Решу егэ математика профиль интегралы


Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

Сайты, меню, вход, новости

Каталог заданий.
Первообразная


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

На рисунке изображён график функции y  =  F(x)  — одной из первообразных функции f(x), определённой на интервале (−3; 5). Найдите количество решений уравнения f(x)  =  0 на отрезке [−2; 4].

Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 2.


2

На рисунке изображён график некоторой функции y=f левая круглая скобка x правая круглая скобка (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(2), где F(x)  — одна из первообразных функции f(x).

Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2014. Вариант 1.


3

На рисунке изображён график функции y = f(x). Функция F левая круглая скобка x правая круглая скобка =x в кубе плюс 30x в квадрате плюс 302x минус дробь: числитель: 15, знаменатель: 8 конец дроби   — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.


4

На рисунке изображён график некоторой функции y = f(x). Функция F левая круглая скобка x правая круглая скобка = минус x в кубе минус 27x в квадрате минус 240x минус 8  — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.


Пройти тестирование по этим заданиям

Блок 1. Физический смысл производной

1 Материальная точка движется прямолинейно по закону x(t) = t^3 — 9t^2 + 2t +30 (где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). В какой момент времени её скорость была равна 50 м/с? Смотреть видеоразбор
2 Материальная точка движется прямолинейно по закону x(t)=−t^4+6t^3+5t+23, где x−расстояние от точки отсчета в метрах, t−время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 3 с. Смотреть видеоразбор

Блок 2. Анализ графика функции, касательные

3 На графике дифференцируемой функции у=f(x) отмечены семь точек: х1 ,…,  х7. Найдите все отмеченные точки, в которых производная функции f(x) равна нулю. В ответе укажите количество этих точек.
Смотреть видеоразбор
4 На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек x1, x2, …, x9. Среди этих точек найдите все точки, в которых производная функции f(x) отрицательна. В ответе укажите количество найденных точек.
Смотреть видеоразбор
5 На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой X0. Найдите значение производной функции f(x) в точке X0.
Смотреть видеоразбор
6 На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой X0. Найдите значение производной функции f(x) в точке X0.
Смотреть видеоразбор
7 На рисунке изображен график функции y = f(x) и отмечены точки -7, -3, 1, 5. В какой из этих точек значение производной этой функции наибольшее? В ответе укажите эту точку.
Смотреть видеоразбор
8 На рисунке изображен график функции y = f(x), одна из первообразных которой равна F(x). Найдите разность F(4) — F(-1).
Смотреть видеоразбор
9 На рисунке изображен график функции y = f(x), определенной на интервале (-2; 12). Найдите сумму точек экстремума функции f(x).
Смотреть видеоразбор
10 На рисунке изображен график функции y = f(x), определенной на интервале (-5;5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней.
Смотреть видеоразбор
11 На рисунке изображен график функции y = f(x). Касательная к этому графику, проведенная в точке с абсциссой -1, проходит через начало координат. Найдите значение производной функции f(x) в точке -1.
Смотреть видеоразбор
12 На рисунке изображен график функции y=f(x) и касательная к этому графику, проведенная в точке x0. Уравнение касательной y=-2x-7. Найдите значение производной функции y=-frac{1}{4}f(x)+5x-3 в точке x0.
Смотреть видеоразбор
13 На рисунке изображен график функции y=f(x), определенной на интервале (-5;5). Определите количество целых точек, в которых производная функции f(x) отрицательна.
Смотреть видеоразбор
14 На рисунке изображен график функции y=f(x), определенной на интервале (-6;8). Определите количество целых точек, в которых производная функции положительна.
Смотреть видеоразбор
15 На рисунке изображен график функции и шесть точек на оси абсцисс: x_1, x_2, x_3, x_4, x_5, x_6. В скольких из этих точек производная функции отрицательна?
Смотреть видеоразбор
16 Функция f(x) определена на интервале (-4; 6). На рисунке изображен ее график. В скольких целых точках ее производная положительна?
Смотреть видеоразбор

Блок 3. Анализ графика производной

17 На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-18; 6). Найдите количество точек минимума функции f(x), принадлежащих отрезку [-13;1].
Смотреть видеоразбор
18 На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-7; 14). Найдите количество точек максимума функции f(x), принадлежащих отрезку [-6;9].
Смотреть видеоразбор
19 На рисунке изображён график y = f'(x) — производной функции f(x), определенной на интервале (-8; 3). В какой точке отрезка [-3; 2] функция f(x) принимает наибольшее значение?
Смотреть видеоразбор
20 На рисунке изображён график y = f'(x) — производной функции f(x), определенной на интервале (-8; 4). В какой точке отрезка [-7; -3] функция f(x) принимает наименьшее значение?
Смотреть видеоразбор
21 На рисунке изображён график y = f′(x) производной функции f(x) и шесть точек на оси абсцисс: x1 , x2 , . . . , x6. В скольких из этих точек функция f(x) возрастает?
Смотреть видеоразбор
22 На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-3; 19). Найдите количество точек максимума функции f(x), принадлежащих отрезку [-2; 15].
Смотреть видеоразбор
23 На рисунке изображен график производной функции f(x) и отмечены одиннадцать точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11. В скольких из этих точек функция f(x) возрастает?
Смотреть видеоразбор
24 На рисунке изображен график производной функции f(x), определенной на интервале (-10; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y=-2x-11 или совпадает с ней.
Смотреть видеоразбор
25 На рисунке изображен график производной функции f(x), определенной на интервале (-17; 2). Найдите число точек минимума функции y=f(x).
Смотреть видеоразбор
26 На рисунке изображен график производной функции f(x), определенной на интервале (-4; 4). Найдите абсциссу точки, в которой касательная к графику функции f(x) параллельна прямой y=-3x-11 или совпадает с ней.
Смотреть видеоразбор
27 На рисунке изображен график производной функции f(x), определенной на интервале (-6; 8). Найдите количество таких чисел x, что касательная к графику функции f(x) в точке x параллельна прямой y=2x-5 или совпадает с ней.
Смотреть видеоразбор
28 На рисунке изображен график производной функции f(x), определенной на интервале (-8; 4). В какой точке отрезка [-7; -2] функция f(x) принимает наибольшее значение?
Смотреть видеоразбор
29 Функция f(x) определена на отрезке [-6; 6]. На рисунке изображен график ее производной. Найдите наибольшую длину промежутка возрастания функции f(x).
Смотреть видеоразбор
30 Функция y = f(x) определена и непрерывна на отрезке [-5; 5]. На рисунке изображен график её производной. Найдите точку x, в которой функция принимает наименьшее значение, если f(-5) больше либо равна f(5).
Смотреть видеоразбор

Блок 4. Задачи на производную без готовых графиков

31 Прямая y=-4x-11 является касательной к графику функции y=x^3+7x^2+7x-6. Найдите абсциссу точки касания. Смотреть видеоразбор
32 Прямая y=7x-5 параллельна касательной к графику функции y=x^2+6x-8. Найдите абсциссу точки касания. Смотреть видеоразбор

Блок 5. Первообразная, интеграл

33 На рисунке изображен график функции y=f(x). Функция F(x)=-x^3-21x^2-144x-frac{11}{4} — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
Смотреть видеоразбор
34 На рисунке изображен график y=F(x) одной из первообразных некоторой функции f(x), определенной на интервале (-8; 7). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-5; 5].
Смотреть видеоразбор
35 На рисунке изображен график некоторой функции y=f(x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислить F(8)-F(2), где F(x) — одна из первообразных функции f(x).
Смотреть видеоразбор
36 На рисунке изображен график некоторой функции y=f(x). Пользуясь рисунком, вычислите intlimits_{-7}^{-1} f(x)dx
Смотреть видеоразбор
37 На рисунке изображен график некоторой функции y=f(x). Функция F(x) = x^3+30x^2+302x-frac{15}{8} — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
Смотреть видеоразбор
38 На рисунке изображен график одной из первообразных некоторой функции, определенной на интервале (-3;5). Пользуясь рисунком, определите число корней уравнения на отрезке [-2;4]
Смотреть видеоразбор
39 На рисунке изображен график функции y = f(x). Пользуясь рисунком, вычислите F(8) — F(2), где F(x) — одна из первообразных функции f(x).
Смотреть видеоразбор
40 На рисунке изображен график функции y=F(x) — одной из первообразных некоторой функции f(x), определенной на интервале (-3; 5). Пользуясь графиком, определите число корней уравнения f(x)=0 на отрезке [-2; 4].
Смотреть видеоразбор
41 На рисунке изображен график функции y=F(x) одной из первообразных некоторой функции f(x), определенной на интервале (-3; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [1; 4].
Смотреть видеоразбор
42 Значение первообразной F(x) функции f(x)=frac{7}{x} в точке 1 равно -11. Найдите F(e^2) Смотреть видеоразбор

Блок 6. Нестандартные задачи

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Первообразная функции»

Открытый банк заданий по теме первообразная функции. Задания B7 из ЕГЭ по математике (профильный уровень)

Геометрические фигуры на плоскости: вычисление величин с использованием углов

Геометрические фигуры в пространстве: нахождение длины, площади, объема

Задание №1164

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(9)-F(5), где F(x) — одна из первообразных функции f(x).

График функции y=f(x), являющийся ломаной линией, составленной из трёх прямолинейных отрезков

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(9)-F(5), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=9 и x=5. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 4 и 3 и высотой 3.

Её площадь равна frac{4+3}{2}cdot 3=10,5.

Ответ

10,5

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1158

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-3; 4].

График функции y= F(x) - одной из первообразных функции f(x), на интервале (-5; 5)

Показать решение

Решение

Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 4], в которых производная функции F(x) равна нулю. Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 7 (четыре точки минимума и три точки максимума).

Ответ

7

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1155

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(5)-F(0), где F(x) — одна из первообразных функции f(x).

График функции у=f(x) являющийся ломаной линией, составленной из трёх прямолинейных отрезков

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(5)-F(0), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=5 и x=0. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 5 и 3 и высотой 3.

Её площадь равна frac{5+3}{2}cdot 3=12.

Ответ

12

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1149

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 4). Пользуясь рисунком, определите количество решений уравнения f (x)=0 на отрезке (-3; 3].

График функции y=F(x) — одной из первообразных некоторой функции f(x) на интервале (-5; 4)

Показать решение

Решение

Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 3], в которых производная функции F(x) равна нулю.

Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 5 (две точки минимума и три точки максимума).

Ответ

5

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1146

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображен график некоторой функции y=f(x). Функция F(x)=-x^3+4,5x^2-7 — одна из первообразных функции f(x).

Найдите площадь заштрихованной фигуры.

График некоторой функции y=f(x) с известной первообразной и заштрихованной фигурой

Показать решение

Решение

Заштрихованная фигура является криволинейной трапецией, ограниченной сверху графиком функции y=f(x), прямыми y=0, x=1 и x=3. По формуле Ньютона-Лейбница её площадь S равна разности F(3)-F(1), где F(x) — указанная в условии первообразная функции f(x). Поэтому S= F(3)-F(1)= -3^3 +(4,5)cdot 3^2 -7-(-1^3 +(4,5)cdot 1^2 -7)= 6,5-(-3,5)= 10.

Ответ

10

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №907

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график некоторой функции y=f(x). Функция F(x)=x^3+6x^2+13x-5 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.

График функции y=f(x) с заштрихованной областью

Показать решение

Решение

Заштрихованная фигура является криволинейной трапецией, ограниченной графиком функции y=f(x) и прямыми y=0, x=-4 и x=-1. По формуле Ньютона-Лейбница её площадь S равна разности F(-1)-F(-4), где F(x) — указанная в условии первообразная функции f(x).

Поэтому S= F(-1)-F(-4)= (-1)^3+6(-1)^2+13(-1)-5-((-4)^3+6(-4)^2+13(-4)-5)= -13-(-25)=12.

Ответ

12

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №307

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображен график некоторой функции y=f(x). Функция F(x)=x^3+18x^2+221x-frac12 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.

График некоторой функции y=f(x) с заштрихованной фигурой

Показать решение

Решение

По формуле Ньютона-Лейбница S=F(-1)-F(-5).

F(-1)= (-1)^3+18cdot(-1)^2+221cdot(-1)-frac12= -204-frac12.

F(-5)= (-5)^3+18cdot(-5)^2+221cdot(-5)-frac12= -125+450-1105-frac12= -780-frac12.

F(-1)-F(-5)= -204-frac12-left (-780-frac12right)= 576.

Ответ

576

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №306

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображен график некоторой функции y=f(x).Пользуясь рисунком, вычислите F(9)-F(3), где F(x) — одна из первообразных функции f(x).

График функции y=f(x)

Показать решение

Решение

F(9)-F(3)=S, где S — площадь фигуры, ограниченной графиком функции y=f(x), прямыми y=0 и x=3,:x=9. Рассмотрим рисунок ниже.

Трапеция, ограниченная графиком функции y=f(x) и прямыми.

Данная фигура — трапеция с основаниями 6 и 1 и высотой 2. Ее площадь равна frac{6+1}{2}cdot2=7.

Ответ

7

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №104

Тип задания: 7
Тема:
Первообразная функции

Условие

На координатной плоскости изображен график функции y=f(x). Одна из первообразных этой функции имеет вид: F(x)=-frac13x^3-frac52x^2-4x+2. Найдите площадь заштрихованной фигуры.

График дифференцируемой функции y=f(x)

Показать решение

Решение

На рисунке видно, что заштрихованная фигура ограничена по оси абсцисс точками −4, −1, а по оси ординат графиком функции: f(x). Значит площадь фигуры мы можем найти с помощью разности значений первообразных в точках −4 и −1, по формуле определенного интеграла:

intlimits_{-4}^{-1}f(x)dx=F(-1)-F(-4)

Подставим значение первообразной из условия и получим площадь фигуры:

F(-1)-F(-4)=

=frac13-frac52+4+2-frac{64}{3}+frac{80}{2}-16-2=

=-frac{63}{3}+frac{75}{2}-12=-21+37,5-12=4,5

Ответ

4,5

Задание №103

Тип задания: 7
Тема:
Первообразная функции

Условие

Первообразная y=F(x) некоторой функции y=f(x) определена на интервале (−16; −2). Определите сколько решений имеет уравнение f(x) = 0 на отрезке [−10; −5].

Первообразная y=F(x) функции y=f(x)

Показать решение

Решение

Формула первообразной имеет следующий вид:

f(x) = F'(x)

По условию задачи нужно найти точки, в которых функция f(x) равна нулю. Принимая во внимание формулу первообразной, это значит, что, нужно найти точки, в которых F'(x) = 0, то есть те точки, в которых производная от первообразной равна нулю.

Мы знаем, что производная равна нулю в точках локального экстремума, т.е. функция имеет решения в тех точках, в которых возрастание F(x) сменяется убыванием и наоборот.

На отрезке [−10; −5] видно что это точки: −9; −7; −6. Значит уравнение f(x) = 0 имеет 3 решения.

Первообразная y=F(x) функции y=f(x)

Ответ

3

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Skip to content

ЕГЭ Профиль №6. Первообразная

ЕГЭ Профиль №6. Первообразнаяadmin2022-08-17T21:08:43+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №6. Первообразная

Задача 1. На рисунке изображён график функции (y = Fleft( x right)) — одной из первообразных некоторой функции (fleft( x right)), определённой на интервале  (left( { — 3;;5} right)). Пользуясь рисунком, определите количество решений уравнения (fleft( x right) = 0) на отрезке (left[ { — 2;;4} right]).

Ответ

ОТВЕТ: 10.

Задача 2. На рисунке изображён график некоторой функции (y = fleft( x right)) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите (Fleft( 8 right) — Fleft( 2 right)), где  (Fleft( x right))— одна из первообразных функции (fleft( x right)).

Ответ

ОТВЕТ: 7.

Задача 3. На рисунке изображен график некоторой функции (y = fleft( x right)). Пользуясь рисунком, вычислите определенный интеграл (intlimits_1^5 {fleft( x right)} ,dx)

Ответ

ОТВЕТ: 12.

Задача 4. На рисунке изображён график некоторой функции (y = fleft( x right)). Функция (Fleft( x right) = {x^3} + 30{x^2} + 302x — frac{{15}}{8}) — одна из первообразных функции (fleft( x right)). Найдите площадь закрашенной фигуры.

Ответ

ОТВЕТ: 6.

Задача 5. На рисунке изображён график некоторой функции (y = fleft( x right)). Функция (Fleft( x right) =  — {x^3} — 27{x^2} — 240x — 8) — одна из первообразных функции (fleft( x right)). Найдите площадь закрашенной фигуры.

Ответ

ОТВЕТ: 4.

Задача6 . На рисунке изображён график некоторой функции (y = fleft( x right)). Функция (Fleft( x right) = frac{1}{2}{x^3} — frac{9}{2}{x^2} + 14x — 12) — одна из первообразных функции (fleft( x right)). Найдите площадь закрашенной фигуры.

Ответ

ОТВЕТ: 6.

Задача 7. На рисунке изображён график некоторой функции (y = fleft( x right)). Функция (Fleft( x right) =  — {x^3} — frac{9}{2}{x^2} — 6x — frac{{123}}{7}) — одна из первообразных функции (fleft( x right)). Найдите площадь закрашенной фигуры.

Ответ

ОТВЕТ: 0,5.

Задача 8. На рисунке изображён график функции (y = Fleft( x right)) — одной из первообразных некоторой функции (fleft( x right)) и отмечены десять точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10. В скольки из этих точек функция (fleft( x right)) положительна?

Ответ

ОТВЕТ: 7.

Задача 9. На рисунке изображён график функции (y = Fleft( x right)) — одной из первообразных некоторой функции (fleft( x right)) и отмечены семь точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7. В скольки из этих точек функция (fleft( x right)) отрицательна?

Ответ

ОТВЕТ: 3.

10
Авг 2013

Категория: 07 Производная, ПО

07. Первообразная

2013-08-10
2022-09-11

Задача 1. На рисунке изображён график некоторой функции y=f(x)  (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8)-F(2), где F(x)  — одна из первообразных функции f(x).

у

Решение: + показать



Задача 2. На рисунке изображён график некоторой функции  y=f(x). Функция F(x)=x^3+12x^2+51x-3 — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

ed

Решение: + показать



Задача 3. На рисунке изображён график некоторой функции y=f(x). Функция F(x)=-frac{4}{9}x^3-frac{34}{3}x^2-frac{280}{3}x-frac{18}{5} — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

u

Решение: + показать



Задача 4. На рисунке изображён график функции y=F(x) – одной из первообразных некоторой функции f(x), определённой на интервале (-2;4). Пользуясь рисунком, определите количество решений уравнения f(x)=0  на отрезке [-1;3].

r

Решение: + показать



колоЗагляните –> + показать


тест

Вы можете пройти тест «Первообразная»

Автор: egeMax |

комментариев 7

Первообразной для функции $f(x)$ называется такая функция $F(x)$, для которой выполняется равенство: $F'(x)=f(x)$

Таблица первообразных

Первообразная нуля равна $С$

Функция Первообразная
$f(x)=k$ $F(x)=kx+C$
$f(x)=x^m, m≠-1$ $F(x)={x^{m+1}}/{m+1}+C$
$f(x)={1}/{x}$ $F(x)=ln|x|+C$
$f(x)=e^x$ $F(x)=e^x+C$
$f(x)=a^x$ $F(x)={a^x}/{lna}+C$
$f(x)=sinx$ $F(x)-cosx+C$
$f(x)=cosx$ $F(x)=sinx+C$
$f(x)={1}/{sin^2x}$ $F(x)=-ctgx+C$
$f(x)={1}/{cos^2x}$ $F(x)=tgx+C$
$f(x)=√x$ $F(x)={2x√x}/{3}+C$
$f(x)={1}/{√x}$ $F(x)=2√x+C$

Если $y=F(x)$ – это первообразная для функции $y=f(x)$ на промежутке $Х$, то $у$ $у=f(x)$ бесконечно много первообразных и все они имеют вид $y=F(x)+C$

Правила вычисления первообразных:

  1. Первообразная суммы равна сумме первообразных. Если $F(x)$ — первообразная для $f(x)$, а $G(x)$ – первообразная для $g(x)$, то $F(x)+G(x)$ — первообразная для $f(x)+g(x)$.
  2. Постоянный множитель выносится за знак первообразной. Если $F(x)$ — первообразная для $f(x)$, а $k$ – постоянная величина, то $k$ $F(x)$ — первообразная для $k$ $f(x)$.
  3. Если $F(x)$ — первообразная для $f(x)$, $а, k, b$ — постоянные величины, причем $k≠0$, то ${1}/{k}$ $F(kx+b)$ — это первообразная для $f(kx+b)$.

Пример:

Найти первообразную для функции $f(x)=2sin⁡x+{4}/{x}-{cos⁡x}/{3}$.

Решение:

Чтобы было проще найти первообразную от функции, выделим коэффициенты каждого слагаемого

$f(x)=2sin⁡x+{4}/{x}-{cos⁡x}/{3}=2∙sin⁡x+4∙{1}/{x}-{1/3}∙cos⁡x$

Далее, воспользовавшись таблицей первообразных, найдем первообразную для каждой функции, входящих в состав $f(x)$

$f_1=sin⁡x$

$f_2={1}/{x}$

$f_3=cos⁡x$

Для $f_1=sin⁡x$ первообразная равна $F_1=-cos⁡x$

Для $f_2={1}/{x}$ первообразная равна $F_2=ln⁡|x|$

Для $f_2=cos⁡x$ первообразная равна $F_3=sin⁡x$

По первому правилу вычисления первообразных получаем:

$F(x)=2F_1+4F_2-{1}/{3}F_3=2∙(-cos⁡x)+4∙ln⁡|x|-{1}/{3}∙sin⁡x$

Итак, общий вид первообразной для заданной функции

$F(x)=-2cos⁡x+4ln⁡|x|-{sin x}/{3}+C$

Связь между графиками функции и ее первообразной:

  1. Если график функции $f (x) > 0$ на промежутке, то график ее первообразной $F(x)$ возрастает на этом промежутке.
  2. Если график функции $f (x) < 0$ на промежутке, то график ее первообразной $F(x)$ убывает на этом промежутке.
  3. Если $f(x)=0$, то график ее первообразной $F(x)$ в этой точке меняется с возрастающего на убывающий (или наоборот).

Пример:

На рисунке изображен график функции $y=F(x)$ – одной из первообразных некоторой функции $f(x)$, определенной на интервале $(-3;5)$. Пользуясь рисунком, определите количество решений $f(x)=0$ на отрезке $(-2;2]$

Если $f(x)=0$, то график ее первообразной $F(x)$ в этой точке меняется с возрастающего на убывающий(или наоборот).

Выделим отрезок $(-2;2]$ и отметим на нем экстремумы.

У нас получилось $6$ таких точек.

Ответ: $6$

Неопределенный интеграл

Если функция $у=f(x)$ имеет на промежутке $Х$ первообразную $у=F(x)$, то множество всех первообразных $у=F(x)+С$, называют неопределенным интегралом функции $у=f(x)$ и записывают:

$∫f(x)dx$

Определенный интеграл – это интеграл с пределами интегрирования (на отрезке)

$∫_a^bf(x)dx$, где $a,b$ — пределы интегрирования

Площадь криволинейной трапеции или геометрический смысл первообразной

Площадь $S$ фигуры, ограниченной осью $Oх$, прямыми $х=а$ и $х=b$ и графиком неотрицательной функции $у=f(x)$ на отрезке $[a;b]$, находится по формуле

$S=∫_a^bf(x)dx$ 

Формула Ньютона — Лейбница

Если функция $у=f(x)$ непрерывна на отрезке $[a;b]$, то справедливо равенство

$∫_a^bf(x)dx=F(x)|_a^b=F(b)-F(a)$, где $F(x)$ — первообразная для $f(x)$

Пример:

На рисунке изображен график некоторой функции $у=f(x)$. Одна из первообразных этой функции равна $F(x)={2х^3}/{3}-2х^2-1$. Найдите площадь заштрихованной фигуры.

Решение:

Площадь выделенной фигуры равна разности значений первообразных, вычисленных в точках $1$ и $-2$

$S=F(1)-F(-2)$

Первообразная нам известна, следовательно, осталось только подставить в нее значения и вычислить

$F(1)={2∙1}/{3}-2∙1-1={2}/{3}-2-1={2}/{3}-3$

$F(-2)={2(-2)^3}/{3}-2(-2)^2-1={2∙(-8)}/{3}-8-1=-{16}/{3}-9$

$S={2}/{3}-3-(-{16}/{3}-9)={2}/{3}-3+{16}/{3}+9={18}/{3}+6=6+6=12$

Ответ: $12$

Копцева Татьяна Олеговна

Ресурс содержит презентацию и тест для самостоятельной работы. Тест составлен в 4 вариантах. Предназначен для подготовки к ЕГЭ. Цели ресурса: Образовательные: повторить и закрепить знания о первообразной функции и её свойствах, научиться применять знания при решении конкретных задач. Развивающие: развивать умение анализировать условие задачи. Воспитательные: воспитание аккуратности, внимательности, быстроты мышления.  

Скачать:

Предварительный просмотр:

Подписи к слайдам:

Слайд 1

Подготовка к ЕГЭ Задание №7 (первообразная)

Слайд 2

1) На рисунке изображён график функции y = F( x ) — одной из первообразных функции f ( x ), определённой на интервале (−3; 5). Найдите количество решений уравнения f ( x ) = 0 на отрезке [−2; 4].

Слайд 3

2 ) На рисунке изображён график некоторой функции (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(2), где F( x ) — одна из первообразных функции f ( x ).

Слайд 4

3 ) На рисунке изображён график функции y = f ( x ). Функция — одна из первообразных функции y = f ( x ). Найдите площадь закрашенной фигуры.

Слайд 5

4 ) На рисунке изображён график функции y = f ( x ). Функция — одна из первообразных функции y = f ( x ). Найдите площадь закрашенной фигуры.

Слайд 6

5 ) На рисунке изображен график некоторой функции Пользуясь рисунком, вычислите определенный интеграл .

Слайд 7

При подготовке презентации были использованы материалы с сайтов: https://www.uchportal.ru / https://ege.sdamgia.ru /

Предварительный просмотр:

ФИ_________________________________________________________В 1

  1. На рисунке изображён график функции y = F(x) — одной из первообразных функции f(x), определённой на интервале (−2; 6). Найдите количество решений уравнения f(x) = 0 на отрезке [−1; 5].

Ответ:___________________

  1. На рисунке изображён график некоторой функции  (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(6) − F(2), где F(x) — одна из первообразных функции f(x).

Ответ:___________________

  1. На рисунке изображён график функции y = f(x).

Функция  — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.

Ответ:___________________

  1. На рисунке изображён график функции y = f(x).

Функция  — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.

Ответ:___________________

ФИ_________________________________________________________В 2

  1. На рисунке изображён график функции y = F(x) — одной из первообразных функции f(x), определённой на интервале (−3; 6). Найдите количество решений уравнения f(x) = 0 на отрезке [−2; 5].

Ответ________________________________

  1. На рисунке изображён график некоторой функции  (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(5) − F(3), где F(x) — одна из первообразных функции f(x).

Ответ:___________________

  1. На рисунке изображён график функции y = f(x).

Функция  — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.

Ответ:___________________

  1. На рисунке изображён график функции y = f(x).

Функция  — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.

Ответ:___________________

ФИ__________________________________________________________В 3

  1. На рисунке изображён график функции y = F(x) — одной из первообразных функции f(x), определённой на интервале (−2; 4). Найдите количество решений уравнения f(x) = 0 на отрезке [−1; 3].

Ответ_____________________

  1. На рисунке изображён график некоторой функции  (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(6) − F(4), где F(x) — одна из первообразных функции f(x).

Ответ_____________________

  1. На рисунке изображён график функции y = f(x).

Функция  — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.

Ответ:___________________

  1. На рисунке изображён график функции y = f(x).

Функция  — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.

Ответ:___________________

ФИ_________________________________________________________В 4

  1. На рисунке изображён график функции y = F(x) — одной из первообразных функции f(x), определённой на интервале (−2; 4). Найдите количество решений уравнения f(x) = 0 на отрезке [−1; 3].

Ответ____________________

  1. На рисунке изображён график некоторой функции  (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(6), где F(x) — одна из первообразных функции f(x).

Ответ_____________________

  1. На рисунке изображён график функции y = f(x).

Функция  — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.

Ответ:___________________

  1. На рисунке изображён график функции y = f(x).

Функция  — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.

Ответ:___________________

По теме: методические разработки, презентации и конспекты

Построение профиля задание С1 ЕГЭ по географии

При выполнении ЕГЭ по географии в задании С1 требуется выполнить профиль по топографической карте. Данный цикл занятий направленный на формирование у одинадцати классников умения выполнять этит тип за…

Варианты ЕГЭ математика (профиль), задания 1-12.

Варианты ЕГЭ математика (профиль), задания 1-12. Задания варианта соответствуют заданиям демоверсии ЕГЭ. При составлении вариантов использованы задания открытого банка заданий ЕГЭ. Ответы прилагаются….

  • Мне нравится 

 

Like this post? Please share to your friends:
  • Решу егэ математика профиль зарегистрироваться
  • Решу егэ математика профиль задачи с параметром
  • Решу егэ математика профиль задачи прошлых лет
  • Решу егэ математика профиль задачи на работу
  • Решу егэ математика профиль задачи на объем