треугольник ABC с прямым углом C, AC = 4, BC = 16, Точка Q — середина ребра A1B1 , а точка P делит ребро B1C1 в отношении 1:2, считая от вершины C1 . Плоскость APQ пересекает ребро CC1 в точке M. а) Докажите, что точка M является серединой ребра CC1 . б) Найдите расстояние от точки A1 до плоскости APQ.

Задание 15 решу ЕГЭ № 513923 В июле 2016 года планируется взять кредит в размере 4,2 млн. руб. Условия возврата таковы: — каждый январь долг возрастает на r% по сравнению с концом предыдущего года. — с февраля по июнь необходимо выплатить часть долга. — в июле 2017, 2018 и 2019 годов долг остается равным 4,2 млн. руб. — суммы выплат 2020 и 2021 годов равны. Найдите r, если в 2021 году долг будет выплачен полностью и общие выплаты составят 6,1 млн. рублей.

Ответ: 10

Задание 16 решу ЕГЭ № 509467 В прямоугольном треугольнике ABC с прямым углом C известны стороны AC = 12, BC = 5. Окружность радиуса с центром O на стороне BC проходит через вершину C. Вторая окружность касается катета AC, гипотенузы треугольника, а также внешним образом касается первой окружности. а) Докажите, что радиус второй окружности меньше, чем длины катета AC. б) Найдите радиус второй окружности.

Ответ: 2

Задание 18 решу ЕГЭ № 505503 а) Можно ли число 2014 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр? б) Можно ли число 199 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр? в) Найдите наименьшее натуральное число, которое можно представить в виде суммы пяти различных натуральных чисел с одинаковой суммой цифр.

Ответ: а) да; б) нет; в) 110.

Другие тренировочные варианты ЕГЭ 2022 по математике:

Тренировочные варианты ЕГЭ по математике 11 класс задания с ответами

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ

Задания

Версия для печати и копирования в MS Word

На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

Спрятать решение

Решение.

Значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс. Построим треугольник с вершинами в точках A (2; 4), B (2; 2), С (−6; 2). Угол наклона касательной к оси абсцисс будет равен углу ABC. Поэтому

y' левая круглая скобка x_0 правая круглая скобка = тангенс angle ACB= дробь: числитель: AB, знаменатель: BC конец дроби = дробь: числитель: 2, знаменатель: 8 конец дроби =0,25.

Ответ: 0,25.

Спрятать решение

·

·

Курс Д. Д. Гущина

·

Гость 11.05.2012 21:01

Разве не должно быть -0,25?

Служба поддержки

Проверяйте знак так: угол наклона острый, значит, его тангенс положительный.

  • ЗАДАЧИ ЕГЭ С ОТВЕТАМИ

  • АНГЛИЙСКИЙ без ГРАНИЦ

2012-07-20

НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Конструктор упражнений для позвоночника!

Добавить комментарий

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

  • РубрикиРубрики
  • Задачи по номерам!

    №1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16

  • МЕТКИ

    БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие

  • ОСТЕОХОНДРОЗУ-НЕТ!

Дата: 2015-07-28

516

Категория: Производная

Метка: ЕГЭ-№7

27504. На рисунке изображены график функции у=f(x) и касательная к нему в точке с абсциссой х0. Найдите значение производной функции f(x)  в точке х0.

1

Значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс. Построим треугольник с вершинами в точках

A(2; 4), B(2; 2), C(–6; 2)

2

Углом наклона касательной к оси абсцисс будет угол АВС. Поэтому

3

Ответ: 0,25

Используя этот сайт, Вы соглашаетесь с тем, что мы сохраняем и используем файлы cookies, а также используем похожие технологии для улучшения работы сайта.

Ok


Подборка по базе: Творческие задания социальная педагогика (3).pdf, Письменные задания для практических занятий.pdf, 11кл Олимпиадные задания по биологии.doc, 10 класс сайты для подготовки по АЛГЕБРЕ.docx, Письменные задания (1).docx, Практические задания к теме 3 (доработанное).docx, Учебные задания проверяемые вручную.docx, Пример 6 задания.docx, Практические задания.docx, Практическое занятие 11. Задания 2-4, 6-7_ просмотр попытки.pdf


1. Тип 7 № 119975 

Материальная точка движется прямолинейно по закону   (где x  — расстояние от точки отсчета в метрах, t  — время в секундах, измеренное с начала движения). Найдите ее скорость (в м/с) в момент времени t  =  9 с.

2. Тип 7 № 

119976 

Материальная точка движется прямолинейно по закону   (где x  — расстояние от точки отсчета в метрах, t  — время в секундах, измеренное с начала движения). Найдите ее скорость в (м/с) в момент времени t  =  6 с.

3. Тип 7 № 

119977 

Материальная точка движется прямолинейно по закону   (где x  — расстояние от точки отсчета в метрах, t  — время в секундах, измеренное с начала движения). Найдите ее скорость в (м/с) в момент времени   с.

4. Тип 7 № 

119978 

Материальная точка движется прямолинейно по закону   (где x  — расстояние от точки отсчета в метрах, t  — время в секундах, измеренное с начала движения). В какой момент времени (в секундах) ее скорость была равна 3 м/с?

5. Тип 7 № 

119979 

Материальная точка движется прямолинейно по закону   (где x  — расстояние от точки отсчета в метрах, t  — время в секундах, измеренное с начала движения). В какой момент времени (в секундах) ее скорость была равна 2 м/с?

6. Тип 7 № 

501059 

Материальная точка M начинает движение из точки A и движется по прямой на протяжении 12 секунд. График показывает, как менялось расстояние от точки A до точки M со временем. На оси абсцисс откладывается время t в секундах, на оси ординат  — расстояние s.

Определите, сколько раз за время движения скорость точки M обращалась в ноль (начало и конец движения не учитывайте).

1. Тип 7 № 

27489 

На рисунке изображен график функции y = f(x), определенной на интервале (−5; 5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y  =  6 или совпадает с ней.

2. Тип 7 № 

27501 

На рисунке изображен график производной функции f(x), определенной на интервале (−10; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = −2x − 11 или совпадает с ней.

3. Тип 7 № 

27503 

На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

4. Тип 7 № 

510384 

На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

5. Тип 7 № 

510403 

На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

6. Тип 7 № 

510938 

На рисунке изображен график функции y = f(x), определенной на интервале (−6; 5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y  =  −6.

7. Тип 7 № 

27504 

На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

8. Тип 7 № 

27505 

На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

9. Тип 7 № 

27506 

На рисунке изображён график функции   и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

10. Тип 7 № 

40129 

На рисунке изображен график функции y  =  f(x). Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 8. Найдите 

11. Тип 7 № 

40130 

На рисунке изображен график производной функции   Найдите абсциссу точки, в которой касательная к графику   параллельна прямой   или совпадает с ней.

12. Тип 7 № 

40131 

На рисунке изображен график производной функции   Найдите абсциссу точки, в которой касательная к графику   параллельна оси абсцисс или совпадает с ней.

13. Тип 7 № 

27485 

Прямая   параллельна касательной к графику функции   Найдите абсциссу точки касания.

14. Тип 7 № 

27486 

Прямая   является касательной к графику функции   Найдите абсциссу точки касания.

15. Тип 7 № 

119972 

Прямая y = 3x + 1 является касательной к графику функции   ax2 + 2x + 3. Найдите a.

16. Тип 7 № 

119974 

Прямая   является касательной к графику функции   Найдите 

17. Тип 7 № 

119973 

Прямая   является касательной к графику функции   Найдите b, учитывая, что абсцисса точки касания больше 0.

18. Тип 7 № 

515183 

На рисунке изображен график производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y  =  f(x) параллельна прямой y  =  6x или совпадает с ней.

19. Тип 7 № 

525688 

На рисунке изображены график функции   и касательная к этому графику, проведённая в точке x0. Найдите значение производной функции g(x)  =  6f(x) − 3x в точке x0.

20. Тип 7 № 

525689 

На рисунке изображены график функции   и касательная к этому графику, проведённая в точке   Найдите значение производной функции   в точке x0.

21. Тип 7 № 

525690 


На рисунке изображены график функции   и касательная к этому графику, проведённая в точке x0. Уравнение касательной показано на рисунке. Найдите значение производной функции   в точке x0.

22. Тип 7 № 

525691 

На рисунке изображены график функции   и касательная к этому графику, проведённая в точке x0. Уравнение касательной показано на рисунке. Найдите значение функции   в точке x0.

23. Тип 7 № 

525698 

На рисунке изображены график функции   и касательная к этому графику, проведённая в точке x0. Уравнение касательной показано на рисунке. Найдите значение производной функции   в точке x0.
24. Тип 7 № 

525699 

На рисунке изображены график функции   и касательная к этому графику, проведённая в точке x0. Найдите значение производной функции   в точке x0.

Тема 1.

Исключение двух терминов (любой блок)

Вспоминай формулы по каждой теме

Решай новые задачи каждый день

Вдумчиво разбирай решения

ШКОЛКОВО.

Готовиться с нами — ЛЕГКО!

Подтемы раздела

исключение двух терминов (любой блок)

1.01Политика

1.02Право

1.03Социология

1.04Человек и общество

1.05Экономика

Решаем задачу:

Ниже приведён перечень терминов. Все они, за исключением двух, относятся к отличительным признакам научного знания.

1) объективность; 2) проверяемость знаний; 3) образность; 4) системность; 5) логичность; 6) опора на религиозные верования.

Найдите два примера, “выпадающих” из общего ряда, и запишите цифры, под которыми они указаны.  

Показать ответ и решение

Для выполнения данного задания повторите тему “Наука”.
Наука — форма духовной деятельности людей, направленная на производство знаний о природе, человеке и обществе, на постижение истины и открытия объективных законов.
Особенности научного познания: рациональность, объективность, использование специальных способов и методов, специального языка, доказательность, проверяемость, системность, универсальность.
Вернемся к тексту задания: образность и опора на религиозные верования не являются отличительными признаками научного знания. Образность характерна для художественного познания, а опора на религиозные верования для религиозного познания.
 

Автор Сообщение

Заголовок сообщения: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 09:59 

Не в сети
Администратор
  • Центр пользователя

Зарегистрирован: 10 июн 2010, 15:00
Сообщений: 6119

https://alexlarin.net/ege/2023/trvar421.html

Вернуться наверх 

OlegTheMath

Заголовок сообщения: Re: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 11:42 

Не в сети
  • Центр пользователя

Зарегистрирован: 06 май 2012, 21:09
Сообщений: 67

Спасибо за интересный вариант!
421.17

Подробности:

надеюсь, правильно.

Вернуться наверх 

hpbhpb

Заголовок сообщения: Re: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 11:57 

Не в сети
Аватар пользователя
  • Центр пользователя

Зарегистрирован: 18 ноя 2015, 07:49
Сообщений: 1730
Откуда: Ставрополь

OlegTheMath писал(а):

Спасибо за интересный вариант!
421.17

Подробности:

надеюсь, правильно.

Да, правильно.

Вернуться наверх 
Показать сообщения за:  Сортировать по:  

Skip to content

ЕГЭ профильный уровень. №7 Геометрический смысл производной, касательная. Задача 2

ЕГЭ профильный уровень. №7 Геометрический смысл производной, касательная. Задача 2admin2023-03-11T19:34:48+03:00

Задача 2. Прямая (y =  — 2x + 6)  является касательной к графику функции (y = {x^3} — 3{x^2} + x + 5). Найдите абсциссу точки касания.

Чтобы прямая (y =  — 2x + 6)  была касательной (в какой-либо точке) к графику функции (y = {x^3} — 3{x^2} + x + 5), производная от неё должна быть равна угловому коэффициенту касательной, то есть, ( — 2) (коэффициент перед x):

(y’ = {left( {{x^3} — 3{x^2} + x + 5} right)^prime } = 3{x^2} — 6x + 1)

(3{x^2} — 6x + 1 =  — 2,,,,,, Leftrightarrow ,,,,,3{x^2} — 6x + 3 = 0,,,,, Leftrightarrow ,,,,,x = 1.)

Проверим, является ли найденная точка действительно точкой касания. Для этого найдём значение прямой (y =  — 2x + 6) и функции (y = {x^3} — 3{x^2} + x + 5) в точке (x = 1:)

(yleft( 1 right) =  — 2 cdot 1 + 6 = 4)

(yleft( 1 right) = {1^3} — 3 cdot {1^2} + 1 + 5 = 4)

Так как найденные значения равны, то (x = 1) является искомой точкой касания.

Ответ: 1.

Skip to content

Результат поиска:

ЕГЭ профильный уровень. №7 Первообразная. Задача 4

ЕГЭ профильный уровень. №7 Первообразная. Задача 4admin2023-03-11T19:45:32+03:00

Задача 4. На рисунке изображён график некоторой функции (y = fleft( x right)). Функция (Fleft( x right) = {x^3} + 30{x^2} + 302x — frac{{15}}{8}) — одна из первообразных функции (fleft( x right)). Найдите площадь закрашенной фигуры.

Ответ

ОТВЕТ: 6.

Решение

Площадь закрашенной фигуры равна интегралу  (intlimits_{ — 11}^{ — 9} {left( x right)dx}  = Fleft( { — 9} right) — Fleft( { — 11} right).) Найдём значение первообразной в точках   – 9  и   – 11:

(Fleft( { — 9} right) = {left( { — 9} right)^3} + 30 cdot {left( { — 9} right)^2} + 302 cdot left( { — 9} right) — frac{{15}}{8} =  — 729 + 2430 — 2718 — frac{{15}}{8} =  — 1017 — frac{{15}}{8})

(Fleft( { — 11} right) = {left( { — 11} right)^3} + 30 cdot {left( { — 11} right)^2} + 302 cdot left( { — 11} right) — frac{{15}}{8} =  — 1331 + 3630 — 3322 — frac{{15}}{8} =  — 1023 — frac{{15}}{8})

Тогда площадь закрашенной фигуры: 

(S = Fleft( { — 9} right) — Fleft( { — 11} right) =  — 1017 — frac{{15}}{8} — left( { — 1023 — frac{{15}}{8}} right) = 6)

Ответ: 6.

Комментарии для сайта Cackle

Вставить формулу как
Блок
Строка

Дополнительные настройки
Цвет формулы
Цвет текста
#333333

ID формулы

Классы формулы

Используйте LaTeX для набора формулы
Предпросмотр
({})
Формула не набрана

Вставить
Автор Сообщение

Заголовок сообщения: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 09:59 

Не в сети
Администратор
  • Центр пользователя



Зарегистрирован: 10 июн 2010, 15:00
Сообщений: 6119

https://alexlarin.net/ege/2023/trvar421.html

Вернуться наверх 

OlegTheMath

Заголовок сообщения: Re: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 11:42 

Не в сети
  • Центр пользователя



Зарегистрирован: 06 май 2012, 21:09
Сообщений: 67

Спасибо за интересный вариант!
421.17

Подробности:

надеюсь, правильно.

Вернуться наверх 

hpbhpb

Заголовок сообщения: Re: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 11:57 

Не в сети
Аватар пользователя
  • Центр пользователя



Зарегистрирован: 18 ноя 2015, 07:49
Сообщений: 1730
Откуда: Ставрополь

OlegTheMath писал(а):

Спасибо за интересный вариант!
421.17

Подробности:

надеюсь, правильно.

Да, правильно.

Вернуться наверх 

Показать сообщения за:  Сортировать по:  

Решу егэ профиль математика 517739

Задание 12 № 517746

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

А) Из уравнения получаем:

Б) Заметим, что Значит, указанному отрезку принадлежит корень −3.

Ответ: а) −3 и 27; б) −3.

Аналоги к заданию № 517739: 517746 517747 Все

Задание 12 № 517747

Задание 12 № 517746

Задание 12 № 517747

Ответ а 3 и 27; б 3.

Ege. sdamgia. ru

12.01.2020 13:48:01

2020-01-12 13:48:01

Источники:

Https://ege. sdamgia. ru/test? likes=517739

Решу егэ профиль математика 517739 — Математика и Английский » /> » /> .keyword { color: red; } Решу егэ профиль математика 517739

Решу егэ профиль математика 517739

Решу егэ профиль математика 517739

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

Задание 12 № 517746

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

А) Из уравнения получаем:

Б) Заметим, что Значит, указанному отрезку принадлежит корень −3.

Ответ: а) −3 и 27; б) −3.

Аналоги к заданию № 517739: 517746 517747 Все

Задание 12 № 517747

Задание 12 № 517746

Б Заметим, что Значит, указанному отрезку принадлежит корень 3.

Источники:

ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword < color: red; >Решу егэ профиль математика 517739

Решу егэ профиль математика 517739

Решу егэ профиль математика 517739

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

Задание 12 № 514082

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

А) Запишем исходное уравнение в виде:

Б) Поскольку отрезку принадлежит единственный корень −2.

Ответ: а) −2; 1, б) −2.

Почему такое странное ОДЗ?? Где 2-х>0, х>0, следовательно х0; тогда х (0;2)

Екатерина, в решении не находили ОДЗ.

В решении было использован равносильный переход, при котором условия достаточно для решения примера

А у Вас ОДЗ найдено с ошибкой.

Задание 12 № 517739

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

А) Из уравнения получаем:

Б) Заметим, что Значит, указанному отрезку принадлежит только корень −2.

Ответ: а) −2 и 16; б) −2.

В пункте «а» ответ только 16,вы не проверили ОДЗ

В этом уравнении не нужно искать ОДЗ. Это лишнее действие

Задание 12 № 502094

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие промежутку

А) Заметим, что преобразуем исходное уравнение:

Пусть тогда уравнение запишется в виде откуда или

При получим: откуда

При получим: откуда

Б) Корень не принадлежит промежутку Поскольку и корень принадлежит промежутку

Источник: ЕГЭ по математике 19.06.2013. Основная волна, резервный день. Центр. Вариант 502., Задания 13 (С1) ЕГЭ 2013

В строчке а) откуда-то взялась «3»

Путём каких преобразований мы получили ответ log(3)5 ?

1) Уравнение начинается с числе 9 в степени. Т. е. Мы раскладываем 9 как 3*3. Однако в первой строке решения мы видим 9*3. От туда и дальнейшее неверное вычисление.

2) Когда мы возвращаем замену (четвёртая строчка решения) вместо этого (если, допустим, t и правда равно 5/3) должно получиться Х-1= логорифм 5/3 по основанию 3. Верно?

Так ли это? Ибо мне свойственно ошибаться. Это правда ошибка, или я чего-то не понимаю? Если второе, то объясните, если можно.

Задание 12 № 517739

Задание 12 № 502094

Задание 12 502094.

Источники:

ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword < color: red; >Решу егэ профиль математика 517739

Решу егэ профиль математика 517739

Решу егэ профиль математика 517739

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

Диагональ экрана телевизора равна 64 дюймам. Выразите диагональ экрана в сантиметрах, если в одном дюйме 2,54 см. Результат округлите до целого числа сантиметров.

Источники:

ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword < color: red; >Решу егэ профиль математика 517739

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи. До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!

Задание 12 № 514082

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

А) Запишем исходное уравнение в виде:

Б) Поскольку отрезку принадлежит единственный корень −2.

Ответ: а) −2; 1, б) −2.

Почему такое странное ОДЗ?? Где 2-х>0, х>0, следовательно х0; тогда х (0;2)

Екатерина, в решении не находили ОДЗ.

В решении было использован равносильный переход, при котором условия достаточно для решения примера

А у Вас ОДЗ найдено с ошибкой.

Задание 12 № 517739

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

А) Из уравнения получаем:

Б) Заметим, что Значит, указанному отрезку принадлежит только корень −2.

Ответ: а) −2 и 16; б) −2.

В пункте «а» ответ только 16,вы не проверили ОДЗ

В этом уравнении не нужно искать ОДЗ. Это лишнее действие

Задание 12 № 502094

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие промежутку

А) Заметим, что преобразуем исходное уравнение:

Пусть тогда уравнение запишется в виде откуда или

При получим: откуда

При получим: откуда

Б) Корень не принадлежит промежутку Поскольку и корень принадлежит промежутку

Источник: ЕГЭ по математике 19.06.2013. Основная волна, резервный день. Центр. Вариант 502., Задания 13 (С1) ЕГЭ 2013

В строчке а) откуда-то взялась «3»

Путём каких преобразований мы получили ответ log(3)5 ?

1) Уравнение начинается с числе 9 в степени. Т. е. Мы раскладываем 9 как 3*3. Однако в первой строке решения мы видим 9*3. От туда и дальнейшее неверное вычисление.

2) Когда мы возвращаем замену (четвёртая строчка решения) вместо этого (если, допустим, t и правда равно 5/3) должно получиться Х-1= логорифм 5/3 по основанию 3. Верно?

Так ли это? Ибо мне свойственно ошибаться. Это правда ошибка, или я чего-то не понимаю? Если второе, то объясните, если можно.

Задание 12 № 517739

Задание 12 № 502094

Задание 12 502094.

Уско рен ная под го тов ка к ЕГЭ с ре пе ти то ра ми Учи.

Dankonoy. com

16.06.2020 6:45:22

2020-06-16 06:45:22

Источники:

Https://dankonoy. com/ege/ege11/archives/10087

Материал для подготовки к экзамену по математике 1 курс. » /> » /> .keyword { color: red; } Решу егэ профиль математика 517739

Материал для подготовки к экзамену по математике 1 курс

Материал для подготовки к экзамену по математике 1 курс.

нажмите, чтобы узнать подробности

Материал для подготовки к экзамену по математике для 1 курса СПО.

Просмотр содержимого документа
«Материал для подготовки к экзамену по математике 1 курс.»

Логарифмические уравнения

1. Задание 5 № 26646

Найдите корень уравнения

2. Задание 5 № 26647

Найдите корень уравнения

3. Задание 5 № 26648

Найдите корень уравнения

4. Задание 5 № 26649

Найдите корень уравнения

5. Задание 5 № 26657

Найдите корень уравнения

6. Задание 5 № 26658

Найдите корень уравнения

7. Задание 5 № 26659

Найдите корень уравнения

8. Задание 5 № 77380

Решите уравнение

9. Задание 5 № 77381

Решите уравнение

10. Задание 5 № 77382

Решите уравнение Если уравнение имеет более одного корня, в ответе укажите меньший из них.

11. Задание 5 № 315120

Найдите корень уравнения

12. Задание 5 № 315535

Найдите корень уравнения

13. Задание 5 № 525399

Решите уравнение

Тригонометрические уравнения

1. Задание 5 № 26669

Найдите корни уравнения: В ответ запишите наибольший отрицательный корень.


Значениям соответствуют положительные корни.

Если, то и

Если, то и

Значениям соответствуют меньшие значения корней.

Следовательно, наибольшим отрицательным корнем является число

2. Задание 5 № 77376

Решите уравнение В ответе напишите наибольший отрицательный корень.

Значению соответствует Положительным значениям параметра соответствуют положительные значения корней, отрицательным значениям параметра соответствуют меньшие значения корней. Следовательно, наибольшим отрицательным корнем является число −1.

3. Задание 5 № 77377

Решите уравнение В ответе напишите наименьший положительный корень.

Значениям соответствуют отрицательные корни.

Если, то и

Если, то и

Значениям соответствуют большие положительные корни.

Наименьшим положительным решением является 0,5.

Преобразования числовых логарифмических выражений

1. Задание 9 № 26843

Найдите значение выражения

2. Задание 9 № 26844

Найдите значение выражения

3. Задание 9 № 26845

Найдите значение выражения

4. Задание 9 № 26846

Найдите значение выражения

5. Задание 9 № 26847

Найдите значение выражения

6. Задание 9 № 26848

Найдите значение выражения

7. Задание 9 № 26849

Найдите значение выражения

8. Задание 9 № 26850

Найдите значение выражения

9. Задание 9 № 26851

Найдите значение выражения

10. Задание 9 № 26852

Найдите значение выражения

11. Задание 9 № 26853

Найдите значение выражения

12. Задание 9 № 26854

Найдите значение выражения

13. Задание 9 № 26855

Найдите значение выражения

14. Задание 9 № 26856

Найдите значение выражения

15. Задание 9 № 26857

Найдите значение выражения

16. Задание 9 № 26858

Найдите значение выражения

17. Задание 9 № 26859

Найдите значение выражения

18. Задание 9 № 26860

Найдите значение выражения

19. Задание 9 № 26861

Найдите значение выражения

20. Задание 9 № 26862

Найдите значение выражения

21. Задание 9 № 26882

Найдите значение выражения

22. Задание 9 № 26883

Найдите значение выражения

23. Задание 9 № 26885

Найдите значение выражения

24. Задание 9 № 26889

Найдите значение выражения

25. Задание 9 № 26892

Найдите значение выражения

26. Задание 9 № 26893

Найдите значение выражения

27. Задание 9 № 26894

Найдите значение выражения

28. Задание 9 № 26896

Найдите значение выражения

29. Задание 9 № 77418

Вычислите значение выражения:

30. Задание 9 № 505097

Найдите значение выражения

31. Задание 9 № 509086

Найдите значение выражения

32. Задание 9 № 510939

Найдите значение выражения

33. Задание 9 № 525403

Найдите значение выражения

Вычисление значений тригонометрических выражений

1. Задание 9 № 26775

Найдите, если и

2. Задание 9 № 26776

Найдите, если и

3. Задание 9 № 26777

Найдите, если и

4. Задание 9 № 26778

Найдите, если и

5. Задание 9 № 26779

Найдите, если

6. Задание 9 № 26780

Найдите, если

7. Задание 9 № 26783

Найдите значение выражения, если

8. Задание 9 № 26784

Найдите, если и

9. Задание 9 № 26785

Найдите, если и

10. Задание 9 № 26786

Найдите, если

11. Задание 9 № 26787

Найдите, если

12. Задание 9 № 26788

Найдите, если

13. Задание 9 № 26789

Найдите, если

14. Задание 9 № 26790

Найдите, если

15. Задание 9 № 26791

Найдите, если

16. Задание 9 № 26792

Найдите значение выражения, если

17. Задание 9 № 26793

Найдите значение выражения, если

18. Задание 9 № 26794

Найдите, если

19. Задание 9 № 316350

Найдите, если

20. Задание 9 № 501598

Найдите значение выражения

21. Задание 9 № 502014

Найдите значение выражения

22. Задание 9 № 502045

Найдите значение выражения

23. Задание 9 № 502106

Найдите значение выражения

24. Задание 9 № 502285

Найдите значение выражения

25. Задание 9 № 502305

Найдите значение выражения если и

26. Задание 9 № 504410

Найдите значение выражения:

27. Задание 9 № 504824

Найдите значение выражения

28. Задание 9 № 508966

Найдите если

29. Задание 9 № 510424

Найдите если и

30. Задание 9 № 549336

Найдите если и

Преобразования числовых тригонометрических выражений

1. Задание 9 № 26755

Найдите значение выражения

2. Задание 9 № 26756

Найдите значение выражения

3. Задание 9 № 26757

Найдите значение выражения

4. Задание 9 № 26758

Найдите значение выражения

5. Задание 9 № 26759

Найдите значение выражения

6. Задание 9 № 26760

Найдите значение выражения

7. Задание 9 № 26761

Найдите значение выражения

8. Задание 9 № 26762

Найдите значение выражения

9. Задание 9 № 26763

Найдите значение выражения

10. Задание 9 № 26764

Найдите значение выражения

11. Задание 9 № 26765

Найдите значение выражения

12. Задание 9 № 26766

Найдите значение выражения

13. Задание 9 № 26767

Найдите значение выражения

14. Задание 9 № 26769

Найдите значение выражения

15. Задание 9 № 26770

Найдите значение выражения

16. Задание 9 № 26771

Найдите значение выражения

17. Задание 9 № 26772

Найдите значение выражения

18. Задание 9 № 26773

Найдите значение выражения

19. Задание 9 № 26774

Найдите значение выражения

20. Задание 9 № 77412

Найдите значение выражения

21. Задание 9 № 77413

Найдите значение выражения

22. Задание 9 № 77414

Найдите значение выражения:

23. Задание 9 № 245169

Найдите значение выражения

24. Задание 9 № 245170

Найдите значение выражения

25. Задание 9 № 245171

Найдите значение выражения

26. Задание 9 № 245172

Найдите значение выражения

27. Задание 9 № 501701

Найдите значение выражения

28. Задание 9 № 502994

Найдите значение выражения

29. Задание 9 № 503310

Найдите значения выражения

30. Задание 9 № 510013

Найдите если и

31. Задание 9 № 510312

Найдите значение выражения

32. Задание 9 № 510386

Найдите значение выражения

33. Задание 9 № 510405

Найдите значение выражения

34. Задание 9 № 510824

Найдите значение выражения

35. Задание 9 № 510843

Найдите значение выражения

36. Задание 9 № 525113

Найдите значение выражения

37. Задание 9 № 526009

Найдите значение выражения

Ло­га­риф­ми­че­ские и по­ка­за­тель­ные уравнения

1. Задание 13 № 514082

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

2. Задание 13 № 517739

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

3. Задание 13 № 502094

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие промежутку

4. Задание 13 № 516760

А) Решите уравнение:

Б) Определите, какие из его корней принадлежат отрезку

5. Задание 13 № 514623

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

6. Задание 13 № 502053

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

7. Задание 13 № 525377

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

8. Задание 13 № 513605

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

9. Задание 13 № 503127

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

10. Задание 13 № 514081

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащего отрезку

11. Задание 13 № 502999

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку [−1; 2].

12. Задание 13 № 528517

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

13. Задание 13 № 550261

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие промежутку

14. Задание 13 № 555265

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

15. Задание 13 № 555583

А) Решите уравнение

Б) Укажите корни этого уравнения, принадлежащие отрезку

16. Задание 13 № 561853

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку [−2,5; −1,5].

17. Задание 13 № 562032

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку [−0,5; 0,5].

18. Задание 13 № 562757

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

б) Укажите корни этого уравнения, принадлежащие отрезку

Решите уравнение В ответе напишите наименьший положительный корень.

Просмотр содержимого документа «Материал для подготовки к экзамену по математике 1 курс.»

Б Укажите корни этого уравнения, принадлежащие отрезку.

Multiurok. ru

06.02.2020 18:29:01

2020-02-06 18:29:01

Источники:

Https://multiurok. ru/files/material-dlia-podgotovki-k-ekzamenu-po-matematike. html

Like this post? Please share to your friends:
  • Решу егэ математика профиль 514607
  • Решу егэ математика профиль 514387
  • Решу егэ математика профиль 513295
  • Решу егэ математика профиль 511887
  • Решу егэ математика профиль 510384