Решу егэ математика профиль формулы приведения

Поиск

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 172    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Найдите значение выражения  дробь: числитель: 51 косинус 4 в степени левая круглая скобка circ правая круглая скобка , знаменатель: синус 86 в степени левая круглая скобка circ правая круглая скобка конец дроби плюс 8.

Источник: ЕГЭ по математике 23.04.2013. Досрочная волна. Запад. Вариант 1.


Найдите значение выражения  дробь: числитель: 3 косинус левая круглая скобка Пи минус бета правая круглая скобка плюс синус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс бета правая круглая скобка , знаменатель: косинус левая круглая скобка бета плюс 3 Пи правая круглая скобка конец дроби .

Раздел: Алгебра

Источник: Пробный экзамен Санкт-Петербург 2015. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1.


Найдите значение выражения  дробь: числитель: 2 синус 136 градусов, знаменатель: синус 68 градусов умножить на синус 22 градусов конец дроби .

Источник: ЕГЭ по математике 02.06.2022. Основная волна. Краснодарский край


Найдите значение выражения 5 синус левая круглая скобка альфа минус 7 Пи правая круглая скобка минус 11 косинус левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка , если  синус альфа = минус 0,25.


Найдите значение выражения 7 косинус левая круглая скобка Пи плюс бета правая круглая скобка минус 2 синус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс бета правая круглая скобка , если  косинус бета = минус дробь: числитель: 1, знаменатель: 3 конец дроби .


Найдите значение выражения 16 корень из 2 косинус 585 градусов.


Найдите значение выражения  дробь: числитель: 13 синус 152 в степени левая круглая скобка circ правая круглая скобка , знаменатель: косинус 76 в степени левая круглая скобка circ правая круглая скобка умножить на косинус 14 в степени левая круглая скобка circ правая круглая скобка конец дроби .

Источник: Досрочный ЕГЭ по математике (Центр) 30.03.2018

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите  тангенс левая круглая скобка альфа плюс дробь: числитель: 5 Пи , знаменатель: 2 конец дроби правая круглая скобка , если  тангенс альфа =0,4.


Найдите значение выражения 2 косинус левая круглая скобка Пи плюс бета правая круглая скобка плюс 5 синус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс бета правая круглая скобка , если  косинус бета = минус дробь: числитель: 2, знаменатель: 3 конец дроби .


Найдите значение выражения  корень из 2 синус дробь: числитель: 7 Пи , знаменатель: 8 конец дроби косинус дробь: числитель: 7 Пи , знаменатель: 8 конец дроби .

Источник: ЕГЭ по математике 02.06.2022. Основная волна. Восток



Найдите значение выражения  дробь: числитель: 3 косинус левая круглая скобка Пи минус бета правая круглая скобка плюс синус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс бета правая круглая скобка , знаменатель: косинус левая круглая скобка бета плюс 3 Пи правая круглая скобка конец дроби .

Раздел: Алгебра

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите значение выражения  синус 46 в степени левая круглая скобка circ правая круглая скобка косинус 134 в степени левая круглая скобка circ правая круглая скобка плюс синус 134 в степени левая круглая скобка circ правая круглая скобка косинус 46 в степени левая круглая скобка circ правая круглая скобка .

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите значение выражения  дробь: числитель: 2 косинус левая круглая скобка минус 3 Пи минус бета правая круглая скобка плюс синус левая круглая скобка минус дробь: числитель: Пи , знаменатель: 2 конец дроби плюс бета правая круглая скобка , знаменатель: 3 косинус левая круглая скобка бета плюс Пи правая круглая скобка конец дроби .

Раздел: Алгебра

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите значение выражения  дробь: числитель: 3 синус левая круглая скобка альфа минус Пи правая круглая скобка минус косинус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка , знаменатель: синус левая круглая скобка альфа минус Пи правая круглая скобка конец дроби .

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите  тангенс левая круглая скобка альфа плюс дробь: числитель: Пи , знаменатель: 2 конец дроби правая круглая скобка , если  тангенс альфа =0,5.

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите значение выражения 3 синус левая круглая скобка альфа плюс Пи правая круглая скобка плюс 2 косинус левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка , если  синус альфа = минус 0,3.

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите значение выражения  дробь: числитель: 14 синус 19 градусов , знаменатель: синус 341 градусов конец дроби .


Найдите значение выражения  дробь: числитель: 4 косинус 146 градусов , знаменатель: косинус 34 градусов конец дроби .

Всего: 172    1–20 | 21–40 | 41–60 | 61–80 …

Поиск

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 172    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Найдите значение выражения  дробь: числитель: 51 косинус 4 в степени левая круглая скобка circ правая круглая скобка , знаменатель: синус 86 в степени левая круглая скобка circ правая круглая скобка конец дроби плюс 8.

Источник: ЕГЭ по математике 23.04.2013. Досрочная волна. Запад. Вариант 1.


Найдите значение выражения  дробь: числитель: 3 косинус левая круглая скобка Пи минус бета правая круглая скобка плюс синус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс бета правая круглая скобка , знаменатель: косинус левая круглая скобка бета плюс 3 Пи правая круглая скобка конец дроби .

Раздел: Алгебра

Источник: Пробный экзамен Санкт-Петербург 2015. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1.


Найдите значение выражения  дробь: числитель: 2 синус 136 градусов, знаменатель: синус 68 градусов умножить на синус 22 градусов конец дроби .

Источник: ЕГЭ по математике 02.06.2022. Основная волна. Краснодарский край


Найдите значение выражения 5 синус левая круглая скобка альфа минус 7 Пи правая круглая скобка минус 11 косинус левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка , если  синус альфа = минус 0,25.


Найдите значение выражения 7 косинус левая круглая скобка Пи плюс бета правая круглая скобка минус 2 синус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс бета правая круглая скобка , если  косинус бета = минус дробь: числитель: 1, знаменатель: 3 конец дроби .


Найдите значение выражения 16 корень из 2 косинус 585 градусов.


Найдите значение выражения  дробь: числитель: 13 синус 152 в степени левая круглая скобка circ правая круглая скобка , знаменатель: косинус 76 в степени левая круглая скобка circ правая круглая скобка умножить на косинус 14 в степени левая круглая скобка circ правая круглая скобка конец дроби .

Источник: Досрочный ЕГЭ по математике (Центр) 30.03.2018

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите  тангенс левая круглая скобка альфа плюс дробь: числитель: 5 Пи , знаменатель: 2 конец дроби правая круглая скобка , если  тангенс альфа =0,4.


Найдите значение выражения 2 косинус левая круглая скобка Пи плюс бета правая круглая скобка плюс 5 синус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс бета правая круглая скобка , если  косинус бета = минус дробь: числитель: 2, знаменатель: 3 конец дроби .


Найдите значение выражения  корень из 2 синус дробь: числитель: 7 Пи , знаменатель: 8 конец дроби косинус дробь: числитель: 7 Пи , знаменатель: 8 конец дроби .

Источник: ЕГЭ по математике 02.06.2022. Основная волна. Восток



Найдите значение выражения  дробь: числитель: 3 косинус левая круглая скобка Пи минус бета правая круглая скобка плюс синус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс бета правая круглая скобка , знаменатель: косинус левая круглая скобка бета плюс 3 Пи правая круглая скобка конец дроби .

Раздел: Алгебра

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите значение выражения  синус 46 в степени левая круглая скобка circ правая круглая скобка косинус 134 в степени левая круглая скобка circ правая круглая скобка плюс синус 134 в степени левая круглая скобка circ правая круглая скобка косинус 46 в степени левая круглая скобка circ правая круглая скобка .

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите значение выражения  дробь: числитель: 2 косинус левая круглая скобка минус 3 Пи минус бета правая круглая скобка плюс синус левая круглая скобка минус дробь: числитель: Пи , знаменатель: 2 конец дроби плюс бета правая круглая скобка , знаменатель: 3 косинус левая круглая скобка бета плюс Пи правая круглая скобка конец дроби .

Раздел: Алгебра

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите значение выражения  дробь: числитель: 3 синус левая круглая скобка альфа минус Пи правая круглая скобка минус косинус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка , знаменатель: синус левая круглая скобка альфа минус Пи правая круглая скобка конец дроби .

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите  тангенс левая круглая скобка альфа плюс дробь: числитель: Пи , знаменатель: 2 конец дроби правая круглая скобка , если  тангенс альфа =0,5.

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите значение выражения 3 синус левая круглая скобка альфа плюс Пи правая круглая скобка плюс 2 косинус левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка , если  синус альфа = минус 0,3.

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.3 Синус, косинус, тангенс и котангенс числа, 1.2.4 Основные тригонометрические тождества, 1.4.4 Преобразования тригонометрических выражений, 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 1.2.2 Радианная мера угла, 1.2.5 Формулы приведения, 1.2.6 Синус, косинус и тангенс суммы и разности двух углов, 1.2.7 Синус и косинус двойного угла


Найдите значение выражения  дробь: числитель: 14 синус 19 градусов , знаменатель: синус 341 градусов конец дроби .


Найдите значение выражения  дробь: числитель: 4 косинус 146 градусов , знаменатель: косинус 34 градусов конец дроби .

Всего: 172    1–20 | 21–40 | 41–60 | 61–80 …

все формулы приведения на одной картинке

Как вы, наверное, уже обратили внимание, формулы приведения разработаны для углов, представленных в одном из следующих видов: (frac{pi}{2}+a), (frac{pi}{2}-a), (π+a), (π-a), (frac{3pi}{2}+a), (frac{3pi}{2}-a), (2π+a) и (2π-a). Аналогично их можно использовать для углов представленных в градусах: (90^°+a), (90^°-a), (180^°+a), (180^°-a), (270^°+a), (270^°-a), (180^°+a), (180^°-a).
К счастью, учить наизусть формулы привидения вам не придется, потому что есть легкий и надежный способ вывести нужную за пару секунд.

Содержание:

  • Как быстро получить любую формулу приведения
  • Как определить знак перед конечной функцией (плюс или минус)?
  • Менять ли функцию на кофункцию или оставить прежней?
  • Примеры из ЕГЭ с формулами приведения
  • Как доказать формулу приведения

Как быстро получить любую формулу приведения

Для начала обратите внимание, что все формулы имеют похожий вид:

общий вид формул приведения

Здесь нужно пояснить термин «кофункция» — это та же самая функция с добавлением или убиранием приставки «ко-». То есть, для синуса кофункцией будет косинус, а для косинусасинус. С тангенсом и котангенсом – аналогично.

Функция:                Кофункция:
(sin⁡) (a)          (→)            (cos⁡) (a)
(cos⁡) (a)          (→)             (sin⁡) (a)
(tg⁡) (a)            (→)            (ctg) (a)
(ctg⁡) (a)          (→)             (tg) (a)

Таким образом, например, синус при применении этих формул никогда не поменяется на тангенс
или котангенс, он либо останется синусом, либо превратиться в косинус. А котангенс никогда не станет синусом или косинусом, он либо останется котангенсом, либо станет тангенсом. И так далее. 

Едем дальше. Так как исходная функция и ее аргумент нам обычно даны, то весь вывод нужной формулы сводится к двум вопросам:
— как определить знак перед конечной функцией (плюс или минус)?
— как определить меняется ли функция на кофункцию или нет?

Как определить знак перед конечной функцией (плюс или минус)?

Какой знак был у исходной функции в исходной четверти, такой знак и нужно ставить перед конечной функцией.

Например, выводим формулу приведения для (⁡cos⁡(frac{3pi}{2}-a) =….) С исходной функцией понятно – косинус, а исходная четверть?

Для того, чтобы ответить на этот вопрос, представим, что (a) – угол от (0) до (frac{pi}{2}), т.е. лежит в пределах (0°…90^°) (хотя это может быть не так, но для определения знака данная условность необходима). В какой четверти тригонометрической окружности при таком условии будет находиться точка, обозначающая угол (frac{3pi}{2}-a)?
Чтобы ответить на вопрос, надо от точки, обозначающей (frac{3pi}{2}), повернуть в отрицательную сторону на угол (a).

как определяется знак у формул приведения

В какой четверти мы окажемся? В третьей. А какой же знак имеет косинус в третьей четверти? Минус. Поэтому перед итоговой функцией будет стоят минус: (cos(frac{3pi}{2}-a)=-…)

Менять ли функцию на кофункцию или оставить прежней?

Здесь правило еще проще:

— если «точка привязки» (frac{pi}{2}) ((90^°)) или (frac{3pi}{2}) ((270^°))– функция меняется на кофункцию;
— если «точка привязки» (π) ((180^°)) или (2π) ((360^°)) – функция остается той же.

То есть, при аргументах исходной функции (frac{pi}{2}+a), (frac{pi}{2}-a), (frac{3pi}{2}+a) или (frac{pi}{2}-a), мы должны поменять функцию, а при аргументах (π+a), (π-a), (2π+a) или (2π-a) — нет. Для того, чтоб это легче запомнить, вы можете воспользоваться мнемоническим правилом, которое в школе называют «лошадиным правилом»:

Точки, обозначающие (frac{pi}{2}) ((90^°)) и (frac{3pi}{2}) ((270^°)), расположены вертикально, и если вы переводите взгляд с одной на другую и назад, вы киваете головой, как бы говоря «да».

меняется ли функция в формулах приведения

Точки же, обозначающие (π) ((180^°)) и (2π) ((360^°)), расположены горизонтально, и если вы переводите взгляд между ними, вы мотаете головой, как бы говоря «нет».

меняется ли функция в формулах приведения 

Эти «да» и «нет» — и есть ответ на вопрос: «меняется ли функция?».
Таким образом, согласно правилу, в нашем примере выше (cos⁡(frac{3π}{2}-a)=…) косинус будет меняться на синус. В конечном итоге получаем, (cos⁡(frac{3π}{2}-a)=-sin⁡) (a). Это и есть верная формула приведения.

Примеры из ЕГЭ с формулами приведения:

Пример. (Задание из ЕГЭ) Найдите значение выражения (frac{18 cos {⁡{41}^°} }{sin⁡ {{49}^°}})

Решение:

(frac{18 cos {{⁡41}^°} }{sin⁡{{49}^°}}=)

Углы ({41}^°) и ({49}^°) нестандартные, поэтому «в лоб» без калькулятора вычислить непросто. Однако использовав формулы привидения, мы легко найдем правильный ответ.
Прежде всего, обратите внимание на один важный момент: (49^°=90^°-41^°). Поэтому мы можем заменить (49^°) на (90^°-41^°).

(=frac{18 cos {⁡41^° }}{sin⁡ {({90}^°-{41}^°)}}=)

Теперь применим к синусу формулу приведения:

  • (90^°-41^°) – это первая четверть, синус в ней положителен. Значит, знак будет плюс;

  • (90^°)- находится на «вертикали» — функция меняется на кофункцию.

(sin⁡{(90^°-41^°)}=cos⁡ 41^° )

(=frac{18 cos {⁡41^° }}{cos⁡ {{41}^°}}=)

В числителе и знаменателе получились одинаковые косинусы. Сокращаем их.

(= 18)

Записываем ответ

Ответ:  (18).

Пример. (Задание из ЕГЭ) Найдите значение выражения (frac{5,tg⁡,163^°}{tg⁡,17^°})

Решение:

(frac{5, tg⁡,163^°}{tg⁡,17^°}=)

Опять замечаем интересное «совпадение»: (163^°=180^°-17^°). Поэтому можно заменить (163^°) на (180^°-17^°).

(=frac{5,tg⁡,(180^°-17^°)}{tg⁡,17^°}=)

 

Воспользуемся формулой приведения:

  • ((180^°-17^°)) – это вторая четверть, тангенс в ней отрицателен. Значит, знак будет минус;

  • (180^°) — находится на «горизонтали» — функция остается прежней.

Значит, (tg⁡,(180^°-17^°)=-tg⁡,17^°).

(=-frac{5,tg⁡,17^°}{tg⁡,17^°})(=-5)

 

Ответ:  (-5).

Пример. (Задание из ЕГЭ) Найдите значение выражения (-19,tg,101^°cdot tg,191^°)

Решение:

(-19,tg,101^°cdot tg ,91^°=)

(101^°=90^°+11^°);
(191^°=180^°+11^°).

(=-19,tg,(90^°+11^° )cdot tg, (180^°+11^° )=)

 

Применим формулы приведения:

  • ((90^°+11^°)) – это вторая четверть, тангенс в ней отрицателен. Значит, знак будет минус;

  • (90^°)- находится на «вертикали» — функция меняется.

Значит, (tg⁡,(90^°+11^°)=-ctg⁡,11^°).

  • ((180^°+11^°)) – это третья четверть, тангенс в ней положителен. Значит, знак будет плюс;

  • (180^°) — находится на «горизонтали» — функция остается прежней.

Значит, (tg⁡,(180^°+11^°)=tg⁡,11^°).

(=19,ctg,11^°cdot tg,11^°=)

Вот тут можно применить одну из формул связи.

(=19).

Ответ:  (19).

Пример. (Задание из ЕГЭ) Вычислить: (frac{-12}{sin^2⁡{131}^° + sin^2⁡{221}^°}).

Решение:

(frac{-12}{sin^2⁡{131}^° + sin^2⁡{221}^°})

(131^°=90^°+41^°);
(221^°=180^°+41^°).

(frac{-12}{sin^2⁡(90^°+41^°)+ sin^2⁡(180^°+41^°)})

 

(sin^2⁡(90^°+41^°):)

  • ((90^°+41^°)) – (90^°) на вертикали, синус меняется на косинус;

  • Знак синуса не важен, так как он все равно в квадрате.

(sin^2⁡(180^°+41^° ):)

  • ((180^°+41^°)) – (180^°) на горизонтальной оси, синус остается синусом.

(frac{-12}{cos^2⁡{41^°} + sin^2⁡{41^°}})

Очевидно, что в знаменателе можно применить основное тригонометрическое тождество.

(=frac{-12}{1}=-12).

Ответ:  (-12).

Пример. (Задание из ЕГЭ) Найдите (26, cos⁡(frac{3π}{2}+α)), если (cos⁡α=frac{12}{13}) и (α∈(frac{3π}{2};2π)).

Решение:

Очевидно, что к исходному выражению можно применить формулу приведения (26,cos⁡(frac{3π}{2}+α)=26,sin⁡α). Задача свелась к нахождению синуса по косинусу, много похожих заданий было разобрано в статье «формулы связи».

(sin^2⁡α+cos^2⁡α=1)
(sin^2⁡α+(frac{12}{13})^2=1)
(sin^2⁡α+frac{144}{169}=1)
(sin^2⁡α=1-frac{144}{169})
(sin^2⁡α=frac{169-144}{169})
(sin^2⁡α=frac{25}{169})
(sin⁡,α=±frac{5}{13})

С учетом того, что (α∈(frac{3π}{2};2π)), то есть в четвертой четверти, (sin,⁡α=-frac{5}{13}).

(26,cos⁡(frac{3π}{2}+α)=26,sin⁡α=26cdot (-frac{5}{13})=-frac{26cdot 5}{13}=-2cdot 5=-10).

Ответ:  (-10).

Ну и последний пример – с очень важным выводом после него.

Пример. (Задание из ЕГЭ) Вычислить, чему равен (ctg(-a-frac{7π}{2})), если (tg⁡,a=2).

Решение:

(ctg(-a-frac{7π}{2})=)

Прежде чем применять формулу приведения, приведем аргумент функции к стандартному (одному из указанных в начале статьи). Давайте поменяем местами слагаемые аргумента, сохраняя знаки – для того, чтобы a стояла после «точки привязки».

(= ctg(-frac{7π}{2}-a) =)

 

Уже лучше, но все еще есть проблемы – «точка привязки» с минусом, а такого аргумента у нас нет. Избавимся от минуса, вынеся его за скобку внутри аргумента.

(= ctg(-(frac{7π}{2}+a)) =)

Теперь вспомним о том, что котангенс – функция нечетная, то есть (ctg,(-t)=- ctg,t). Преобразовываем наше выражение.

(=- ctg(frac{7π}{2}+a) =)

Теперь преобразуем (frac{7π}{2}) следующим образом: (frac{7π}{2}=frac{4π+3π}{2}=2π+frac{3π}{2}).

(=- ctg(2π+frac{3π}{2}+a) =)

Но ведь (2π) – это просто полный оборот по кругу, он не оказывает никакого влияния на значение функции: (ctg,(2π+x)=ctg(x)).
Так что, его можно просто отбросить.

(=- ctg(frac{3π}{2}+a) =)

Вот теперь применяем формулу приведения.
((frac{3π}{2}+a)) это четвертая четверть, и котангенс там отрицателен.
«Точка привязки» — вертикальная, то есть функцию меняем. Окончательно имеем (ctg(frac{3π}{2}+a)=-tg,a).

(= — (- tg,a) = tg,a = 2)

Готов ответ.

Ответ:  (2).

Важное замечание! На самом деле преобразовывать функцию по формулам приведения можно было сразу после получения (ctg(-frac{7π}{2}-a)), не делая все последующие преобразования.
Действительно:
((-frac{7π}{2}-a)) – это первая четверть, там котангенс положителен.
«Точка привязки» — вертикальная, то есть функцию меняем.
Таким образом, можно сразу получить, что (ctg,(-frac{7π}{2}-a)=tg,a).

Вывод:

«Точки привязки» не ограничиваются только лишь значениями (frac{π}{2}),(π),(frac{3π}{2}) и (2π), а могут быть любой из точек, лежащих на пересечении круга с осями: (5π),(-frac{17π}{2}),(-12π),(frac{25π}{2})…

Но обратите внимание – они никогда не могут быть (-frac{π}{3}),(frac{5π}{6}),(frac{17π}{4}) и т.д. – потому что эти точки не лежат на пересечении с осями. Давайте, вместе выясним почему это так.

Как доказать формулу приведения, или почему «точки привязки» обязательно должны быть точками пересечения с осями

Возьмем какую-либо формулу приведения – например, вот эту (sin⁡(frac{π}{2}+a)=cos⁡a) – и попробуем получить из левой части правую.
Что у нас слева? Синус суммы аргументов.
У нас на этот случай есть формула: (sin⁡(x+y)=sin⁡x cos⁡y+sin⁡y cos⁡x)
Применим ее: (sin⁡(frac{π}{2}+a)=sin⁡frac{π}{2}cos⁡a+sin⁡a cos⁡frac{π}{2})
Мы знаем, что (sin⁡frac{π}{2}=1, а cos⁡frac{π}{2}=0). Таким образом имеем окончательную цепочку преобразований:

(sin⁡(frac{π}{2}+a)=sin⁡frac{π}{2}cos⁡a+sin⁡a cos⁡frac{π}{2}=1·cos⁡a+sin⁡a·0=cos⁡a)

Получилось!

Попробуем еще. Возьмем вот эту формулу: (cos⁡(π-a)=-cos⁡a)
Преобразовываем с помощью формулы разности в косинусе:

(cos⁡(π-a)=cos⁡π cos⁡a+sin⁡a sin⁡π=-1·cos⁡a+sin⁡a·0=-cos⁡a)

Опять всё верно.

Ну и еще одну: (cos⁡(frac{3π}{2}+a)=sin⁡a)
Преобразовываем с помощью формулы суммы в косинусе:

(cos⁡(frac{3π}{2}+a)=cos⁡frac{3π}{2}cos⁡a-sin⁡a sin⁡frac{3π}{2}=0·cos⁡a-sin⁡a·(-1)=sin⁡a)

Сошлось.

А теперь присмотритесь к преобразованиям. Замечаете что-нибудь общее?
Да, всё верно — во всех случаях у нас одна из функций превращается в (1) или (-1), а вторая в (0). И именно благодаря этому — итоговое выражение становится проще!

А теперь давайте попробуем взять в качестве «точки привязки» не точку пересечения с осями, а какую-нибудь другую, например, (frac{π}{3}):

(cos⁡(frac{π}{3}-a)=cos⁡frac{π}{3}cos⁡a+sin⁡a sin⁡frac{π}{3}=frac{1}{2}·cos⁡a+sin⁡a·frac{sqrt{3}}{2}=)(frac{cos⁡a+sqrt{3}sin⁡a}{2})

Мда… Что-то такое себе упрощение получилось…

Понимаете теперь?

«Точки привязки» должны быть точками пересечения с осями, потому что только в этом случае получаются более простые выражения. Так происходит потому, что в точках пересечения круга с осями всегда одна из функций (синус или косинус) равна нулю, а вторая плюс или минус единице. Для всех остальных точек – это не работает.

Смотрите также:
Формулы тригонометрии с примерами
Как доказать тригонометрическое тождество?

Решу егэ математика профиль формулы приведения

Решу егэ математика профиль формулы приведения

—>

Задание 4 № 26755

Найдите значение выражения

Используем формулу синуса двойного угла :

Задание 4 № 26756

Найдите значение выражения

Задание 4 № 26757

Задание 4 № 26755

—>

Найдите значение выражения.

Ege. sdamgia. ru

31.08.2018 11:50:31

2018-08-31 11:50:31

Источники:

Https://ege. sdamgia. ru/test? theme=59

ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } Решу егэ математика профиль формулы приведения

Решу егэ математика профиль формулы приведения

Решу егэ математика профиль формулы приведения

—>

Задание 4 № 26781

Найдите значение выражения

В силу периодичности косинуса Далее используем формулы приведения:

Источник: Пробный экзамен Санкт-Петербург 2015. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1.

—>

Задание 4 № 26781

Источник Пробный экзамен Санкт-Петербург 2015.

Ege. sdamgia. ru

07.11.2020 8:19:11

2020-11-07 08:19:11

Источники:

Https://ege. sdamgia. ru/test? theme=64

ЕГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } Решу егэ математика профиль формулы приведения

Решу егэ математика профиль формулы приведения

Решу егэ математика профиль формулы приведения

Задание 12 № 507296

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие промежутку

Используя формулу приведения и формулу синуса двойного угла получаем:

Заданный промежуток имеет длину π, поэтому ему принадлежит не больше двух корней из первой серии, не больше одного корня из второй серии и не больше одного корня из третьей серии. Во второй серии решений из отрезка нет, из первой и третьей серии это числа

Задание 12 № 509422

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие промежутку

А) По формуле приведения имеем:

Б) Отрезку принадлежат корни

Аналоги к заданию № 501507: 509422 509443 Все

Не знаю ошибка ли это, но вы же в б обычно указываете в порядке возрастания

Игорь, это не ошибка. Можно указывать в любом порядке.

Задание 12 № 509443

А) Решите уравнение

Б) Найдите все корни этого уравнения, принадлежащие отрезку

А) По формуле приведения поэтому исходное уравнение преобразуется к виду:

Б) Данному условию принадлежат корни

Аналоги к заданию № 501507: 509422 509443 Все

Когда меняем местами х-11п/2 и 3п/2-х, нужно минус вынести

Вопрос к ответу: разве корни в пункте б) не должны стоять по возрастанию?

Интересно, откуда взялся ответ 3pi. Как бы я не решал у меня такого ответа нет, откуда же вы его взяли?

Интересно, куда Вы дели ответ 3pi? Как бы мы не решали у нас всегда такой ответ есть, куда же он у Вас делся?

Доброго времени суток!

Ответ Константина Лаврова «Нет.»

«Rutra Nillumilak 31.05.2016 18:17

Во­прос к от­ве­ту: разве корни в пунк­те б) не долж­ны сто­ять по воз­рас­та­нию?»

Расходится с ответом от другого автора, на другой тригонометрический пример, к сожалению не нашёл его сейчас, но запомнил, что там был дан ответ в категорической форме, строго по возрастанию, справа налево. Как-то так.

Иван, как-то Вы сильно запутались.

То у Вас «Вопрос к ответу», то «по возрастанию, справа налево».

Теперь к сути вопроса. При записи ответа перечисление корней может идти в ЛЮБОМ порядке, если иное не указано в условии (например, фразой «запишите корни в порядке возрастания»). Такие ограничения бывают важны для той части работы, которая проверяется автоматически (компьютером), т. е. для заданий 1 — 12.

Еще один случай, когда важен порядок, это запись промежутков, которые тоже иногда встречаются в качестве ответа к уравнениям и очень часто являются ответами к неравенствам. При записи промежутка первым указывается меньшее число, а вторым большее, например, [-3; 2]

Здравствуйте. Вы не могли бы объяснить как получилось в части «б» 10п/3 ?

Я решаю путём неравенства и никак не могу выбить этот ответ из решения. Всё что выходит, это 6п/3.

Мне кажется это ошибка, разве нет?

Подобные ответы части «а» должны решаться с помощью неравенств. И почему вы мне описываете этот способ? А лишь график.

Вячеслав, решать задания можно ЛЮБЫМ ПРАВИЛЬНЫМ способом. Поэтому Ваше утверждение, что часть б) ДОЛЖНО решать с помощью неравенств ошибочно. Правильно сказать, что часть б) МОЖНО решать с помощью неравенств. Нам представляется, что способ отбора корней по окружности более лаконичен и удобен, поэтому мы его и используем. В некоторых заданиях отбор корней производится с помощью неравенств. Но любой правильный способ должен давать одинаковый правильный результат.

Задание 12 № 509422

Задание 12 № 507296

Такие ограничения бывают важны для той части работы, которая проверяется автоматически компьютером, т.

Ege. sdamgia. ru

12.06.2018 6:13:36

2019-11-11 15:45:04

Источники:

Https://ege. sdamgia. ru/search? keywords=1&cb=1&search=%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D1%8B+%D0%BF%D1%80%D0%B8%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D1%8F

Комарова Светлана Эриевна

Задания Открытого банка ЕГЭ по математике.

Скачать:

Предварительный просмотр:

ЕГЭ –В7(3)Формулы приведения. Тренировочные задания.

 1. Вычислите: 

а) frac{40cos {3}^circ }{sin {87}^circ };   б) frac{2sin 28{}^circ }{sin 332{}^circ };   в) frac{-4cos 26{}^circ }{cos 154{}^circ };   г) frac{23tg 59{}^circ }{tg 121{}^circ }

д) frac{-42sin 413{}^circ }{sin 53{}^circ }; е) -22tg 14{}^circ cdot tg 104{}^circ ; ж) 16tg 54{}^circ cdot tg 36{}^circ

з) frac{11}{{{sin }^{2}}{{50}^{circ }}+{{sin }^{2}}{{140}^{circ }}};        и) frac{-24}{{{cos }^{2}}{{127}^{circ }}+{{cos }^{2}}{{217}^{circ }}};

к) frac{4}{{{sin }^{2}}{{57}^{circ }}+{{cos }^{2}}{{237}^{circ }}};      л) frac{2cos (-3pi -beta ) +sin (-frac{pi }{2}+beta )}{3cos (beta +pi )}

м) frac{4sin (alpha +2pi )+cos (3frac{pi }{2}+alpha )}{2sin (alpha +pi )}

ЕГЭ –В7(3)Формулы приведения. Тренировочные задания.

 1. Вычислите: 

а) frac{40cos {3}^circ }{sin {87}^circ };   б) frac{2sin 28{}^circ }{sin 332{}^circ };   в) frac{-4cos 26{}^circ }{cos 154{}^circ };   г) frac{23tg 59{}^circ }{tg 121{}^circ }

д) frac{-42sin 413{}^circ }{sin 53{}^circ }; е) -22tg 14{}^circ cdot tg 104{}^circ ; ж) 16tg 54{}^circ cdot tg 36{}^circ

з) frac{11}{{{sin }^{2}}{{50}^{circ }}+{{sin }^{2}}{{140}^{circ }}};        и) frac{-24}{{{cos }^{2}}{{127}^{circ }}+{{cos }^{2}}{{217}^{circ }}};

к) frac{4}{{{sin }^{2}}{{57}^{circ }}+{{cos }^{2}}{{237}^{circ }}};      л) frac{2cos (-3pi -beta ) +sin (-frac{pi }{2}+beta )}{3cos (beta +pi )}

м) frac{4sin (alpha +2pi )+cos (3frac{pi }{2}+alpha )}{2sin (alpha +pi )}

ЕГЭ –В7(3)Формулы приведения. Тренировочные задания.

 1. Вычислите: 

а) frac{40cos {3}^circ }{sin {87}^circ };   б) frac{2sin 28{}^circ }{sin 332{}^circ };   в) frac{-4cos 26{}^circ }{cos 154{}^circ };   г) frac{23tg 59{}^circ }{tg 121{}^circ }

д) frac{-42sin 413{}^circ }{sin 53{}^circ }; е) -22tg 14{}^circ cdot tg 104{}^circ ; ж) 16tg 54{}^circ cdot tg 36{}^circ

з) frac{11}{{{sin }^{2}}{{50}^{circ }}+{{sin }^{2}}{{140}^{circ }}};        и) frac{-24}{{{cos }^{2}}{{127}^{circ }}+{{cos }^{2}}{{217}^{circ }}};

к) frac{4}{{{sin }^{2}}{{57}^{circ }}+{{cos }^{2}}{{237}^{circ }}};      л) frac{2cos (-3pi -beta ) +sin (-frac{pi }{2}+beta )}{3cos (beta +pi )}

м) frac{4sin (alpha +2pi )+cos (3frac{pi }{2}+alpha )}{2sin (alpha +pi )}

ЕГЭ –В7(3)Формулы приведения. Тренировочные задания.

 1. Вычислите: 

а) frac{40cos {3}^circ }{sin {87}^circ };   б) frac{2sin 28{}^circ }{sin 332{}^circ };   в) frac{-4cos 26{}^circ }{cos 154{}^circ };   г) frac{23tg 59{}^circ }{tg 121{}^circ }

д) frac{-42sin 413{}^circ }{sin 53{}^circ }; е) -22tg 14{}^circ cdot tg 104{}^circ ; ж) 16tg 54{}^circ cdot tg 36{}^circ

з) frac{11}{{{sin }^{2}}{{50}^{circ }}+{{sin }^{2}}{{140}^{circ }}};        и) frac{-24}{{{cos }^{2}}{{127}^{circ }}+{{cos }^{2}}{{217}^{circ }}};

к) frac{4}{{{sin }^{2}}{{57}^{circ }}+{{cos }^{2}}{{237}^{circ }}};      л) frac{2cos (-3pi -beta ) +sin (-frac{pi }{2}+beta )}{3cos (beta +pi )}

м) frac{4sin (alpha +2pi )+cos (3frac{pi }{2}+alpha )}{2sin (alpha +pi )}

2. Найдите значение выражения:

а)  4tg (-4pi +gamma ) +3tg(gamma ), если tg gamma =0,2

б)  8sin (frac{5pi }{2} +alpha ), если sin alpha =-0,6 и alpha in (1,5pi; 2pi )

в)  -15cos (frac{3pi }{2} +alpha ), если cos alpha =frac{7}{25} и alpha in (0; 0,5pi )

г)  tg (alpha -frac{pi}{2}), если tg alpha =2,5.

д)  3cos (-pi +beta )+5sin (frac{pi }{2}+beta ), если cos beta =-frac{1}{2}

е)  7sin (alpha  +2pi )+3cos (-frac{pi}{2}+alpha ), если sin alpha =0,8.

2. Найдите значение выражения:

а)  4tg (-4pi +gamma ) +3tg(gamma ), если tg gamma =0,2

б)  8sin (frac{5pi }{2} +alpha ), если sin alpha =-0,6 и alpha in (1,5pi; 2pi )

в)  -15cos (frac{3pi }{2} +alpha ), если cos alpha =frac{7}{25} и alpha in (0; 0,5pi )

г)  tg (alpha -frac{pi}{2}), если tg alpha =2,5.

д)  3cos (-pi +beta )+5sin (frac{pi }{2}+beta ), если cos beta =-frac{1}{2}

е)  7sin (alpha  +2pi )+3cos (-frac{pi}{2}+alpha ), если sin alpha =0,8.

2. Найдите значение выражения:

а)  4tg (-4pi +gamma ) +3tg(gamma ), если tg gamma =0,2

б)  8sin (frac{5pi }{2} +alpha ), если sin alpha =-0,6 и alpha in (1,5pi; 2pi )

в)  -15cos (frac{3pi }{2} +alpha ), если cos alpha =frac{7}{25} и alpha in (0; 0,5pi )

г)  tg (alpha -frac{pi}{2}), если tg alpha =2,5.

д)  3cos (-pi +beta )+5sin (frac{pi }{2}+beta ), если cos beta =-frac{1}{2}

е)  7sin (alpha  +2pi )+3cos (-frac{pi}{2}+alpha ), если sin alpha =0,8.

2. Найдите значение выражения:

а)  4tg (-4pi +gamma ) +3tg(gamma ), если tg gamma =0,2

б)  8sin (frac{5pi }{2} +alpha ), если sin alpha =-0,6 и alpha in (1,5pi; 2pi )

в)  -15cos (frac{3pi }{2} +alpha ), если cos alpha =frac{7}{25} и alpha in (0; 0,5pi )

г)  tg (alpha -frac{pi}{2}), если tg alpha =2,5.

д)  3cos (-pi +beta )+5sin (frac{pi }{2}+beta ), если cos beta =-frac{1}{2}

е)  7sin (alpha  +2pi )+3cos (-frac{pi}{2}+alpha ), если sin alpha =0,8.

По теме: методические разработки, презентации и конспекты

  • Мне нравится 

 

Skip to content

ЕГЭ Профиль №6. Вычисление значений тригонометрических выражений

ЕГЭ Профиль №6. Вычисление значений тригонометрических выраженийadmin2022-11-29T17:06:06+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №6. Вычисление значений тригонометрических выражений

Задача 1. Найдите значение выражения      (frac{{50sin {{179}^ circ } cdot cos {{179}^ circ }}}{{sin {{358}^ circ }}})

Ответ

ОТВЕТ: 25.

Решение

Воспользуемся формулой синуса двойного угла: (sin 2alpha  = 2sin alpha cos alpha )

(frac{{50sin {{179}^ circ } cdot cos {{179}^ circ }}}{{sin {{358}^ circ }}} = frac{{50sin {{179}^ circ } cdot cos {{179}^ circ }}}{{sin left( {2 cdot {{179}^ circ }} right)}} = frac{{50sin {{179}^ circ } cdot cos {{179}^ circ }}}{{2sin {{179}^ circ } cdot cos {{179}^ circ }}} = 25.)

Ответ: 25.

Задача 2. Найдите значение выражения      (8sin frac{{5{\pi }}}{{12}} cdot cos frac{{5{\pi }}}{{12}})

Ответ

ОТВЕТ: 2.

Решение

Воспользуемся формулой синуса двойного угла: (sin 2alpha  = 2sin alpha cos alpha )

(8sin frac{{5pi }}{{12}}cos frac{{5pi }}{{12}} = 4 cdot 2 cdot sin frac{{5pi }}{{12}}cos frac{{5pi }}{{12}} = 4 cdot sin left( {2 cdot frac{{5pi }}{{12}}} right) = 4 cdot sin frac{{5pi }}{6} = 4 cdot frac{1}{2} = 2.)

Ответ: 2.

Задача 3. Найдите значение выражения      (frac{{24left( {{{sin }^2}{{17}^ circ } — {{cos }^2}{{17}^ circ }} right)}}{{cos {{34}^ circ }}})

Ответ

ОТВЕТ: — 24.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = {cos ^2}alpha  — {sin ^2}alpha )

(frac{{24left( {{{sin }^2}{{17}^ circ } — {{cos }^2}{{17}^ circ }} right)}}{{cos {{34}^ circ }}} = frac{{ — 24left( {{{cos }^2}{{17}^ circ } — {{sin }^2}{{17}^ circ }} right)}}{{cos {{34}^ circ }}} = frac{{ — 24cos {{34}^ circ }}}{{cos {{34}^ circ }}} =  — 24.)

Ответ: — 24.

Задача 4. Найдите значение выражения      (sqrt 3 {cos ^2}frac{{5{pi }}}{{12}} — sqrt 3 {sin ^2}frac{{5pi }}{{12}})

Ответ

ОТВЕТ: — 1,5.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = {cos ^2}alpha  — {sin ^2}alpha )

(sqrt 3 {cos ^2}frac{{5pi }}{{12}} — sqrt 3 {sin ^2}frac{{5pi }}{{12}} = sqrt 3 left( {{{cos }^2}frac{{5pi }}{{12}} — {{sin }^2}frac{{5pi }}{{12}}} right) = sqrt 3 cos left( {2 cdot frac{{5pi }}{{12}}} right) = )

( = sqrt 3 cos frac{{5pi }}{6} = sqrt 3  cdot left( { — frac{{sqrt 3 }}{2}} right) =  — 1,5.)

Ответ: — 1,5.

Задача 5. Найдите значение выражения      (sqrt {12} {cos ^2}frac{{5{pi }}}{{12}} — sqrt 3 )

Ответ

ОТВЕТ: — 1,5.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = 2{cos ^2}alpha  — 1)

(sqrt {12} {cos ^2}frac{{5pi }}{{12}} — sqrt 3  = sqrt 3 left( {2{{cos }^2}frac{{5pi }}{{12}} — 1} right) = sqrt 3  cdot cos left( {2 cdot frac{{5pi }}{{12}}} right) = )

( = sqrt 3 cos frac{{5pi }}{6} = sqrt 3  cdot left( { — frac{{sqrt 3 }}{2}} right) =  — 1,5.)

Ответ: — 1,5.

Задача 6. Найдите значение выражения      (sqrt 3  — sqrt {12} {sin ^2}frac{{5{pi }}}{{12}})

Ответ

ОТВЕТ: — 1,5.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = 1 — 2{sin ^2}alpha )

(sqrt 3  — sqrt {12} {sin ^2}frac{{5pi }}{{12}} = sqrt 3 left( {1 — 2{{sin }^2}frac{{5pi }}{{12}}} right) = sqrt 3 cos left( {2 cdot frac{{5pi }}{{12}}} right) = )

( = sqrt 3 cos frac{{5pi }}{6} = sqrt 3  cdot left( { — frac{{sqrt 3 }}{2}} right) =  — 1,5.)

Ответ: — 1,5.

Задача 7. Найдите    ( — 47cos 2alpha ),     если     (cos alpha  =  — 0,4)

Ответ

ОТВЕТ: 31,96.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = 2{cos ^2}alpha  — 1)

( — 47cos 2alpha  =  — 47 cdot left( {2{{cos }^2}alpha  — 1} right) =  — 47 cdot left( {2 cdot {{left( { — 0,4} right)}^2} — 1} right) = )

( =  — 47 cdot left( {0,32 — 1} right) =  — 47 cdot left( { — 0,68} right) = 31,96.)

Ответ: 31,96.

Задача 8. Найдите значение выражения      (frac{{5cos {{29}^ circ }}}{{sin {{61}^ circ }}})

Ответ

ОТВЕТ: 5.

Решение

(frac{{5cos {{29}^ circ }}}{{sin {{61}^ circ }}} = frac{{5cos left( {{{90}^ circ } — {{61}^ circ }} right)}}{{sin {{61}^ circ }}} = frac{{5sin {{61}^ circ }}}{{sin {{61}^ circ }}} = 5.)

При решении воспользовались формулой приведения: (cos left( {{{90}^ circ } — alpha } right) = sin alpha .)

Ответ: 5.

Задача 9. Найдите значение выражения     (36sqrt 3 {text{tg}}frac{{\pi }}{3}sin frac{{\pi }}{6})

Ответ

ОТВЕТ: 54.

Решение

(36sqrt 3 ,,tgfrac{pi }{3} cdot sin frac{pi }{6} = 36sqrt 3  cdot sqrt 3  cdot frac{1}{2} = 18 cdot 3 = 54.)

Ответ: 54.

Задача 10. Найдите значение выражения     (4sqrt 2 cos frac{{\pi }}{4}cos frac{{7{\pi }}}{3})

Ответ

ОТВЕТ: 2.

Решение

(4sqrt 2 cos frac{pi }{4}cos frac{{7pi }}{3} = 4sqrt 2  cdot frac{{sqrt 2 }}{2}cos left( {frac{{7pi }}{3} — 2pi } right) = 4 cdot cos frac{pi }{3} = 4 cdot frac{1}{2} = 2.)

При решении воспользовались периодичностью косинуса: (cos left( {alpha  — 2pi } right) = cos alpha .)

Ответ: 2.

Задача 11. Найдите значение выражения     (frac{8}{{sin left( { — frac{{27{\pi }}}{4}} right)cos left( {frac{{31{\pi }}}{4}} right)}})

Ответ

ОТВЕТ: — 16.

Решение

(sin left( { — frac{{27pi }}{4}} right) = sin left( { — frac{{27pi }}{4} + 8pi } right) = sin frac{{5pi }}{4} =  — frac{{sqrt 2 }}{2})

(cos left( {frac{{31pi }}{4}} right) = cos left( {frac{{31pi }}{4} — 8pi } right) = cos left( { — frac{pi }{4}} right) = cos frac{pi }{4} = frac{{sqrt 2 }}{2})

(frac{8}{{sin left( { — frac{{27pi }}{4}} right) cdot cos left( {frac{{31pi }}{4}} right)}} = frac{8}{{ — frac{{sqrt 2 }}{2} cdot frac{{sqrt 2 }}{2}}} =  — 16.)

Ответ: — 16.

Задача 12. Найдите значение выражения     (33sqrt 2 cos left( {{{495}^ circ }} right))

Ответ

ОТВЕТ: — 33.

Решение

(33sqrt 2 cos left( {{{495}^ circ }} right) = 33sqrt 2 cos left( {{{495}^ circ } — {{360}^ circ }} right) = 33sqrt 2 cos {135^ circ } = 33sqrt 2  cdot left( { — frac{{sqrt 2 }}{2}} right) =  — 33.)

Ответ: — 33.

Задача 13. Найдите значение выражения      (2sqrt 3 {text{tg}}left( { — {{300}^ circ }} right))

Ответ

ОТВЕТ: 6.

Решение

(2sqrt 3 tgleft( { — {{300}^ circ }} right) = 2sqrt 3 tgleft( { — {{300}^ circ } + {{360}^ circ }} right) = 2sqrt 3 tg{60^ circ } = 2sqrt 3  cdot sqrt 3  = 6.)

Ответ: 6.

Задача 14. Найдите значение выражения     ( — 18sqrt 2 sin left( { — {{135}^ circ }} right))

Ответ

ОТВЕТ: 18.

Решение

( — 18sqrt 2 sin left( { — {{135}^ circ }} right) = 18sqrt 2 sin {135^ circ } = 18sqrt 2  cdot frac{{sqrt 2 }}{2} = 18.)

Ответ: 18.

Задача 15. Найдите значение выражения     (24sqrt 2 cos left( { — frac{{\pi }}{3}} right)sin left( { — frac{{\pi }}{4}} right))

Ответ

ОТВЕТ: — 12.

Решение

(24sqrt 2 cos left( { — frac{pi }{3}} right)sin left( { — frac{pi }{4}} right) =  — 24sqrt 2 cos frac{pi }{3}sin frac{pi }{4} =  — 24sqrt 2  cdot frac{1}{2} cdot frac{{sqrt 2 }}{2} =  — 12.)

Ответ: — 12.

Задача 16. Найдите значение выражения     (frac{{14sin {{19}^ circ }}}{{sin {{341}^ circ }}})

Ответ

ОТВЕТ: — 14.

Решение

(frac{{14sin {{19}^ circ }}}{{sin {{341}^ circ }}} = frac{{14sin {{19}^ circ }}}{{sin left( {{{341}^ circ } — {{360}^ circ }} right)}} = frac{{14sin {{19}^ circ }}}{{sin left( { — {{19}^ circ }} right)}} = frac{{14sin {{19}^ circ }}}{{ — sin {{19}^ circ }}} =  — 14.)

Ответ: — 14.

Задача 17. Найдите значение выражения     (frac{{36cos {{93}^ circ }}}{{cos {{87}^ circ }}})

Ответ

ОТВЕТ: — 36.

Решение

(frac{{36cos {{93}^ circ }}}{{cos {{87}^ circ }}} = frac{{ — 36cos left( {{{180}^ circ } — {{93}^ circ }} right)}}{{cos {{87}^ circ }}} = frac{{ — 36cos {{87}^ circ }}}{{cos {{87}^ circ }}} =  — 36.)

Ответ: — 36.

Задача 18. Найдите значение выражения      (frac{{ — 37{text{tg6}}{{text{3}}^ circ }}}{{{text{tg11}}{{text{7}}^ circ }}})

Ответ

ОТВЕТ: 37.

Решение

(frac{{ — 37tg{{63}^ circ }}}{{tg{{117}^ circ }}} = frac{{ — 37tg{{63}^ circ }}}{{ — tgleft( {{{180}^ circ } — {{117}^ circ }} right)}} = frac{{37tg{{63}^ circ }}}{{tg{{63}^ circ }}} = 37.)

Ответ: 37.

Задача 19. Найдите значение выражения     (frac{{14sin {{409}^ circ }}}{{sin {{49}^ circ }}})

Ответ

ОТВЕТ: 14.

Решение

(frac{{14sin {{409}^ circ }}}{{sin {{49}^ circ }}} = frac{{14sin left( {{{409}^ circ } — {{360}^ circ }} right)}}{{sin {{49}^ circ }}} = frac{{14sin {{49}^ circ }}}{{sin {{49}^ circ }}} = 14.)

Ответ: 14.

Задача 20. Найдите значение выражения      (5{text{tg1}}{{text{7}}^ circ } cdot {text{tg10}}{{text{7}}^ circ })

Ответ

ОТВЕТ: — 5.

Решение

(5,tg{17^ circ } cdot tg{107^ circ } = 5,tg{17^ circ } cdot tgleft( {{{90}^ circ } + {{17}^ circ }} right) =  — 5,tg{17^ circ } cdot ctg{17^ circ } =  — 5.)

При решении воспользовались формулой приведения: (tgleft( {{{90}^ circ } + alpha } right) =  — tgalpha ) и формулой: (tgalpha  cdot ctgalpha  = 1.)

Ответ: — 5.

Задача 21. Найдите значение выражения     ( — 6{text{tg3}}{{text{1}}^ circ } cdot {text{tg5}}{{text{9}}^ circ })

Ответ

ОТВЕТ: — 6.

Решение

( — 6,,tg{31^ circ } cdot tg{59^ circ } =  — ,6,tg{31^ circ } cdot tgleft( {{{90}^ circ } — {{59}^ circ }} right) =  — ,6,tg{31^ circ } cdot ctg{31^ circ } =  — 6.)

При решении воспользовались формулой приведения: (tgleft( {{{90}^ circ } — alpha } right) = ctgalpha .)

Ответ: — 6.

Задача 22. Найдите значение выражения      (frac{{ — 12}}{{{{sin }^2}{{131}^ circ } + {{sin }^2}{{221}^ circ }}})

Ответ

ОТВЕТ: — 12.

Решение

(frac{{ — 12}}{{{{sin }^2}{{131}^ circ } + {{sin }^2}{{221}^ circ }}} = frac{{ — 12}}{{{{sin }^2}{{131}^ circ } + {{sin }^2}left( {{{90}^ circ } + {{131}^ circ }} right)}} = frac{{ — 12}}{{{{sin }^2}{{131}^ circ } + {{cos }^2}{{131}^ circ }}} =  — frac{{12}}{1} =  — 12.)

Ответ: — 12.

Задача 23. Найдите значение выражения     (frac{{27}}{{{{cos }^2}{{116}^ circ } + {{cos }^2}{{206}^ circ }}})

Ответ

ОТВЕТ: 27.

Решение

(frac{{27}}{{{{cos }^2}{{116}^ circ } + {{cos }^2}{{206}^ circ }}} = frac{{27}}{{{{cos }^2}{{116}^ circ } + {{cos }^2}left( {{{90}^ circ } + {{116}^ circ }} right)}} = frac{{27}}{{{{cos }^2}{{116}^ circ } + {{left( { — sin {{116}^ circ }} right)}^2}}} = )

( = frac{{27}}{{{{cos }^2}{{116}^ circ } + {{sin }^2}{{116}^ circ }}} = frac{{27}}{1} = 27.)

Ответ: 27.

Задача 24. Найдите значение выражения      (frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{cos }^2}{{196}^ circ }}})

Ответ

ОТВЕТ: — 5.

Решение

(frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{cos }^2}{{196}^ circ }}} = frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{cos }^2}left( {{{180}^ circ } + {{16}^ circ }} right)}} = frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{left( { — cos {{16}^ circ }} right)}^2}}} = )

( = frac{{ — 5}}{{{{sin }^2}{{16}^ circ } + {{cos }^2}{{16}^ circ }}} = frac{{ — 5}}{1} =  — 5.)

Ответ: — 5.

Задача 25. Найдите значение выражения      (frac{{ — 14sin {{84}^ circ }}}{{sin {{42}^ circ } cdot sin {{48}^ circ }}})

Ответ

ОТВЕТ: — 28.

Решение

Воспользуемся формулой синуса двойного угла: (sin 2alpha  = 2sin alpha cos alpha )

(frac{{ — 14sin {{84}^ circ }}}{{sin {{42}^ circ } cdot sin {{48}^ circ }}} = frac{{ — 14sin left( {2 cdot {{42}^ circ }} right)}}{{sin {{42}^ circ }sin {{48}^ circ }}} = frac{{ — 14 cdot 2 cdot sin {{42}^ circ } cdot cos {{42}^ circ }}}{{sin {{42}^ circ } cdot cos left( {{{90}^ circ } — {{48}^ circ }} right)}} = frac{{ — 28cos {{42}^ circ }}}{{cos {{42}^ circ }}} =  — 28.)

При решении воспользовались формулой приведения: (cos left( {{{90}^ circ } — alpha } right) = sin alpha .)

Ответ: — 28.

Задача 26. Найдите значение выражения      (frac{{5sin {{74}^ circ }}}{{cos {{37}^ circ } cdot cos {{53}^ circ }}})

Ответ

ОТВЕТ: 10.

Решение

Воспользуемся формулой синуса двойного угла: (sin 2alpha  = 2sin alpha cos alpha )

(frac{{5sin {{74}^ circ }}}{{cos {{37}^ circ } cdot cos {{53}^ circ }}} = frac{{5 cdot sin left( {2 cdot {{37}^ circ }} right)}}{{cos {{37}^ circ }cos {{53}^ circ }}} = frac{{5 cdot 2 cdot sin {{37}^ circ }cos {{37}^ circ }}}{{cos {{37}^ circ } cdot sin left( {{{90}^ circ } — {{53}^ circ }} right)}} = frac{{10sin {{37}^ circ }}}{{sin {{37}^ circ }}} = 10.)

При решении воспользовались формулой приведения: (sin left( {{{90}^ circ } — alpha } right) = cos alpha .)

Ответ: 10.

Задача 27. Найдите значение выражения      (20sin {135^ circ } cdot cos {45^ circ })

Ответ

ОТВЕТ: 10.

Решение

(20sin {135^ circ } cdot cos {45^ circ } = 20frac{{sqrt 2 }}{2} cdot frac{{sqrt 2 }}{2} = 10.)

Ответ: 10.

Задача 28. Найдите    ({text{tg}}alpha ),    если (cos alpha  = frac{1}{{sqrt {10} }})     и    (a in left( {frac{{3{\pi }}}{2};;2{\pi }} right))

Ответ

ОТВЕТ: — 3.

Решение

1 Вариант

Воспользуемся формулой: (1 + t{g^2}alpha  = frac{1}{{{{cos }^2}alpha }}).

Тогда: (1 + t{g^2}alpha  = frac{1}{{{{left( {frac{1}{{sqrt {10} }}} right)}^2}}},,,,,, Leftrightarrow ,,,,,1 + t{g^2}alpha  = 10,,,,,, Leftrightarrow ,,,,,t{g^2}alpha  = 9)

Следовательно, (tgalpha  = 3) или (tgalpha  =  — 3). Так как (alpha ,, in ,,left( {frac{{3pi }}{2};2pi } right)), то есть лежит в четвертой четверти, то его тангенс отрицательный. Поэтому (tgalpha  =  — 3.)

2 Вариант

Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha  + {cos ^2}alpha  = 1)

({sin ^2}alpha  + {left( {frac{1}{{sqrt {10} }}} right)^2} = 1,,,,, Leftrightarrow ,,,,,,{sin ^2}alpha  = 1 — frac{1}{{10}},,,,, Leftrightarrow ,,,,,{sin ^2}alpha  = frac{9}{{10}})

Следовательно, (sin alpha  = frac{3}{{sqrt {10} }}) или (sin alpha  =  — frac{3}{{sqrt {10} }}). Так как (alpha ,, in ,,left( {frac{{3pi }}{2};2pi } right)), то есть лежит в четвертой четверти, то его синус отрицательный. Поэтому (sin alpha  =  — frac{3}{{sqrt {10} }}).

Воспользуемся тем, что: (tgalpha  = frac{{sin alpha }}{{cos alpha }} = frac{{ — frac{3}{{sqrt {10} }}}}{{frac{1}{{sqrt {10} }}}} =  — 3.)

Ответ: — 3.

Задача 29. Найдите    ({text{tg}}alpha ),    если (sin alpha  =  — frac{5}{{sqrt {26} }})     и    (alpha  in left( {{\pi };;frac{{3{\pi }}}{2}} right))

Ответ

ОТВЕТ: 5.

Решение

1 Вариант

Воспользуемся формулой: (1 + ct{g^2}alpha  = frac{1}{{{{sin }^2}alpha }})

Тогда: (1 + ct{g^2}alpha  = frac{1}{{{{left( { — frac{5}{{sqrt {26} }}} right)}^2}}},,,,,,, Leftrightarrow ,,,,,,,1 + ct{g^2}alpha  = frac{{26}}{{25}},,,,,,, Leftrightarrow ,,,,,,,ct{g^2}alpha  = frac{1}{{25}})

Следовательно, (ctgalpha  = frac{1}{5}) или (ctgalpha  =  — frac{1}{5}).

Так как (alpha ,, in ,,left( {pi ;frac{{3pi }}{2}} right)), то есть лежит в третьей четверти, то его котангенс положительный. Поэтому (ctgalpha  = frac{1}{5}.)

Так как  (tgalpha  cdot ctgalpha  = 1),  то (tgalpha  = frac{1}{{ctgalpha }} = frac{1}{{frac{1}{5}}} = 5.)

2 Вариант

Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha  + {cos ^2}alpha  = 1.)

({left( { — frac{5}{{sqrt {26} }}} right)^2} + {cos ^2}alpha  = 1,,,,,, Leftrightarrow ,,,,,,{cos ^2}alpha  = 1 — frac{{25}}{{26}},,,,,, Leftrightarrow ,,,,,,{cos ^2}alpha  = frac{1}{{26}}.)

Следовательно, (cos alpha  = frac{1}{{sqrt {26} }}) или (cos alpha  =  — frac{1}{{sqrt {26} }}).

Так как (alpha ,, in ,,left( {pi ;frac{{3pi }}{2}} right)), то есть лежит в третьей четверти, то косинус отрицательный. Поэтому (cos alpha  =  — frac{1}{{sqrt {26} }}).

Воспользуемся тем, что: (tgalpha  = frac{{sin alpha }}{{cos alpha }} = frac{{ — frac{5}{{sqrt {26} }}}}{{ — frac{1}{{sqrt {26} }}}} = 5.)

Ответ: 5.

Задача 30. Найдите   (3cos alpha ),   если   (sin alpha  =  — frac{{2sqrt 2 }}{3})   и   (alpha  in left( {frac{{3{\pi }}}{2};;2{\pi }} right))

Ответ

ОТВЕТ: 1.

Решение

Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha  + {cos ^2}alpha  = 1.)

({left( { — frac{{2sqrt 2 }}{3}} right)^2} + {cos ^2}alpha  = 1,,,,,, Leftrightarrow ,,,,,{cos ^2}alpha  = 1 — frac{8}{9},,,,,, Leftrightarrow ,,,,,,{cos ^2}alpha  = frac{1}{9})

Следовательно, (cos alpha  = frac{1}{3}) или (cos alpha  =  — frac{1}{3}).

Так как (alpha ,, in ,,left( {frac{{3pi }}{2};2pi } right)), то есть лежит в четвертой четверти, то его косинус положительный. Поэтому (cos alpha  = frac{1}{3}.)  Тогда: (3cos alpha  = 3 cdot frac{1}{3} = 1.)

Ответ: 1.

Задача 31. Найдите   (7sin alpha ),   если   (cos alpha  = frac{{3sqrt 5 }}{7})   и   (alpha  in left( {1,5{\pi };;2{\pi }} right))

Ответ

ОТВЕТ: — 2.

Решение

Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha  + {cos ^2}alpha  = 1.)

({sin ^2}alpha  + {left( {frac{{3sqrt 5 }}{7}} right)^2} = 1,,,,,, Leftrightarrow ,,,,,{sin ^2}alpha  = 1 — frac{{45}}{{49}},,,,,, Leftrightarrow ,,,,,,{sin ^2}alpha  = frac{4}{{49}})

Следовательно: (sin alpha  = frac{2}{7}) или (sin alpha  =  — frac{2}{7}).

Так как (alpha ,, in ,,left( {1,5pi ;2pi } right)), то есть лежит в четвертой четверти, то его синус отрицательный. Поэтому (sin alpha  =  — frac{2}{7}.)

Тогда: (7sin alpha  = 7 cdot left( { — frac{2}{7}} right) =  — 2.)

Ответ: — 2.

Задача 32. Найдите   (24cos 2alpha ),   если   (sin alpha  =  — 0,2)

Ответ

ОТВЕТ: 22,08.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = 1 — 2{sin ^2}alpha )

(24cos 2alpha  = 24 cdot left( {1 — 2{{sin }^2}alpha } right) = 24 cdot left( {1 — 2 cdot {{left( { — 0,2} right)}^2}} right) = 24 cdot left( {1 — 0,08} right) = 24 cdot 0,92 = 22,08)

Ответ: 22,08.

Задача 33. Найдите   (frac{{10sin 6alpha }}{{3cos 3alpha }}),   если   (sin 3alpha  = 0,6)

Ответ

ОТВЕТ: 4.

Решение

Воспользуемся формулой синуса двойного угла: (sin 2alpha  = 2sin alpha cos alpha )

(frac{{10sin 6alpha }}{{3cos 3alpha }} = frac{{10 cdot sin left( {2 cdot 3alpha } right)}}{{3cos 3alpha }} = frac{{10 cdot 2 cdot sin 3alpha  cdot cos 3alpha }}{{3cos 3alpha }} = frac{{20 cdot sin 3alpha }}{3} = frac{{20 cdot 0,6}}{3} = 4.)

Ответ: 4.

Задача 34. Найдите значение выражения    (frac{{3cos left( {{\pi } — beta } right) + sin left( {frac{{\pi }}{2} + beta } right)}}{{cos left( {beta  + 3{\pi }} right)}})

Ответ

ОТВЕТ: 2.

Решение

(frac{{3cos left( {pi  — beta } right) + sin left( {frac{pi }{2} + beta } right)}}{{cos left( {beta  + 3pi } right)}} = frac{{ — 3cos beta  + cos beta }}{{ — cos beta }} = frac{{ — 2cos beta }}{{ — cos beta }} = 2.)

Ответ: 2.

Задача 35. Найдите значение выражения    (frac{{2sin left( {alpha  — 7{\pi }} right) + cos left( {frac{{3{\pi }}}{2} + alpha } right)}}{{sin left( {a + {\pi }} right)}})

Ответ

ОТВЕТ: 1.

Решение

(frac{{2sin left( {alpha  — 7pi } right) + cos left( {frac{{3pi }}{2} + alpha } right)}}{{sin left( {alpha  + pi } right)}} = frac{{ — 2sin alpha  + sin alpha }}{{ — sin alpha }} = frac{{ — sin alpha }}{{ — sin alpha }} = 1.)

Ответ: 1.

Задача 36. Найдите значение выражения  (5{text{tg}}left( {5{\pi } — gamma } right) — {text{tg}}left( { — gamma } right)),  если ({text{tg}}gamma {text{ = 7}})

Ответ

ОТВЕТ: — 28.

Решение

(5,tgleft( {5pi  — gamma } right) — tgleft( { — gamma } right) =  — 5,tggamma  + tggamma  =  — 4,tggamma  =  — 4 cdot 7 =  — 28.)

Ответ: — 28.

Задача 37. Найдите   (sin left( {frac{{7{\pi }}}{2} — alpha } right)),   если   (sin alpha  = 0,8)   и   (a in left( {frac{{\pi }}{2};;{\pi }} right))

Ответ

ОТВЕТ: 0,6.

Решение

(sin left( {frac{{7pi }}{2} — alpha } right) =  — cos alpha )

Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha  + {cos ^2}alpha  = 1)

({0,8^2} + {cos ^2}alpha  = 1,,,,, Leftrightarrow ,,,,,{cos ^2}alpha  = 1 — 0,64,,,,, Leftrightarrow ,,,,,{cos ^2}alpha  = 0,36)

Следовательно, (cos alpha  = 0,6) или (cos alpha  =  — 0,6).

Так как (alpha ,, in ,,left( {frac{pi }{2};pi } right)), то есть лежит во второй четверти, то его косинус отрицательный.

Поэтому: (sin left( {frac{{7pi }}{2} — alpha } right) =  — cos alpha  =  — left( { — 0,6} right) = 0,6.)

Ответ:  0,6.

Задача 38. Найдите   (26cos left( {frac{{3{\pi }}}{2} + alpha } right)),   если   (cos alpha  = frac{{12}}{{13}})   и   (alpha  in left( {frac{{3{\pi }}}{2};;2{\pi}} right))

Ответ

ОТВЕТ: — 10.

Решение

(26cos left( {frac{{3pi }}{2} + alpha } right) = 26sin alpha )

Воспользуемся основным тригонометрическим тождеством: ({sin ^2}alpha  + {cos ^2}alpha  = 1)

({sin ^2}alpha  + {left( {frac{{12}}{{13}}} right)^2} = 1,,,,,, Leftrightarrow ,,,,,,{sin ^2}alpha  = 1 — frac{{144}}{{169}},,,,,,, Leftrightarrow ,,,,,{sin ^2}alpha  = frac{{25}}{{169}})

Следовательно, (sin alpha  = frac{5}{{13}}) или (sin alpha  =  — frac{5}{{13}}).

Так как (alpha ,, in ,,left( {frac{{3pi }}{2};2pi } right)), то есть лежит в четвертой четверти, то его синус отрицательный. Поэтому: (26cos left( {frac{{3pi }}{2} + alpha } right) = 26sin alpha  = 26 cdot left( { — frac{5}{{13}}} right) =  — 10.)

Ответ: — 10.

Задача 39. Найдите   ({text{tg}}left( {alpha  + frac{{5{\pi }}}{2}} right)),   если   ({text{tg}}alpha {text{ = 0}}{text{,4}})

Ответ

ОТВЕТ: — 2,5.

Решение

(tgleft( {alpha  + frac{{5pi }}{2}} right) =  — ctgalpha )

Воспользуемся тем, что: (tgalpha  cdot ctgalpha  = 1.)

Тогда: (ctgalpha  = frac{1}{{tgalpha }} = frac{1}{{0,4}} = 2,5.)  Поэтому:  (tgleft( {alpha  + frac{{5pi }}{2}} right) =  — ctgalpha  =  — 2,5.)

Ответ: — 2,5.

Задача 40. Найдите   ({text{t}}{{text{g}}^2}alpha ),   если   (4{sin ^2}alpha  + 9{cos ^2}alpha  = 6)

Ответ

ОТВЕТ: 1,5.

Решение

Выполним следующее преобразование:  (6 = 6 cdot 1 = 6left( {{{sin }^2}alpha  + {{cos }^2}alpha } right) = 6{sin ^2}alpha  + 6{cos ^2}alpha )

Тогда:

(4{sin ^2}alpha  + 9{cos ^2}alpha  = 6,,,,, Leftrightarrow ,,,,,4{sin ^2}alpha  + 9{cos ^2}alpha  = 6{sin ^2}alpha  + 6{cos ^2}alpha ,,,,, Leftrightarrow )

( Leftrightarrow ,,,,,2{sin ^2}alpha  = 3{cos ^2}alpha ,,,,, Leftrightarrow ,,,,,frac{{{{sin }^2}alpha }}{{{{cos }^2}alpha }}, = frac{3}{2},,,,,, Leftrightarrow ,,,,,t{g^2}alpha  = 1,5.)

Ответ: 1,5.

Задача 41. Найдите   (frac{{3cos alpha  — 4sin alpha }}{{2sin alpha  — 5cos alpha }}),   если   ({text{tg}}alpha {text{ = 3}})

Ответ

ОТВЕТ: — 9.

Решение

1 Вариант

Разделим числитель и знаменатель дроби на (cos alpha ). Тогда:

(frac{{3cos alpha  — 4sin alpha }}{{2sin alpha  — 5cos alpha }} = frac{{frac{{3cos alpha }}{{cos alpha }} — frac{{4sin alpha }}{{cos alpha }}}}{{frac{{2sin alpha }}{{cos alpha }} — frac{{5cos alpha }}{{cos alpha }}}} = frac{{3 — 4,,tgalpha }}{{2,,tgalpha  — 5}} = frac{{3 — 4 cdot 3}}{{2 cdot 3 — 5}} = frac{{ — 9}}{1} =  — 9.)

2 Вариант

Так как (tgalpha  = 3), то (frac{{sin alpha }}{{cos alpha }} = 3) и (sin alpha  = 3cos alpha ). Тогда:

(frac{{3cos alpha  — 4sin alpha }}{{2sin alpha  — 5cos alpha }} = frac{{3cos alpha  — 4 cdot 3cos alpha }}{{2 cdot 3cos alpha  — 5cos alpha }} = frac{{3cos alpha  — 12cos alpha }}{{6cos alpha  — 5cos alpha }} = frac{{ — 9cos alpha }}{{cos alpha }} =  — 9.)

Ответ: — 9.

Задача 42. Найдите   (frac{{10cos alpha  + 4sin alpha  + 15}}{{2sin alpha  + 5cos alpha  + 3}}),   если   ({text{tg}}alpha {text{ = }} — {text{2}}{text{,5}})

Ответ

ОТВЕТ: 5.

Решение

1 Вариант

Разделим числитель и знаменатель дроби на (cos alpha ). Тогда:

(frac{{10cos alpha  + 4sin alpha  + 15}}{{2sin alpha  + 5cos alpha  + 3}} = frac{{frac{{10cos alpha }}{{cos alpha }} + frac{{4sin alpha }}{{cos alpha }} + frac{{15}}{{cos alpha }}}}{{frac{{2sin alpha }}{{cos alpha }} + frac{{5cos alpha }}{{cos alpha }} + frac{3}{{cos alpha }}}} = frac{{10 + 4,,tgalpha  + frac{{15}}{{cos alpha }}}}{{2,,tgalpha  + 5 + frac{3}{{cos alpha }}}} = )

( = frac{{10 + 4 cdot left( { — 2,5} right) + frac{{15}}{{cos alpha }}}}{{2 cdot left( { — 2,5} right) + 5 + frac{3}{{cos alpha }}}} = frac{{10 — 10 + frac{{15}}{{cos alpha }}}}{{ — 5 + 5 + frac{3}{{cos alpha }}}} = frac{{frac{{15}}{{cos alpha }}}}{{frac{3}{{cos alpha }}}} = frac{{15}}{{cos alpha }} cdot frac{{cos alpha }}{3} = 5.)

2 Вариант

Так как  (tgalpha  =  — 2,5),  то (frac{{sin alpha }}{{cos alpha }} =  — 2,5)  и  (sin alpha  =  — 2,5cos alpha ).  Тогда:

(frac{{10cos alpha  + 4sin alpha  + 15}}{{2sin alpha  + 5cos alpha  + 3}} = frac{{10cos alpha  + 4 cdot left( { — 2,5cos alpha } right) + 15}}{{2 cdot left( { — 2,5cos alpha } right) + 5cos alpha  + 3}} = frac{{10cos alpha  — 10cos alpha  + 15}}{{ — 5cos alpha  + 5cos alpha  + 3}} = frac{{15}}{3} = 5.)

Ответ: 5.

Задача 43. Найдите   ({text{tg}}alpha ),   если   (frac{{6sin alpha  — 2cos alpha }}{{4sin alpha  — 4cos alpha }} =  — 1)

Ответ

ОТВЕТ: 0,6.

Решение

Разделим числитель и знаменатель левой части на (cos alpha ):

(frac{{frac{{6sin alpha }}{{cos alpha }} — frac{{2cos alpha }}{{cos alpha }}}}{{frac{{4sin alpha }}{{cos alpha }} — frac{{4cos alpha }}{{cos alpha }}}} =  — 1,,,,, Leftrightarrow ,,,,,frac{{6,,tgalpha  — 2}}{{4,,tgalpha  — 4}} = frac{{ — 1}}{1},,,,, Leftrightarrow ,,,,,6,,tgalpha  — 2 =  — 4,tgalpha  + 4,,,,, Leftrightarrow )

( Leftrightarrow ,,,,,10,,tgalpha  = 6,,,,, Leftrightarrow ,,,,,tgalpha  = 0,6.)

Ответ: 0,6.

Задача 44. Найдите   ({text{tg}}alpha ),   если   (frac{{3sin alpha  — 5cos alpha  + 2}}{{sin alpha  + 3cos alpha  + 6}} = frac{1}{3})

Ответ

ОТВЕТ: 2,25.

Решение

Воспользуемся свойством пропорции:

(frac{{3sin alpha  — 5cos alpha  + 2}}{{sin alpha  + 3cos alpha  + 6}} = frac{1}{3},,,,,, Leftrightarrow ,,,,,,3left( {3sin alpha  — 5cos alpha  + 2} right) = sin alpha  + 3cos alpha  + 6,,,,,, Leftrightarrow )

( Leftrightarrow ,,,,,,9sin alpha  — 15cos alpha  + 6 = sin alpha  + 3cos alpha  + 6,,,,, Leftrightarrow ,,,,,8sin alpha  = 18cos alpha ,,,,, Leftrightarrow )

( Leftrightarrow ,,,,,frac{{sin alpha }}{{cos alpha }} = frac{{18}}{8},,,,, Leftrightarrow ,,,,,tgalpha  = 2,25.)

Ответ: 2,25.

Задача 45. Найдите   значение   выражения   (7cos left( {{\pi } + beta } right) — 2sin left( {frac{{\pi }}{2} + beta } right)),  если   (cos beta  =  — frac{1}{3})

Ответ

ОТВЕТ: 3.

Решение

(7cos left( {pi  + beta } right) — 2sin left( {frac{pi }{2} + beta } right) =  — 7cos beta  — 2cos beta  =  — 9cos beta  =  — 9 cdot left( { — frac{1}{3}} right) = 3.)

Ответ: 3.

Задача 46. Найдите  значение  выражения   (5sin left( {alpha  — 7{\pi }} right) — 11cos left( {frac{{3{\pi }}}{2} + alpha } right)), если   (sin alpha  =  — 0,25)

Ответ

ОТВЕТ: 4.

Решение

(5sin left( {alpha  — 7pi } right) — 11cos left( {frac{{3pi }}{2} + alpha } right) =  — 5sin alpha  — 11sin alpha  =  — 16sin alpha  =  — 16 cdot left( { — 0,25} right) = 4.)

Ответ: 4.

Задача 47. Найдите   (3cos 2alpha ),   если   (cos alpha  = frac{1}{2})

Ответ

ОТВЕТ: — 1,5.

Решение

Воспользуемся формулой косинус двойного угла: (cos 2alpha  = 2{cos ^2}alpha  — 1)

(3cos 2alpha  = 3left( {2{{cos }^2}alpha  — 1} right) = 3 cdot left( {2 cdot {{left( {frac{1}{2}} right)}^2} — 1} right) = 3 cdot left( {2 cdot frac{1}{4} — 1} right) = 3 cdot left( { — frac{1}{2}} right) =  — 1,5.)

Ответ: — 1,5.

Like this post? Please share to your friends:
  • Решу егэ математика профиль февраль
  • Решу егэ математика профиль тригонометрические выражения
  • Решу егэ математика профиль тренировочный вариант 8
  • Решу егэ математика профиль тренировочные варианты
  • Решу егэ математика профиль тип 6