Решу егэ математика профиль планиметрия

Каталог заданий
Задания 1. Планиметрия. Решение прямоугольного треугольника


Пройти тестирование по 10 заданиям
Пройти тестирование по всем заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 1 № 27238

В треугольнике ABC угол C равен 90°, AC = 4,8,  синус A = дробь: числитель: 7, знаменатель: 25 конец дроби . Найдите AB.

Аналоги к заданию № 27238: 4583 19737 635953 4584 4585 4586 4587 4588 4589 4590 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 5.1.1 Треугольник

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


2

Тип 1 № 27239

В треугольнике ABC угол C равен 90°, AC = 2,  синус A = дробь: числитель: корень из 17, знаменатель: 17 конец дроби . Найдите  BC.

Аналоги к заданию № 27239: 4651 4787 4653 4655 4657 4659 4661 4663 4665 Все

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 5.1.1 Треугольник

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


3

Тип 1 № 27240

В треугольнике ABC угол C равен 90°, АС  =  4,  косинус A = 0,5. Найдите АВ.

Аналоги к заданию № 27240: 26095 29575 29579 500952 29538 29539 29540 29541 29542 29543 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 5.1.1 Треугольник

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


4

Тип 1 № 27242

В треугольнике ABC угол C равен 90°,  тангенс A = дробь: числитель: 33, знаменатель: 4 корень из 33 конец дроби , АС  =  4. Найдите АВ.

Аналоги к заданию № 27242: 29651 29747 530665 530685 29650 29652 29653 29654 29655 29656 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 5.1.1 Треугольник

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


5

Тип 1 № 27243

В треугольнике ABC угол C равен 90°, АС  =  8,  тангенс A = 0,5. Найдите BC.

Аналоги к заданию № 27243: 29749 29791 29750 29751 29752 29753 29754 29755 29756 29757 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 5.1.1 Треугольник

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

16. Задачи по планиметрии


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Задачи по планиметрии


Задание
1

#2436

Уровень задания: Легче ЕГЭ

Точки (M, N, P) лежат на сторонах (AB, BC, CA) соответственно треугольника (ABC), причем (AM:AB=BN:BC=CP:CA=1:3). Площадь треугольника (MNP) равна (15). Найдите площадь треугольника (ABC).

(triangle ABC) и (triangle MBN) имеют общий угол (B), при этом (BM=frac23BA), (BN=frac13BC).

Т.к. площади треугольников, имеющих общих угол, относятся как произведения сторон, образующих этот угол, то

[dfrac{S_{MBN}}{S_{ABC}}=dfrac{frac23BAcdot frac13BC}{BAcdot BC}=
dfrac29 quad Rightarrow quad S_{MBN}=dfrac29S_{ABC}]

Аналогично рассуждая, получаем, что

[S_{MAP}=S_{PCN}=dfrac29S_{ABC}]

Следовательно, [15+3cdot dfrac29S_{ABC}=S_{ABC} quad Rightarrow
quad S_{ABC}=3cdot 15=45.]

Ответ: 45


Задание
2

#2444

Уровень задания: Легче ЕГЭ

Внутри треугольника (ABC) взяты точки (A_1, B_1, C_1) так, что (B_1) – середина (AA_1), (C_1) – середина (BB_1), (A_1) – середина (CC_1). Найдите отношение площадей треугольников (A_1B_1C_1) и (ABC).

Соединим точки (A) и (C_1), (B) и (A_1), (C) и (B_1).

Т.к. медиана делит треугольник на два равновеликих треугольника, то

[S_{triangle AB_1C}=S_{triangle A_1B_1C}=S_{triangle A_1B_1C_1}.]

Аналогично,

[S_{triangle CA_1B}=S_{triangle C_1A_1B}=S_{triangle AC_1B}=S_{triangle
AC_1B_1}.]

Таким образом, все семь образовавшихся треугольников имеют одинаковые площади. Значит,

[S_{triangle A_1B_1C_1}:S_{triangle ABC}=1:7.]

Ответ:

(1:7)


Задание
3

#1760

Уровень задания: Равен ЕГЭ

Дана трапеция (ABCD), ее основания (BC) и (AD) равны (2) и (6) соответственно. Диагонали (BD) и (AC) пересекаются в точке (O). Точка (P) – середина (OD). (S_{bigtriangleup ABO}=9). Найдите площадь четырехугольника (ABCP).

Пусть (S_{bigtriangleup BOC}=x). Заметим, что (bigtriangleup BCO
sim bigtriangleup AOD)
по двум углам, так как (BCparallel AD), (angle BCA = angle CAD) как накрест лежащие и (angle BOC = angle
AOD)
как вертикальные.

Следовательно, [dfrac{BC}{AD} =dfrac{BO}{OD} =dfrac{CO}{OA}
=dfrac{2}{6} =dfrac{1}{3}.]

(dfrac{S_{bigtriangleup ABO}}{S_{bigtriangleup BCO}}
=dfrac{AO}{OC} =dfrac{3}{1} Rightarrow S_{bigtriangleup
ABO}=3x)
, аналогично, (S_{bigtriangleup CDO}=3x).
 

(dfrac{S_{bigtriangleup COP}}{S_{bigtriangleup CPD}}
=dfrac{OP}{PD} =dfrac{1}{1} Rightarrow S_{bigtriangleup
COP}=S_{bigtriangleup CPD}=1,5x)
.
 

Площади подобных треугольников относятся как коэффициент подобия в квадрате, следовательно, [dfrac{S_{bigtriangleup BOC}}{S_{bigtriangleup AOD}} =left(
dfrac{1}{3} right)^2 =dfrac{1}{9} Rightarrow
S_{bigtriangleup ADO}=9x Rightarrow S_{bigtriangleup APO}=4,5x
Rightarrowqquad S_{ABCP}=10x.]
Так как (3x=9), то (x=3) и, следовательно, (S_{ABCP}=30).

Ответ: 30


Задание
4

#2441

Уровень задания: Равен ЕГЭ

Внутри равностороннего треугольника со стороной (m) движется точка. Докажите, что сумма расстояний от этой точки до сторон треугольника не меняется, и найдите эту сумму.

Рассмотрим равносторонний (triangle ABC), (AB=m), (O) – точка внутри треугольника, (OA_1, OB_1, OC_1) — перпендикуляры на стороны (BC, AC, AB) соответственно.

Рассмотрим (triangle AOB, triangle BOC, triangle COA). Их площади равны (0,5mcdot OC_1; 0,5mcdot OA_1; 0,5mcdot OB_1) соответственно. Тогда сумма их площадей равна площади всего (triangle ABC), следовательно:

[0,5mcdot (OC_1+OA_1+OB_1)=S_{triangle ABC}=dfrac{sqrt3}4m^2 quad
Leftrightarrow quad OC_1+OA_1+OB_1=dfrac{sqrt3}2m.]

Таким образом, мы доказали, что для фиксированного равностороннего треугольника сумма постоянна, а также нашли ее.

Ответ:

(dfrac{sqrt3}2m)


Задание
5

#1287

Уровень задания: Равен ЕГЭ

Радиус вписанной в треугольник (ABC) окружности равен трети одной из его высот.

а) Докажите, что одна из сторон треугольника (ABC) равна среднему арифметическому двух других его сторон.

б) Найдите наибольшее возможное значение периметра такого треугольника, если одна из его сторон равна (4), а две другие имеют целые длины.

а) (S_{ABC} = pcdot r), где (p) – полупериметр, а (r) – радиус вписанной в (ABC) окружности.

Пусть (h) – длина той высоты, которая равна (3r), (a) – длина стороны, высота к которой имеет длину (h), (P) – периметр треугольника (ABC).

В итоге имеем: [dfrac{1}{2}hcdot a = S_{ABC} = pcdot r = pcdotdfrac{h}{3},] откуда (a = dfrac{P}{3}), тогда (b + c = dfrac{2P}{3} = 2a), где (b) и (c) длины других сторон треугольника.

б) Длины сторон треугольника (ABC) образуют арифметическую прогрессию: если обозначить (a — c = d), то (a = c + d), (b = c + 2d).

Пусть (d > 0). Тогда (b) наибольшая сторона треугольника (ABC) и существование треугольника (ABC) с длинами сторон (a), (b) и (c) равносильно выполнению неравенства [b < a + cqquadLeftrightarrowqquad c + 2d < 2c + dqquadLeftrightarrowqquad d < c.] Так как длины всех сторон треугольника (ABC) – целые числа, то (d) – целое, следовательно, (dleq c — 1).

Так как (c) – меньшая из сторон, то (cleq 4), тогда (dleq 3), откуда (aleq 7), (bleq 10), тогда [P_{triangle ABC}leq 4 + 7 + 10 = 21.] При этом случай (c = 4), (a = 7), (b = 10) подходит, следовательно, при (d > 0) максимально возможный периметр равен 21.

При (d = 0) треугольник (ABC) равносторонний и (P_{triangle ABC} = 12 < 21).

Случай (d < 0) рассматривается аналогично (меняется только то, что (c > a > b), следовательно, достаточно в рассуждении из случая (d > 0) всюду поменять местами (b) и (c)).

Таким образом, наибольший возможный периметр треугольника (ABC) равен 21.

Ответ:

б) (21).


Задание
6

#1288

Уровень задания: Равен ЕГЭ

Четырёхугольник (MNPQ) вписан в окружность, причём (dfrac{MN}{PQ} = dfrac{QM}{PN}).

а) Докажите, что точки (N) и (Q) равноудалены от прямой, содержащей (MP).

б) Найдите расстояние от точки (P) до прямой, содержащей (MQ), если (MP = 4), расстояние от (N) до прямой, содержащей (MP) равно (1,5), (MQ = 3).

а) Так как (dfrac{MN}{PQ} = dfrac{QM}{PN}), то (MNcdot PN = QMcdot PQ).

Так как (MNPQ) вписанный, то (angle MNP = 180^circ — angle MQP), следовательно, (sinangle MNP = sinangle MQP).

В итоге [S_{triangle MNP} = 0,5cdot MNcdot PNcdotsinangle MNP = 0,5cdot QMcdot PQcdotsinangle MQP = S_{triangle MQP}.]

С другой стороны, у треугольников (MNP) и (MQP) общее основание, следовательно, их площади относятся как высоты, проведённые к этому основанию, тогда эти высоты равны, значит, точки (N) и (Q) равноудалены от прямой, содержащей (MP).

б) В данном случае (S_{triangle MNP} = 0,5cdot 4cdot 1,5 = 3), но (S_{triangle MNP} = S_{triangle MQP}). Обозначим расстояние от точки (P) до прямой, содержащей (MQ) через (h), тогда [S_{triangle MQP} = 3 = 0,5cdot 3cdot h,] следовательно, (h = 2).

Ответ:

б) (2).


Задание
7

#1289

Уровень задания: Равен ЕГЭ

(ABCD) – выпуклый четырёхугольник, точки (P), (Q), (R) и (S) середины его сторон, причём (PQRS) тоже выпуклый четырёхугольник. (A_1B_1C_1D_1) другой выпуклый четырёхугольник с серединами сторон в точках (P), (Q), (R) и (S).

а) Докажите, что диагонали (PQRS) точкой пересечения делятся пополам.

б) Найдите максимально возможное значение величины (dfrac{S_{A_1B_1C_1D_1}}{S_{ABCD}}).

а) Проведём диагонали (AC) и (BD).

Рассмотрим треугольники (APS) и (ABD): (PS) – средняя линия в треугольнике (ABD), тогда треугольники (APS) и (ABD) подобны, причём (dfrac{PS}{BD} = dfrac{1}{2}).

Аналогично (dfrac{QR}{BD} = dfrac{1}{2}), следовательно, (PS = QR).

Аналогично доказывается равенство (PQ = RS). В итоге в выпуклом четырёхугольнике (PQRS) противоположные стороны равны, тогда (PQRS) – параллелограмм, следовательно, его диагонали точкой пересечения делятся пополам.

б) Докажем, что по взаимному расположению середин сторон выпуклого четырёхугольника его площадь восстанавливается однозначно.

Из подобия (APS) и (ABD) получаем: [dfrac{S_{APS}}{S_{ABD}} = left(dfrac{1}{2}right)^2 = dfrac{1}{4}.]

Аналогично (4S_{QCR} = S_{CBD}), (4S_{PBQ} = S_{ABC}), (4S_{SDR} = S_{ACD}). Тогда [S_{ABCD} = S_{ABD} + S_{CBD} = 4S_{APS} + 4S_{QCR}.] С другой стороны, [S_{ABCD} = S_{ABC} + S_{ACD} = 4S_{PBQ} + 4S_{SDR},] тогда [S_{ABCD} + S_{ABCD} = 4S_{APS} + 4S_{QCR} + 4S_{PBQ} + 4S_{SDR} qquadLeftrightarrow] [S_{APS} + S_{QCR} + S_{PBQ} + S_{SDR} = dfrac{1}{2}S_{ABCD}.] Но (S_{ABCD} = S_{APS} + S_{QCR} + S_{PBQ} + S_{SDR} + S_{PQRS}), откуда окончательно [S_{PQRS} = dfrac{1}{2}S_{ABCD}.]

Таким образом, по взаимному расположению точек (P), (Q), (R), (S) однозначно восстанавливается площадь параллелограмма (PQRS), а значит и площадь любого выпуклого четырёхугольника с серединами сторон в точках (P), (Q), (R) и (S).

В итоге [dfrac{S_{A_1B_1C_1D_1}}{S_{ABCD}} = 1.]

Ответ:

б) (1).

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Новое 16 задание ЕГЭ 2022 по математике профильный уровень (планиметрия), треугольники и окружности, более 100 заданий, а также задачи с реального ЕГЭ по математике. Практикуемся и готовимся к экзамену!

  • Треугольник и его элементы
  • Многоугольники
  • Отношение отрезков и площадей
  • Окружности
  • Окружности связанные с треугольником
  • Окружности связанные с четырёхугольником

Треугольник и его элементы задачи ЕГЭ 2022 с ответами:

Задачи уровня А являются подготовительными для решения заданий 16 профильного ЕГЭ по теме «Треугольник и его элементы». Большая часть задач уровня В взята из реальных экзаменационных и диагностических работ прошлых лет.

Многоугольники задачи ЕГЭ 2022 с ответами:

Отношение отрезков и площадей задачи ЕГЭ 2022 с ответами:

Многие задачи этого раздела будут решаться с помощью теоремы о пропорциональных отрезках (обобщенной теоремы Фалеса), либо с помощью дополнительных построений, которые приводят к нескольким парам подобных треугольников. Рассмотрим примеры на эти дополнительные построения.

Окружности задачи ЕГЭ 2022 с ответами:

Окружности связанные с треугольником задачи ЕГЭ 2022 с ответами:

Окружности связанные с четырёхугольником задачи ЕГЭ 2022 с ответами:

1)В треугольнике ABC угол ABC тупой, H — точка пересечения продолжений высот, угол AHC равен 60 . а) Докажите, что угол ABC равен 120 . б) Найдите BH, если AB 7, BC 8.

2)На сторонах AC и BC треугольника ABC вне его построены квадраты ACDE и CBFG. Точка M — середина стороны AB. а) Докажите, что точка M равноудалена от центров квадратов. б) Найдите площадь треугольника DMG, если AC 6, BC 8, AB 10.

3)В прямоугольном треугольнике ABC точка M лежит на катете AC, а точка N лежит на продолжении катета BC за точку C, причём СM = BC и CN = AC. Отрезки CP и CQ — биссектрисы треугольников ACB и NCM соответственно. а) Докажите, что CP и СQ перпендикулярны. б) Найдите PQ, если BC 3, а AC 5.

4)Дана трапеция ABCD. Биссектриса угла BAD пересекает продолжение основания BC в точке K. а) Докажите, что треугольник ABK равнобедренный. б) Найдите биссектрису BM треугольника ABK, если AD = 10, BC = 2, AB = CD = 5.

5)Медианы треугольника ABC пересекаются в точке M. а) Докажите, что треугольники AMB, AMC и BMC равновелики. б) Известно, что треугольник ABC прямоугольный, а точка M удалена от катетов на расстояния 3 и 4. Найдите расстояние от этой точки до гипотенузы.

6)Дан треугольник ABC со сторонами AB = 4, BC = 6 и AC =8. а) Докажите, что прямая, проходящая через точку пересечения медиан и центр вписанной окружности, параллельна стороне BC. б) Найдите длину биссектрисы треугольника ABC, проведённой из вершины A.

7)В прямоугольном треугольнике ABC с прямым углом C проведена высота CD. Радиусы окружностей, вписанных в треугольники ACD и BCD, равны 0,6 и 0,8. а) Докажите подобие треугольников ACD и BCD. б) Найдите радиус окружности, вписанной в треугольник ABC

8)В равнобедренном треугольнике ABC AC — основание. На продолжении стороны CB за точку В отмечена точка D так, что угол CAD равен углу ABD. а) Докажите, что AB биссектриса угла CAD. б) Найдите длину отрезка AD, если боковая сторона треугольника АВС равна 5, а его основание равно 6.

9)На сторонах AB, BC и AC треугольника ABC отмечены точки C1, A1 и B1 соответственно, причем AC1 : C1B = 7 : 12, BA1 : A1C = 3 : 1, AB1 : B1C = 3 : 4. Отрезки BB1 и CC1 пересекаются в точке D. а) Докажите, что четырехугольник ADA1B1 – параллелограмм. б) Найдите CD, если отрезки AD и BC перпендикулярны, AC = 21, BC = 16.

10)Диагональ параллелограмма делит его угол на части в 30° и 45°. Найдите отношение сторон параллелограмма.

11)Сторона BC параллелограмма ABCD вдвое больше стороны AB. Биссектрисы углов A и B пересекают прямую CD в точках M и N, причём MN = 12. Найдите стороны параллелограмма.

12)Найдите расстояние от центра ромба до его стороны, если острый угол ромба равен 30°, а сторона равна 4.

13)В прямоугольнике ABCD АВ = 60, ВС = 45. Сторона DC разделена на три равные части точками Е и F. Отрезки прямых, соединяющие вершины А и В с точками Е и F соответственно, продолжены до пересечения в точке М, лежащей вне прямоугольника. Найдите площадь треугольника EFM.

14)В прямоугольнике проведены биссектрисы двух углов, прилежащих к большей стороне. Определите, на какие части делится площадь прямоугольника этими биссектрисами, если стороны прямоугольника равны 2 и 4.

15)Найдите высоту равнобедренной трапеции, если ее диагональ перпендикулярна боковой стороне, а разность квадратов оснований равна 25.

16)Дана равнобедренная трапеция, средняя линия которой равна 9, площадь равна 54 и диагональ перпендикулярна боковой стороне. Найдите основания трапеции.

17)Меньшая боковая сторона прямоугольной трапеции равна 3, а большая образует угол 30° с одним из оснований. Найдите это основание, если на нѐм лежит точка пересечения биссектрис углов при другом основании.

18)Известно, что высота трапеции равна 15, а еѐ диагонали равны 17 и 113. Найдите площадь трапеции.

19)В трапеции длина средней линии равна 4, а углы при одном из оснований равны 40 и 50. Найдите длины оснований трапеции, если длина отрезка, соединяющего середины этих оснований, равна 1.

20)Средняя линия трапеции, равная 10, делит площадь трапеции в отношении 3 : 5. Найдите длины оснований трапеции.

21)Найдите диагональ и боковую сторону равнобедренной трапеции с основаниями 20 и 12, если известно, что центр еѐ описанной окружности лежит на большем основании.

22)Трапеция ABCD разделена прямой, параллельной еѐ основаниям AD и BC, на две равновеликие трапеции. Найдите отрезок этой прямой, заключѐнный между боковыми сторонами, если основания трапеции равны 6 и 8.

23)Высота CD треугольника ABC делит медиану BM в отношении 3 : 1, считая от вершины В. В каком отношении CD делит сторону АВ, считая от вершины А?

24)М и Р – середины смежных сторон AD и DC параллелограмма ABCD. MC и BP пересекаются в точке К. Найдите отношение BK : KP.

25)В треугольнике АВС А1 лежит на стороне ВС и ВА1 : А1С = 1 : 3, С1 – середина АВ. Найдите отношение АК : КА1, где К – точка пересечения АА1 и СС1.

26)В треугольнике ABC точка K лежит на стороне AC, причем AK : KC = 2 : 3. Точка M делит сторону AB на два отрезка, один из которых вдвое больше другого. Прямая, проходящая через точку M параллельно BC, пересекает прямую BK в точке P. Найти отношение BP : KP.

27)Точки M и N расположены на стороне BC треугольника ABC, а точка K — на стороне AC, причём BM : MN : NC = 1 : 1 : 2 и CK : AK = 1 : 4. Известно, что площадь треугольника ABC равна 20. Найдите площадь четырёхугольника AMNK.

28)Через точки M и N, делящие сторону AB треугольника ABC на три равные части, проведены прямые, параллельные стороне BC. Найдите площадь части треугольника, заключённой между этими прямыми, если площадь треугольника ABC равна 3.

29)Сторона треугольника равна 36. Прямая, параллельная этой стороне, делит площадь треугольника пополам. Найдите длину отрезка этой прямой, заключённого между сторонами треугольника.

30)Из середины основания треугольника площади 2 проведены прямые, параллельные боковым сторонам. Найдите площадь полученного таким образом параллелограмма.

31)Четырёхугольник разделён диагоналями на четыре треугольника. Площади трёх из них равны 10, 20 и 30, и каждая меньше площади четвёртого треугольника. Найдите площадь данного четырёхугольника.

32)В треугольнике ABC из точки E стороны BC проведена прямая, параллельная высоте BD и пересекающая сторону AC в точке F. Отрезок EF делит треугольник ABC на две равновеликие фигуры. Найдите EF, если BD = 6, AD : DC = 2 : 7.

Смотрите также на нашем сайте:

Задание №7 решу ЕГЭ 2022 профиль математика 11 класс с ответами

Задание №8 с ответами ЕГЭ 2022 профиль математика 11 класс

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ

Задача 3. Начала теории вероятностей

Задача 3. Начала теории вероятностей

Задача 4. Вероятности сложных событий

Задача 4. Вероятности сложных событий

Задача 5. Простейшие уравнения

Задача 5. Простейшие уравнения

Задача 6. Вычисления и преобразования

Задача 6. Вычисления и преобразования

Задача 7. Производная и первообразная

Задача 7. Производная и первообразная

Задача 8. Задачи с прикладным содержанием

Задача 8. Задачи с прикладным содержанием

Задача 9. Текстовые задачи

Задача 9. Текстовые задачи

Задача 10. Графики функций

Задача 10. Графики функций

Задача 11. Наибольшее и наименьшее значение функций

Задача 11. Наибольшее и наименьшее значение функций

Like this post? Please share to your friends:
  • Решу егэ математика профиль пирамида
  • Решу егэ математика профиль первообразная
  • Решу егэ математика профиль параметры
  • Решу егэ математика профиль октябрьские варианты
  • Решу егэ математика профиль об экзамене