Решу егэ математика профиль 520493

Расстояние между городами A и B равно 403 км. Из города A в город B выехал автомобиль, а через 1 час следом за ним со скоростью 90 км/ч выехал мотоцикл, догнал автомобиль в городе C и повернул обратно. Когда мотоцикл вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.

Спрятать решение

Решение.

Обозначим S км  — расстояние от A до C,  v км/ч  — скорость автомобиля, t ч  — время движения мотоциклиста от A до C. Тогда  левая круглая скобка t плюс 1 правая круглая скобка v = 90t и  левая круглая скобка 2t плюс 1 правая круглая скобка v = 403. Решим систему полученных уравнений:

 система выражений  новая строка левая круглая скобка t плюс 1 правая круглая скобка v = 90t,  новая строка левая круглая скобка 2t плюс 1 правая круглая скобка v = 403 конец системы . равносильно система выражений  новая строка дробь: числитель: левая круглая скобка t плюс 1 правая круглая скобка v , знаменатель: левая круглая скобка 2t плюс 1 правая круглая скобка v конец дроби = дробь: числитель: 90t, знаменатель: 403 конец дроби  новая строка левая круглая скобка 2t плюс 1 правая круглая скобка v = 403  конец системы . равносильно система выражений  новая строка дробь: числитель: 2t плюс 2, знаменатель: 2t плюс 1 конец дроби = дробь: числитель: 180t, знаменатель: 403 конец дроби ,  новая строка левая круглая скобка 2t плюс 1 правая круглая скобка v = 403  конец системы . равносильно система выражений  новая строка t=2,6,  новая строка v =65. конец системы .

Тогда  S = 90t= 234 км.

Ответ: 234.

Skip to content

Результат поиска:

ЕГЭ профильный уровень. №7 Первообразная. Задача 4

ЕГЭ профильный уровень. №7 Первообразная. Задача 4admin2023-03-11T19:45:32+03:00

Задача 4. На рисунке изображён график некоторой функции (y = fleft( x right)). Функция (Fleft( x right) = {x^3} + 30{x^2} + 302x — frac{{15}}{8}) — одна из первообразных функции (fleft( x right)). Найдите площадь закрашенной фигуры.

Ответ

ОТВЕТ: 6.

Решение

Площадь закрашенной фигуры равна интегралу  (intlimits_{ — 11}^{ — 9} {left( x right)dx}  = Fleft( { — 9} right) — Fleft( { — 11} right).) Найдём значение первообразной в точках   – 9  и   – 11:

(Fleft( { — 9} right) = {left( { — 9} right)^3} + 30 cdot {left( { — 9} right)^2} + 302 cdot left( { — 9} right) — frac{{15}}{8} =  — 729 + 2430 — 2718 — frac{{15}}{8} =  — 1017 — frac{{15}}{8})

(Fleft( { — 11} right) = {left( { — 11} right)^3} + 30 cdot {left( { — 11} right)^2} + 302 cdot left( { — 11} right) — frac{{15}}{8} =  — 1331 + 3630 — 3322 — frac{{15}}{8} =  — 1023 — frac{{15}}{8})

Тогда площадь закрашенной фигуры: 

(S = Fleft( { — 9} right) — Fleft( { — 11} right) =  — 1017 — frac{{15}}{8} — left( { — 1023 — frac{{15}}{8}} right) = 6)

Ответ: 6.

Комментарии для сайта Cackle

Вставить формулу как
Блок
Строка

Дополнительные настройки
Цвет формулы
Цвет текста
#333333

ID формулы

Классы формулы

Используйте LaTeX для набора формулы
Предпросмотр
({})
Формула не набрана

Вставить

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Задачи из сборников Ященко, 2021 год

Квадратные уравнения

Показательные уравнения

Логарифмические уравнения

Модуль числа

Уравнения с модулем

Тригонометрический круг

Формулы тригонометрии

Формулы приведения

Простейшие тригонометрические уравнения 1

Простейшие тригонометрические уравнения 2

Тригонометрические уравнения

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть tg x — помним, что он существует, только если {cos xne 0}.

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi}{3}+2pi n , где n — целое, а найти надо корни на отрезке left [frac{5 pi}{2};frac{9 pi}{2} right ]. На указанном промежутке лежит точка 4 pi. От нее и будем отсчитывать. Получим: x=4 pi +frac{pi}{3}=frac{13 pi}{3}.

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

Давайте потренируемся.

а) Решите уравнение 2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

б) Найдите все корни этого уравнения, принадлежащие промежутку left[-3pi right.;left.-frac{3pi }{2}right]

2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

Упростим левую часть по формуле приведения.

2{{cos}^2 x+sqrt{3}{cos x}=0}

Вынесем {cos x} за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-3pi right.;left.-frac{3pi }{2}right].

Видим, что указанному отрезку принадлежат решения -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Ответ: -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi }{3}+2pi n, где n — целое, а найти надо корни на отрезке [frac{5pi }{2};frac{9pi }{2}]. На указанном промежутке лежит точка 4 pi. От нее и отсчитываем.

Получим: x=4pi +frac{pi }{3}=frac{13pi }{3}.

2. а) Решите уравнение {({27}^{{cos x}})}^{{sin x}}=3^{frac{3{cos x}}{2}}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

а) 3^{3{cos x{sin x}}}=3^{frac{3{cos x}}{2}}

Степени равны, их основания равны. Значит, равны и показатели.

3{cos x{sin x}}=frac{3{cos x}}{2}

2{cos x{sin x-{cos x=0}}}

{cos x({sin x-frac{1}{2})=0}}

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Отметим на тригонометрическом круге отрезок left[-pi ;frac{pi }{2}right] и найденные серии решений.

Видим, что указанному отрезку принадлежат точки x=-frac{pi }{2} и x=frac{pi }{2} из серии x=frac{pi }{2}+pi n,nin z.

Точки серии x=frac{5pi }{6}+2pi n,nin z не входят в указанный отрезок.

А из серии x=frac{pi }{6}+2pi n,nin z в указанный отрезок входит точка x=frac{pi }{6}.

Ответ в пункте (б): -frac{pi }{2},frac{pi }{6} , frac{pi }{2}.

3. а) Решите уравнение {cos 2x}+{{sin}^2 x=0,5}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{7pi }{2}right.;left.-2pi right].

а)
{cos 2x}+{{sin}^2 x=0,5}

Применим формулу косинуса двойного угла: boldsymbol{cos2alpha =1-{2sin}^2alpha }

1-2{{sin}^2 x}+{{sin}^2 x}=0,5

{{-sin}^2 x=-0,5}

{{sin}^2 x=0,5}

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке left[-frac{7pi }{2}right.;left.-2pi right] с помощью двойного неравенства.

Сначала серия x=frac{pi }{4}+pi n,nin Z.

-frac{7pi }{2}le frac{pi }{4}+pi nle -2pi

-frac{7}{2}le frac{1}{4}+nle -2

-3,75le nle -2,25

n=-3, x_1=frac{pi }{4}-3pi =-frac{11pi }{4}

Теперь серия x=-frac{pi }{4}+pi n,nin Z

-frac{7pi }{2}le -frac{pi }{4}+pi nle -2pi

-frac{7}{2}le -frac{1}{4}+nle -2

-3,25le nle -1,75

n=-3, x_2=-frac{pi }{4}-3pi =-frac{13pi }{4}

n=-2, x_3=-frac{pi }{4}-2pi =-frac{9pi }{4}

Ответ: -frac{13pi }{4};-frac{11pi }{4};-frac{9pi }{4} .

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии x=-frac{pi }{4}+2pi n,nin Z на отрезке left[-frac{pi }{2}right.;left.20pi right]. Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение left({tg}^2x-3right)sqrt{11{cos x}}=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{5pi }{2};-pi right].

Самое сложное здесь — область допустимых значений (ОДЗ). Условие {11cos x}ge 0 заметно сразу. А условие {cos x}ne 0 появляется, поскольку в уравнении есть {tg x=frac{{sin x}}{{cos x}}}.

ОДЗ:

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси Y.

Ответ в пункте а) x=pm frac{pi }{3}+2pi n, nin z

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-frac{5pi }{2};-pi right].

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

x=frac{pi }{3}-2pi =-frac{5pi }{3} и x=-frac{pi }{3}-2pi =-frac{7pi }{3}.

5. а) Решите уравнение sqrt{{cos x+{sin x}}}({{cos}^2 x-frac{1}{2})=0}

б) Найдите корни, принадлежащие отрезку [-pi ;4pi ].

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых {cos x}=frac{sqrt{2}}{2} или {cos x}=-frac{sqrt{2}}{2}. Заметим, что среди них находятся и углы, для которых tgx=-1.

Числа серии x=-frac{3pi }{4}+2pi n не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие {cos x+{sin x}}ge 0. Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку [-pi ;4pi ] любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

На отрезке left[-pi ;0right] нам подходит корень x =-frac{pi }{4}.

На отрезке left[0;2pi right] нам подходят корни x=frac{pi }{4};frac{3pi }{4};frac{7pi }{4}.

На отрезке left[2pi ;4pi right] — корни x= frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Ответ в пункте б): -frac{pi }{4};frac{3pi }{4};frac{7pi }{4};frac{pi }{4};frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задание №12. Уравнения u0026#8212; профильный ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

520493 решу егэ математика

Задание 8 № 113155

Расстояние между городами A и B равно 630 км. Из города A в город B выехал автомобиль, а через 2 часа следом за ним со скоростью 60 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.

Это задание ещё не решено, приводим решение прототипа.

Расстояние между городами A и B равно 150 км. Из города A в город B выехал автомобиль, а через 30 минут следом за ним со скоростью 90 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в Найдите расстояние от A до Ответ дайте в километрах.

Обозначим S км — расстояние от A до C, км/ч — скорость автомобиля, T ч — время движения мотоциклиста от A до C. Тогда и Решим систему полученных уравнений:

Приведём другой способ решения.

Обозначим υ км — скорость автомобиля. В момент выезда мотоциклиста между автомобилем и мотоциклом было 0,5υ км, и мотоциклист догонит автомобиль в городе C за ч. За это же время мотоцикл вернётся в A, а автомобиль доедет до B.

Всего автомобиль затратит времени За это время он со скоростью υ проедет 150 км. Получим уравнение:

Положительный корень уравнения Тогда мотоцикл затратит на дорогу до C час, а поскольку его скорость равна 90, то расстояние до C равно 90 км.

Задание 8 № 113155

520493 решу егэ математика.

Math-ege. sdamgia. ru

01.07.2017 15:07:31

2017-07-01 15:07:31

Источники:

Https://math-ege. sdamgia. ru/problem? id=113155

ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 520493 решу егэ математика

520493 решу егэ математика

520493 решу егэ математика

Задание 8 № 520493

Расстояние между городами A и B равно 403 км. Из города A в город B выехал автомобиль, а через 1 час следом за ним со скоростью 90 км/ч выехал мотоцикл, догнал автомобиль в городе C и повернул обратно. Когда мотоцикл вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.

Обозначим км — расстояние от A до C, км/ч — скорость автомобиля, T ч — время движения мотоциклиста от A до C. Тогда и Решим систему полученных уравнений:

Задание 8 № 520493

Расстояние между городами A и B равно 403 км.

Ege. sdamgia. ru

09.04.2018 2:04:43

2018-04-09 02:04:43

Источники:

Https://ege. sdamgia. ru/problem? id=520493

ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } 520493 решу егэ математика

520493 решу егэ математика

520493 решу егэ математика

Задание 8 № 113155

Расстояние между городами A и B равно 630 км. Из города A в город B выехал автомобиль, а через 2 часа следом за ним со скоростью 60 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.

Это задание ещё не решено, приводим решение прототипа.

Расстояние между городами A и B равно 150 км. Из города A в город B выехал автомобиль, а через 30 минут следом за ним со скоростью 90 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в Найдите расстояние от A до Ответ дайте в километрах.

Обозначим S км — расстояние от A до C, км/ч — скорость автомобиля, T ч — время движения мотоциклиста от A до C. Тогда и Решим систему полученных уравнений:

Приведём другой способ решения.

Обозначим υ км — скорость автомобиля. В момент выезда мотоциклиста между автомобилем и мотоциклом было 0,5υ км, и мотоциклист догонит автомобиль в городе C за ч. За это же время мотоцикл вернётся в A, а автомобиль доедет до B.

Всего автомобиль затратит времени За это время он со скоростью υ проедет 150 км. Получим уравнение:

Положительный корень уравнения Тогда мотоцикл затратит на дорогу до C час, а поскольку его скорость равна 90, то расстояние до C равно 90 км.

Задание 8 № 113155

Из города A в город B выехал автомобиль, а через 30 минут следом за ним со скоростью 90 км ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно.

Ege. sdamgia. ru

15.01.2019 13:01:56

2019-01-15 13:01:56

Источники:

Https://ege. sdamgia. ru/problem? id=113155

Автор Сообщение

Заголовок сообщения: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 09:59 

Не в сети
Администратор
  • Центр пользователя



Зарегистрирован: 10 июн 2010, 15:00
Сообщений: 6119

https://alexlarin.net/ege/2023/trvar421.html

Вернуться наверх 

OlegTheMath

Заголовок сообщения: Re: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 11:42 

Не в сети
  • Центр пользователя



Зарегистрирован: 06 май 2012, 21:09
Сообщений: 67

Спасибо за интересный вариант!
421.17

Подробности:

надеюсь, правильно.

Вернуться наверх 

hpbhpb

Заголовок сообщения: Re: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 11:57 

Не в сети
Аватар пользователя
  • Центр пользователя



Зарегистрирован: 18 ноя 2015, 07:49
Сообщений: 1730
Откуда: Ставрополь

OlegTheMath писал(а):

Спасибо за интересный вариант!
421.17

Подробности:

надеюсь, правильно.

Да, правильно.

Вернуться наверх 

Показать сообщения за:  Сортировать по:  

 Жуки (2019)

WEB-DL

  • Год выхода: 2019
  • Страна: Россия
  • Жанр: Комедия
  • Режиссер: Константин Смирнов, Константин Колесов
  • Актёры: Вячеслав Чепурченко, Павел Комаров, Вадим Дубровин, Максим Лагашкин, Екатерина Стулова
  • Сезоны: 1-3 сезон
  • Серии: 1-16 серия
  • Время: 00:30

Никита, Дэн и Артемий разработали уникальное приложение для смартфонов, вот-вот продадут его и осуществят все свои мечты. Но в последний момент многомиллионная сделка срывается и парней забирают в армию. Чтобы не ставить под угрозу успех своего стартапа, они выбирают альтернативную службу в глухой деревне Жуки, где будут пытаться довести свой проект до конца. Только не так просто разрабатывать приложение там, где нет даже интернета…

Смотреть онлайн Жуки (2019) в хорошем качестве HD

Плеер 1
Плеер 2

В закладки

Like this post? Please share to your friends:
  • Решу егэ математика профиль 519662
  • Решу егэ математика профиль 515183
  • Решу егэ математика профиль 514607
  • Решу егэ математика профиль 514387
  • Решу егэ математика профиль 513295