Решу егэ математика профиль первообразная


Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

Сайты, меню, вход, новости

Каталог заданий.
Первообразная


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

На рисунке изображён график функции y  =  F(x)  — одной из первообразных функции f(x), определённой на интервале (−3; 5). Найдите количество решений уравнения f(x)  =  0 на отрезке [−2; 4].

Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 2.


2

На рисунке изображён график некоторой функции y=f левая круглая скобка x правая круглая скобка (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(2), где F(x)  — одна из первообразных функции f(x).

Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2014. Вариант 1.


3

На рисунке изображён график функции y = f(x). Функция F левая круглая скобка x правая круглая скобка =x в кубе плюс 30x в квадрате плюс 302x минус дробь: числитель: 15, знаменатель: 8 конец дроби   — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.


4

На рисунке изображён график некоторой функции y = f(x). Функция F левая круглая скобка x правая круглая скобка = минус x в кубе минус 27x в квадрате минус 240x минус 8  — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.


Пройти тестирование по этим заданиям

Версия для печати и копирования в MS Word

1

На рисунке изображён график функции y  =  F(x)  — одной из первообразных функции f(x), определённой на интервале (−3; 5). Найдите количество решений уравнения f(x)  =  0 на отрезке [−2; 4].

Ответ:


2

На рисунке изображён график некоторой функции y=f левая круглая скобка x правая круглая скобка (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(2), где F(x)  — одна из первообразных функции f(x).

Ответ:


3

На рисунке изображён график функции y = f(x). Функция F левая круглая скобка x правая круглая скобка =x в кубе плюс 30x в квадрате плюс 302x минус дробь: числитель: 15, знаменатель: 8 конец дроби   — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.

Ответ:


4

На рисунке изображён график некоторой функции y = f(x). Функция F левая круглая скобка x правая круглая скобка = минус x в кубе минус 27x в квадрате минус 240x минус 8  — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

Ответ:


5

Завершить тестирование, свериться с ответами, увидеть решения.

Поиск

Всего: 29    1–20 | 21–29

Добавить в вариант

На рисунке изображён график некоторой функции y=f левая круглая скобка x правая круглая скобка (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(2), где F(x)  — одна из первообразных функции f(x).

Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2014. Вариант 1.


На рисунке изображён график функции y = f(x). Функция F левая круглая скобка x правая круглая скобка =x в кубе плюс 30x в квадрате плюс 302x минус дробь: числитель: 15, знаменатель: 8 конец дроби   — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.


На рисунке изображён график функции y  =  F(x)  — одной из первообразных функции f(x), определённой на интервале (−3; 5). Найдите количество решений уравнения f(x)  =  0 на отрезке [−2; 4].

Источник: Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 2.










Источник: Пробный экзамен по математике Санкт-Петербург 2014. Вариант 2.







На рисунке изображён график функции y = F(x)  — одной из первообразных функции f(x), определённой на интервале (−3; 4). Найдите количество решений уравнения f(x) = 0 на отрезке [−2; 3].


На рисунке изображён график функции y = F(x)  — одной из первообразных функции f(x), определённой на интервале (−4; 3). Найдите количество решений уравнения f(x) = 0 на отрезке [−3; 1].


На рисунке изображён график функции y=F левая круглая скобка x правая круглая скобка и одной из первообразных некоторой функции f левая круглая скобка x правая круглая скобка , определённой на интервале  левая круглая скобка минус 2;6 правая круглая скобка . Пользуясь рисунком, определите количество решений уравнения f левая круглая скобка x правая круглая скобка =0 на отрезке  левая квадратная скобка минус 1;5 правая квадратная скобка .

b8_1_41.0.eps

Всего: 29    1–20 | 21–29

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Первообразная функции»

Открытый банк заданий по теме первообразная функции. Задания B7 из ЕГЭ по математике (профильный уровень)

Геометрические фигуры на плоскости: вычисление величин с использованием углов

Геометрические фигуры в пространстве: нахождение длины, площади, объема

Задание №1164

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(9)-F(5), где F(x) — одна из первообразных функции f(x).

График функции y=f(x), являющийся ломаной линией, составленной из трёх прямолинейных отрезков

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(9)-F(5), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=9 и x=5. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 4 и 3 и высотой 3.

Её площадь равна frac{4+3}{2}cdot 3=10,5.

Ответ

10,5

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1158

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-3; 4].

График функции y= F(x) - одной из первообразных функции f(x), на интервале (-5; 5)

Показать решение

Решение

Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 4], в которых производная функции F(x) равна нулю. Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 7 (четыре точки минимума и три точки максимума).

Ответ

7

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1155

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(5)-F(0), где F(x) — одна из первообразных функции f(x).

График функции у=f(x) являющийся ломаной линией, составленной из трёх прямолинейных отрезков

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(5)-F(0), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=5 и x=0. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 5 и 3 и высотой 3.

Её площадь равна frac{5+3}{2}cdot 3=12.

Ответ

12

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1149

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 4). Пользуясь рисунком, определите количество решений уравнения f (x)=0 на отрезке (-3; 3].

График функции y=F(x) — одной из первообразных некоторой функции f(x) на интервале (-5; 4)

Показать решение

Решение

Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 3], в которых производная функции F(x) равна нулю.

Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 5 (две точки минимума и три точки максимума).

Ответ

5

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1146

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображен график некоторой функции y=f(x). Функция F(x)=-x^3+4,5x^2-7 — одна из первообразных функции f(x).

Найдите площадь заштрихованной фигуры.

График некоторой функции y=f(x) с известной первообразной и заштрихованной фигурой

Показать решение

Решение

Заштрихованная фигура является криволинейной трапецией, ограниченной сверху графиком функции y=f(x), прямыми y=0, x=1 и x=3. По формуле Ньютона-Лейбница её площадь S равна разности F(3)-F(1), где F(x) — указанная в условии первообразная функции f(x). Поэтому S= F(3)-F(1)= -3^3 +(4,5)cdot 3^2 -7-(-1^3 +(4,5)cdot 1^2 -7)= 6,5-(-3,5)= 10.

Ответ

10

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №907

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображён график некоторой функции y=f(x). Функция F(x)=x^3+6x^2+13x-5 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.

График функции y=f(x) с заштрихованной областью

Показать решение

Решение

Заштрихованная фигура является криволинейной трапецией, ограниченной графиком функции y=f(x) и прямыми y=0, x=-4 и x=-1. По формуле Ньютона-Лейбница её площадь S равна разности F(-1)-F(-4), где F(x) — указанная в условии первообразная функции f(x).

Поэтому S= F(-1)-F(-4)= (-1)^3+6(-1)^2+13(-1)-5-((-4)^3+6(-4)^2+13(-4)-5)= -13-(-25)=12.

Ответ

12

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №307

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображен график некоторой функции y=f(x). Функция F(x)=x^3+18x^2+221x-frac12 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.

График некоторой функции y=f(x) с заштрихованной фигурой

Показать решение

Решение

По формуле Ньютона-Лейбница S=F(-1)-F(-5).

F(-1)= (-1)^3+18cdot(-1)^2+221cdot(-1)-frac12= -204-frac12.

F(-5)= (-5)^3+18cdot(-5)^2+221cdot(-5)-frac12= -125+450-1105-frac12= -780-frac12.

F(-1)-F(-5)= -204-frac12-left (-780-frac12right)= 576.

Ответ

576

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №306

Тип задания: 7
Тема:
Первообразная функции

Условие

На рисунке изображен график некоторой функции y=f(x).Пользуясь рисунком, вычислите F(9)-F(3), где F(x) — одна из первообразных функции f(x).

График функции y=f(x)

Показать решение

Решение

F(9)-F(3)=S, где S — площадь фигуры, ограниченной графиком функции y=f(x), прямыми y=0 и x=3,:x=9. Рассмотрим рисунок ниже.

Трапеция, ограниченная графиком функции y=f(x) и прямыми.

Данная фигура — трапеция с основаниями 6 и 1 и высотой 2. Ее площадь равна frac{6+1}{2}cdot2=7.

Ответ

7

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №104

Тип задания: 7
Тема:
Первообразная функции

Условие

На координатной плоскости изображен график функции y=f(x). Одна из первообразных этой функции имеет вид: F(x)=-frac13x^3-frac52x^2-4x+2. Найдите площадь заштрихованной фигуры.

График дифференцируемой функции y=f(x)

Показать решение

Решение

На рисунке видно, что заштрихованная фигура ограничена по оси абсцисс точками −4, −1, а по оси ординат графиком функции: f(x). Значит площадь фигуры мы можем найти с помощью разности значений первообразных в точках −4 и −1, по формуле определенного интеграла:

intlimits_{-4}^{-1}f(x)dx=F(-1)-F(-4)

Подставим значение первообразной из условия и получим площадь фигуры:

F(-1)-F(-4)=

=frac13-frac52+4+2-frac{64}{3}+frac{80}{2}-16-2=

=-frac{63}{3}+frac{75}{2}-12=-21+37,5-12=4,5

Ответ

4,5

Задание №103

Тип задания: 7
Тема:
Первообразная функции

Условие

Первообразная y=F(x) некоторой функции y=f(x) определена на интервале (−16; −2). Определите сколько решений имеет уравнение f(x) = 0 на отрезке [−10; −5].

Первообразная y=F(x) функции y=f(x)

Показать решение

Решение

Формула первообразной имеет следующий вид:

f(x) = F'(x)

По условию задачи нужно найти точки, в которых функция f(x) равна нулю. Принимая во внимание формулу первообразной, это значит, что, нужно найти точки, в которых F'(x) = 0, то есть те точки, в которых производная от первообразной равна нулю.

Мы знаем, что производная равна нулю в точках локального экстремума, т.е. функция имеет решения в тех точках, в которых возрастание F(x) сменяется убыванием и наоборот.

На отрезке [−10; −5] видно что это точки: −9; −7; −6. Значит уравнение f(x) = 0 имеет 3 решения.

Первообразная y=F(x) функции y=f(x)

Ответ

3

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Skip to content

ЕГЭ Профиль №6. Первообразная

ЕГЭ Профиль №6. Первообразнаяadmin2022-08-17T21:08:43+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №6. Первообразная

Задача 1. На рисунке изображён график функции (y = Fleft( x right)) — одной из первообразных некоторой функции (fleft( x right)), определённой на интервале  (left( { — 3;;5} right)). Пользуясь рисунком, определите количество решений уравнения (fleft( x right) = 0) на отрезке (left[ { — 2;;4} right]).

Ответ

ОТВЕТ: 10.

Задача 2. На рисунке изображён график некоторой функции (y = fleft( x right)) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите (Fleft( 8 right) — Fleft( 2 right)), где  (Fleft( x right))— одна из первообразных функции (fleft( x right)).

Ответ

ОТВЕТ: 7.

Задача 3. На рисунке изображен график некоторой функции (y = fleft( x right)). Пользуясь рисунком, вычислите определенный интеграл (intlimits_1^5 {fleft( x right)} ,dx)

Ответ

ОТВЕТ: 12.

Задача 4. На рисунке изображён график некоторой функции (y = fleft( x right)). Функция (Fleft( x right) = {x^3} + 30{x^2} + 302x — frac{{15}}{8}) — одна из первообразных функции (fleft( x right)). Найдите площадь закрашенной фигуры.

Ответ

ОТВЕТ: 6.

Задача 5. На рисунке изображён график некоторой функции (y = fleft( x right)). Функция (Fleft( x right) =  — {x^3} — 27{x^2} — 240x — 8) — одна из первообразных функции (fleft( x right)). Найдите площадь закрашенной фигуры.

Ответ

ОТВЕТ: 4.

Задача6 . На рисунке изображён график некоторой функции (y = fleft( x right)). Функция (Fleft( x right) = frac{1}{2}{x^3} — frac{9}{2}{x^2} + 14x — 12) — одна из первообразных функции (fleft( x right)). Найдите площадь закрашенной фигуры.

Ответ

ОТВЕТ: 6.

Задача 7. На рисунке изображён график некоторой функции (y = fleft( x right)). Функция (Fleft( x right) =  — {x^3} — frac{9}{2}{x^2} — 6x — frac{{123}}{7}) — одна из первообразных функции (fleft( x right)). Найдите площадь закрашенной фигуры.

Ответ

ОТВЕТ: 0,5.

Задача 8. На рисунке изображён график функции (y = Fleft( x right)) — одной из первообразных некоторой функции (fleft( x right)) и отмечены десять точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10. В скольки из этих точек функция (fleft( x right)) положительна?

Ответ

ОТВЕТ: 7.

Задача 9. На рисунке изображён график функции (y = Fleft( x right)) — одной из первообразных некоторой функции (fleft( x right)) и отмечены семь точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7. В скольки из этих точек функция (fleft( x right)) отрицательна?

Ответ

ОТВЕТ: 3.

Блок 1. Физический смысл производной

1 Материальная точка движется прямолинейно по закону x(t) = t^3 — 9t^2 + 2t +30 (где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). В какой момент времени её скорость была равна 50 м/с? Смотреть видеоразбор
2 Материальная точка движется прямолинейно по закону x(t)=−t^4+6t^3+5t+23, где x−расстояние от точки отсчета в метрах, t−время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 3 с. Смотреть видеоразбор

Блок 2. Анализ графика функции, касательные

3 На графике дифференцируемой функции у=f(x) отмечены семь точек: х1 ,…,  х7. Найдите все отмеченные точки, в которых производная функции f(x) равна нулю. В ответе укажите количество этих точек.
Смотреть видеоразбор
4 На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек x1, x2, …, x9. Среди этих точек найдите все точки, в которых производная функции f(x) отрицательна. В ответе укажите количество найденных точек.
Смотреть видеоразбор
5 На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой X0. Найдите значение производной функции f(x) в точке X0.
Смотреть видеоразбор
6 На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой X0. Найдите значение производной функции f(x) в точке X0.
Смотреть видеоразбор
7 На рисунке изображен график функции y = f(x) и отмечены точки -7, -3, 1, 5. В какой из этих точек значение производной этой функции наибольшее? В ответе укажите эту точку.
Смотреть видеоразбор
8 На рисунке изображен график функции y = f(x), одна из первообразных которой равна F(x). Найдите разность F(4) — F(-1).
Смотреть видеоразбор
9 На рисунке изображен график функции y = f(x), определенной на интервале (-2; 12). Найдите сумму точек экстремума функции f(x).
Смотреть видеоразбор
10 На рисунке изображен график функции y = f(x), определенной на интервале (-5;5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней.
Смотреть видеоразбор
11 На рисунке изображен график функции y = f(x). Касательная к этому графику, проведенная в точке с абсциссой -1, проходит через начало координат. Найдите значение производной функции f(x) в точке -1.
Смотреть видеоразбор
12 На рисунке изображен график функции y=f(x) и касательная к этому графику, проведенная в точке x0. Уравнение касательной y=-2x-7. Найдите значение производной функции y=-frac{1}{4}f(x)+5x-3 в точке x0.
Смотреть видеоразбор
13 На рисунке изображен график функции y=f(x), определенной на интервале (-5;5). Определите количество целых точек, в которых производная функции f(x) отрицательна.
Смотреть видеоразбор
14 На рисунке изображен график функции y=f(x), определенной на интервале (-6;8). Определите количество целых точек, в которых производная функции положительна.
Смотреть видеоразбор
15 На рисунке изображен график функции и шесть точек на оси абсцисс: x_1, x_2, x_3, x_4, x_5, x_6. В скольких из этих точек производная функции отрицательна?
Смотреть видеоразбор
16 Функция f(x) определена на интервале (-4; 6). На рисунке изображен ее график. В скольких целых точках ее производная положительна?
Смотреть видеоразбор

Блок 3. Анализ графика производной

17 На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-18; 6). Найдите количество точек минимума функции f(x), принадлежащих отрезку [-13;1].
Смотреть видеоразбор
18 На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-7; 14). Найдите количество точек максимума функции f(x), принадлежащих отрезку [-6;9].
Смотреть видеоразбор
19 На рисунке изображён график y = f'(x) — производной функции f(x), определенной на интервале (-8; 3). В какой точке отрезка [-3; 2] функция f(x) принимает наибольшее значение?
Смотреть видеоразбор
20 На рисунке изображён график y = f'(x) — производной функции f(x), определенной на интервале (-8; 4). В какой точке отрезка [-7; -3] функция f(x) принимает наименьшее значение?
Смотреть видеоразбор
21 На рисунке изображён график y = f′(x) производной функции f(x) и шесть точек на оси абсцисс: x1 , x2 , . . . , x6. В скольких из этих точек функция f(x) возрастает?
Смотреть видеоразбор
22 На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-3; 19). Найдите количество точек максимума функции f(x), принадлежащих отрезку [-2; 15].
Смотреть видеоразбор
23 На рисунке изображен график производной функции f(x) и отмечены одиннадцать точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11. В скольких из этих точек функция f(x) возрастает?
Смотреть видеоразбор
24 На рисунке изображен график производной функции f(x), определенной на интервале (-10; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y=-2x-11 или совпадает с ней.
Смотреть видеоразбор
25 На рисунке изображен график производной функции f(x), определенной на интервале (-17; 2). Найдите число точек минимума функции y=f(x).
Смотреть видеоразбор
26 На рисунке изображен график производной функции f(x), определенной на интервале (-4; 4). Найдите абсциссу точки, в которой касательная к графику функции f(x) параллельна прямой y=-3x-11 или совпадает с ней.
Смотреть видеоразбор
27 На рисунке изображен график производной функции f(x), определенной на интервале (-6; 8). Найдите количество таких чисел x, что касательная к графику функции f(x) в точке x параллельна прямой y=2x-5 или совпадает с ней.
Смотреть видеоразбор
28 На рисунке изображен график производной функции f(x), определенной на интервале (-8; 4). В какой точке отрезка [-7; -2] функция f(x) принимает наибольшее значение?
Смотреть видеоразбор
29 Функция f(x) определена на отрезке [-6; 6]. На рисунке изображен график ее производной. Найдите наибольшую длину промежутка возрастания функции f(x).
Смотреть видеоразбор
30 Функция y = f(x) определена и непрерывна на отрезке [-5; 5]. На рисунке изображен график её производной. Найдите точку x, в которой функция принимает наименьшее значение, если f(-5) больше либо равна f(5).
Смотреть видеоразбор

Блок 4. Задачи на производную без готовых графиков

31 Прямая y=-4x-11 является касательной к графику функции y=x^3+7x^2+7x-6. Найдите абсциссу точки касания. Смотреть видеоразбор
32 Прямая y=7x-5 параллельна касательной к графику функции y=x^2+6x-8. Найдите абсциссу точки касания. Смотреть видеоразбор

Блок 5. Первообразная, интеграл

33 На рисунке изображен график функции y=f(x). Функция F(x)=-x^3-21x^2-144x-frac{11}{4} — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
Смотреть видеоразбор
34 На рисунке изображен график y=F(x) одной из первообразных некоторой функции f(x), определенной на интервале (-8; 7). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-5; 5].
Смотреть видеоразбор
35 На рисунке изображен график некоторой функции y=f(x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислить F(8)-F(2), где F(x) — одна из первообразных функции f(x).
Смотреть видеоразбор
36 На рисунке изображен график некоторой функции y=f(x). Пользуясь рисунком, вычислите intlimits_{-7}^{-1} f(x)dx
Смотреть видеоразбор
37 На рисунке изображен график некоторой функции y=f(x). Функция F(x) = x^3+30x^2+302x-frac{15}{8} — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
Смотреть видеоразбор
38 На рисунке изображен график одной из первообразных некоторой функции, определенной на интервале (-3;5). Пользуясь рисунком, определите число корней уравнения на отрезке [-2;4]
Смотреть видеоразбор
39 На рисунке изображен график функции y = f(x). Пользуясь рисунком, вычислите F(8) — F(2), где F(x) — одна из первообразных функции f(x).
Смотреть видеоразбор
40 На рисунке изображен график функции y=F(x) — одной из первообразных некоторой функции f(x), определенной на интервале (-3; 5). Пользуясь графиком, определите число корней уравнения f(x)=0 на отрезке [-2; 4].
Смотреть видеоразбор
41 На рисунке изображен график функции y=F(x) одной из первообразных некоторой функции f(x), определенной на интервале (-3; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [1; 4].
Смотреть видеоразбор
42 Значение первообразной F(x) функции f(x)=frac{7}{x} в точке 1 равно -11. Найдите F(e^2) Смотреть видеоразбор

Блок 6. Нестандартные задачи

ЕГЭ по математике профиль

Прототипы задания №6 ЕГЭ по математике профильного уровня — производная и первообразная. Практический материал для подготовки к экзамену в 11 классе.

Для успешного выполнения задания №6 необходимо уметь выполнять действия с функциями.

Практика

Примеры заданий:

Коды проверяемых элементов содержания (по кодификатору) — 4.1–4.3

Уровень сложности задания — базовый.

Примерное время выполнения задания выпускником, изучавшим математику на профильном уровне (в мин.) — 4

Связанные страницы:

Like this post? Please share to your friends:
  • Решу егэ математика профиль октябрьские варианты
  • Решу егэ математика профиль об экзамене
  • Решу егэ математика профиль ноябрь
  • Решу егэ математика профиль многогранники
  • Решу егэ математика профиль методисту