Найдите все значения параметра a, при каждом из которых система уравнений
имеет ровно два различных решения?
Спрятать решение
Решение.
Заметим, что вместе с каждым решением система имеет также решения Поскольку решений должно быть два, полученные пары должны совпадать.
1. Если то Тогда откуда
Проверка показывает, что при система имеет два решения. При получаем Эта система имеет только одно решение.
2. Если то Тогда этот случай исследован выше.
3. Если то Тогда: откуда
Проверка показывает, что при система имеет два решения.
4. Если то — см. случай 3.
5. Если то — см. случай 2.
6. Если то — см. случай 1.
Приведем другое решение:
При a = 0 первое уравнение описывает точку (0; 0), а второе оси координат и, значит, система имеет единственное решение.
Дальше будем считать, что В этом случае, первое уравнение описывает окружность с центром в (0; 0) и радиусом |a|. При a = 3, второе уравнение снова описывает оси координат и, значит, система имеет четыре решения. При второе уравнение может быть преобразовано в уравнение так как в этом случае, ни x, ни y в ноль не обращаются. Это уравнение гиперболы.
Заметим, теперь, что обе кривые описываемые уравнениями системы симметричны относительно начала координат, значит, два решения система будет иметь только в случае касания окружности и гиперболы. Рассмотрим уравнение описывающее точки их пересечения
Сделаем замену тогда, в случае касания, уравнение должно иметь единственный положительный корень. Заметим, что если оно имеет корни, то это, либо два корня одного знака, либо один корень. Значит, нас интересует случай, когда его дискриминант равен нулю и единственный корень при этом положительный.
Проверка показывает, что при a = 2 и a = 6 уравнение имеет положительный корень, a = 0 не подходит.
Ответ:
Спрятать критерии
Критерии проверки:
Критерии оценивания выполнения задания | Баллы |
---|---|
Обоснованно получен правильный ответ. | 4 |
С помощью верного рассуждения получено множество значений a, отличающееся от искомого конечным числом точек. | 3 |
С помощью верного рассуждения получены все граничные точки искомого множества значений a | 2 |
Верно найдена хотя бы одна граничная точка искомого множества значений a | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
Источник: ЕГЭ по математике 11.04.2018. Досрочная волна, резервная волна. Запад (часть С)
ЕГЭ по математике — Профиль 2022. Открытый банк заданий с ответами.
Пробные варианты ЕГЭ 2022 по математике профильного уровня из различных источников.
Пробные варианты ЕГЭ 2022 по математике (профиль)
egemath.ru | |
Вариант 10 | скачать |
Вариант 11 | скачать |
Вариант 12 | скачать |
Вариант 13 | скачать |
Вариант 14 | скачать |
Вариант 15 | скачать |
Вариант 16 | скачать |
Вариант 17 | скачать |
ЕГЭ 100 баллов (с решениями) | |
Вариант 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 20 | скачать |
variant 21 | скачать |
math100.ru (с ответами) | |
variant 150 | math100-ege22-v150 |
variant 151 | math100-ege22-v151 |
variant 152 | math100-ege22-v152 |
variant 153 | math100-ege22-v153 |
variant 154 | math100-ege22-v154 |
variant 155 | math100-ege22-v155 |
variant 156 | math100-ege22-v156 |
variant 157 | math100-ege22-v157 |
variant 158 | math100-ege22-v158 |
variant 159 | math100-ege22-v159 |
variant 160 | math100-ege22-v160 |
variant 161 | math100-ege22-v161 |
alexlarin.net | |
Вариант 370 | проверить ответы |
Вариант 371 | проверить ответы |
Вариант 372 | проверить ответы |
Вариант 373 | проверить ответы |
Вариант 374 | проверить ответы |
Вариант 375 | проверить ответы |
Вариант 376 | проверить ответы |
Вариант 377 | проверить ответы |
Вариант 378 | проверить ответы |
Вариант 379 | проверить ответы |
vk.com/pro_matem | |
variant 1 | pro_matem-prof-ege22-var1 |
variant 2 | pro_matem-prof-ege22-var2 |
variant 3 | pro_matem-prof-ege22-var3 |
variant 4 | разбор |
→ Купить сборники тренировочных вариантов ЕГЭ 2022 по математике |
Инструкция по выполнению работы
Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий с кратким ответом базового и повышенного уровней сложности.
Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.
На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).
Ответы к заданиям 1–11 записываются по приведённому образцу в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите их в бланк ответов № 1
При выполнении заданий 12–18 требуется записать полное решение и ответ в бланке ответов № 2.
Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.
При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы
Связанные страницы:
Пробные варианты ЕГЭ 2022 по математике (базовый уровень)
Сборник задач по стереометрии для 10-11 классов
Задание 10 по профильной математике — новые задачи по теории вероятностей в ЕГЭ-2022
Тест по теме «Производная» 11 класс алгебра с ответами
Основные тригонометрические тождества и формулы
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами — ЛЕГКО!
Подтемы раздела
задание – задача
22.01Политика
22.02Право
22.03Социология
22.04Человек и общество
22.05Экономика
Решаем задачу:
В государстве Z развиваются новейшие коммуникационные технологии и сервисы, внедряются инновации, осуществляется переход к электронике на всех уровнях производственной деятельности, постоянно возрастает роль науки и образования в жизни общества. При подключении библиотек к единой компьютеризированной системе три четверти библиотекарей страны Z потеряли работу, пополнив ряды безработных.
К какому типу относится общество Z? Какой тип безработицы иллюстрирует этот пример? Каковы обязательные условия для получения статуса безработного? (Укажите любые два таких условия.) Каковы возможные социально-психологические последствия для семьи человека, который долгое время не может найти работу? (Назовите любые два последствия.)
Показать ответ и решение
Указания по оцениванию
Верно даны ответы на все вопросы – 4 балла
Верно даны ответы на любые 3 вопроса – 3 балла
Верно даны ответы на любые 2 вопроса – 2 балла
Верно дан ответ на любой 1 вопрос – 1 балл
Ответ:
Правильный ответ должен содержать следующие элементы:
1) ответ на первый вопрос, например: информационное (постиндустриальное);
2) ответ на второй вопрос: структурная;
3) ответ на третий вопрос:
— отсутствие работы и заработка;
— регистрация в службе занятости в целях поиска подходящей работы;
— готовность приступить к работе;
(Ответ на третий вопрос засчитывается только при указании двух или более условий.)
4) ответ на четвёртый вопрос:
— психологическая травма, ведущая к алкоголизм, наркомании, самоубийствам;
— потеря самоуважения;
— упадок моральных устоев;
— распад семьи.
Могут быть названы другие социально-психологические последствия.
Ответ на четвёртый вопрос засчитывается только при указании двух или более последствий.
Ответы на вопросы могут быть даны в других формулировках, не искажающих смысла соответствующих элементов ответа
509412 математика егэ
Задание 2 № 509412
У Вити в копилке лежит 12 рублёвых, 6 двухрублёвых, 4 пятирублёвых и 3 десятирублёвых монеты. Витя наугад достаёт из копилки одну монету. Найдите вероятность того, что оставшаяся в копилке сумма составит более 70 рублей.
У Вити в копилке лежит 12 + 6 + 4 + 3 = 25 монет на сумму 12 + 12 + 20 + 30 = 74 рубля. Больше 70 рублей останется, если достать из копилки либо рублёвую, либо двухрублёвую монету. Таких монет 12 + 6 = 18. Искомая вероятность равна 18 : 25 = 0,72.
Задание 2 № 509412
Найдите вероятность того, что оставшаяся в копилке сумма составит более 70 рублей.
Math-ege. sdamgia. ru
25.02.2018 9:29:25
2018-02-25 09:29:25
Источники:
Https://math-ege. sdamgia. ru/problem? id=509412
ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 509412 математика егэ
509412 математика егэ
509412 математика егэ
Задание 2 № 509433
У Дины в копилке лежит 7 рублёвых, 5 двухрублёвых, 6 пятирублёвых и 2 десятирублёвых монеты. Дина наугад достаёт из копилки одну монету. Найдите вероятность того, что оставшаяся в копилке сумма составит менее 60 рублей.
У Дины в копилке лежит 7 + 5 + 6 + 2 = 20 монет на сумму 7 + 10 + 30 + 20 = 67 рублей. Менее 60 рублей останется, если достать из копилки десятирублёвую монету. Искомая вероятность равна 2 : 20 = 0,1.
Задание 2 № 509433
509412 математика егэ.
Ege. sdamgia. ru
04.07.2017 10:55:10
2017-07-04 10:55:10
Источники:
Https://ege. sdamgia. ru/test? likes=509412
ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 509412 математика егэ
509412 математика егэ
509412 математика егэ
А) Решите уравнение
Б) Найдите все корни этого уравнения, принадлежащие отрезку
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания — точка C1, причём CC1 — образующая цилиндра, а AC — диаметр основания. Известно, что
А) Докажите, что угол между прямыми и BC равен
Б) Найдите объём цилиндра.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
15-го января планируется взять кредит в банке на сумму 2,4 млн рублей на 24 месяца. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Какую сумму нужно выплатить банку в первые 12 месяцев?
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17.
А) Докажите, что диагонали перпендикулярны.
Б) Найдите площадь трапеции.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения A, при которых уравнение
Имеет ровно два различных корня.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
На конкурсе «Мисс−261» выступление каждой участницы оценивают шесть судей. Каждый судья выставляет оценку — целое число баллов от 0 до 10 включительно. Известно, что за выступление участницы С все члены жюри выставили различные оценки. По старой системе оценивания итоговый балл за выступление определяется как среднее арифметическое всех оценок судей. По новой системе оценивания итоговый балл вычисляется следующим образом: отбрасываются две наибольшие оценки, и считается среднее арифметическое четырех оставшихся оценок.
А) Может ли разность итоговых баллов, вычисленных по старой и новой системам оценивания, быть равной 18?
Б) Может ли разность итоговых баллов, вычисленных по старой и новой системам оценивания, быть равной
В) Найдите наименьшее возможное значение разности итоговых баллов, вычисленных по старой и новой системам оценивания.
Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
На следующей странице вам будет предложено проверить их самостоятельно.
Math-ege. sdamgia. ru
11.04.2018 21:52:23
2018-04-11 21:52:23
Источники:
Https://math-ege. sdamgia. ru/test? id=44902083
3069 | а) Решите уравнение 2sin^3(pi+x)=1/2cos(x-(3pi)/2) б) Найдите все корни уравнения, принадлежащие отрезку [-(7pi)/2; -(5pi)/2]. Решение График |
а) Решите уравнение 2sin 3 (pi +x) =1/2 cos(x — 3/2 pi) ! 36 вариантов ФИПИ Ященко 2022 Вариант 1 Задание 12 | |
3068 | Решите неравенство (4^x-5*2^x)^2-20(4^x-5*2^x) <= 96 Решение График |
Решите неравенство (4 x -5 2 x) 2 -20(4 x-5 2 x) <= 96 ! 36 вариантов ФИПИ Ященко 2022 Вариант 1 Задание 14 | |
2859 | Решите неравенство (25^x-4*5^x)^2+8*5^x < 2*25^x+15 Решение График |
Решите неравенство (25 x -4 5 x) 2 + 8 5 x < 2 25 x + 15 ! ЕГЭ по математике профильного уровня 07-06-2021 основная волна Задание 15 (15.3) # Математика 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 2 Задание 14 | |
2549 | а) Решите уравнение sin^4(x/4)-cos^4(x/4)=cos(x-pi/2) б) Найдите все корни этого уравнения, принадлежащие отрезку [-(3pi)/2; pi]. Решение График |
Решите уравнение sin^4(x/4) -cos^4(x/4) = cos(x-pi/2) ! 36 вариантов ФИПИ Ященко 2022 Вариант 15 Задание 12 #36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 5 Задание 13 | |
2548 | Решите неравенство (2*0.5^(x+2)-0.5*2^(x+2)). (2log_{0.5)^2(x+2)-0.5log_{2}(x+2)) <= 0. Решение График |
Решите неравенство (2*0.5^(x+2)- 0.5*2^(x+ 2)) (2log^2_{0.5)(x+2)- 0.5log_{2}(x+ 2)) <= 0 ! 36 вариантов ФИПИ Ященко 2022 Вариант 15 Задание 14 #36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 5 Задание 15 | |
2543 | Решите неравенство lg^4(x^2-26)^4-4lg^2(x^2-26)^2 <= 240. Решение График |
Решите неравенство lg^4(x^2 -26)^4 -4lg^2(x^2 -26)^2 <= 240 ! 36 вариантов ФИПИ Ященко 2022 Вариант 14 Задание 14 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 4 Задание 15 | |
2532 | а) Решите уравнение (x^2+2x-1)(log_{2}(x^2-3)+log_{0.5}(sqrt(3)-x))=0 б) Найдите все корни этого уравнения, принадлежащие отрезку [-2.5; -1.5] Решение График |
Решите уравнение (x^2+ 2x -1)(log_{2}(x^2 -3)+ log_{0.5}(sqrt(3) -x))=0 ! 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 3 Задание 13 | |
2531 | Решите неравенство (4^(x-0.5)+1)/(9*4^x-16^(x+0.5)-2) <= 0.5 Решение График |
Решите неравенство (4^(x-0,5)+ 1)/ (9*4^x-16^(x+0,5) -2) <= 0,5 ! 36 вариантов ФИПИ Ященко 2022 Вариант 13 Задание 14 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 3 Задание 15 | |
2524 | Решите неравенство x^2*log_{243}(-x-3) >= log_{3}(x^2+6x+9) Решение График |
Решите неравенство x^2* log_{243}(-x- 3) >= log_{3}(x^2+ 6x+9) ! 36 вариантов ФИПИ Ященко 2022 Вариант 12 Задание 14 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 2 Задание 15 # Задача-Аналог 2367 | |
- ЗАДАЧИ ЕГЭ С ОТВЕТАМИ
- АНГЛИЙСКИЙ без ГРАНИЦ
2012-07-26
НЕ ОТКЛАДЫВАЙ! Заговори на английском!
ДОЛОЙ обидные ошибки на ЕГЭ!!
Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!
Конструктор упражнений для позвоночника!
Добавить комментарий
*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.
- РубрикиРубрики
- Задачи по номерам!
№1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16
- МЕТКИ
БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие
- ОСТЕОХОНДРОЗУ-НЕТ!