Решу егэ математика профиль вариант 41054181

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

Версия для печати и копирования в MS Word

1

Найдите корень уравнения  левая круглая скобка дробь: числитель: 1, знаменатель: 9 конец дроби правая круглая скобка в степени левая круглая скобка x минус 13 правая круглая скобка =3.

Ответ:


2

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что наступит исход ОР (в первый раз выпадает орёл, во второй  — решка).

Ответ:


3

Угол между двумя соседними сторонами правильного многоугольника, вписанного в окружность, равен 108°. Найдите число вершин многоугольника.

Ответ:


4

Найдите  дробь: числитель: a плюс 9b плюс 16, знаменатель: a плюс 3b плюс 8 конец дроби , если  дробь: числитель: a, знаменатель: b конец дроби =3.

Ответ:


5


6

На рисунке изображен график функции y = f(x), определенной на интервале (−6; 8). Определите количество целых точек, в которых производная функции положительна.

Ответ:


7


8

Товарный поезд каждую минуту проезжает на 750 метров меньше, чем скорый, и на путь в 180 км тратит времени на 2 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.

Ответ:


9


10

При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем  — 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?

В ответе укажите наименьшее необходимое количество выстрелов.

Ответ:


11

Найдите точку минимума функции y= левая круглая скобка 3 минус x правая круглая скобка e в степени левая круглая скобка 3 минус x правая круглая скобка .

Ответ:


12

а)  Решите уравнение 4 в степени левая круглая скобка x в квадрате минус 2x плюс 1 правая круглая скобка плюс 4 в степени левая круглая скобка x в квадрате минус 2x правая круглая скобка =20.

б)  Найдите все корни этого уравнения, принадлежащие отрезку  левая квадратная скобка минус 1;2 правая квадратная скобка .

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.


13

Сечением прямоугольного параллелепипеда ABCDA1B1C1D1 плоскостью α содержащей прямую BD1 и параллельной прямой AC, является ромб.

а)  Докажите, что грань ABCD  — квадрат.

б)  Найдите угол между плоскостями α и BCC1, если AA1  =  6, AB  =  4.

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.


14

Решите неравенство: left| дробь: числитель: 2, знаменатель: 3 конец дроби x минус дробь: числитель: 2, знаменатель: 3 конец дроби | . в степени левая круглая скобка x минус 1,2 правая круглая скобка плюс left| дробь: числитель: 2, знаменатель: 3 конец дроби x . минус дробь: числитель: 2, знаменатель: 3 конец дроби | в степени левая круглая скобка 1,2 минус x правая круглая скобка меньше или равно 2.

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.


15

Григорий является владельцем двух заводов в разных городах. На заводах производятся абсолютно одинаковые товары, но на заводе, расположенном во втором городе, используется более совершенное оборудование. В результате, если рабочие на заводе, расположенном в первом городе, трудятся суммарно t2 часов в неделю, то за эту неделю они производят 3t единиц товара; если рабочие на заводе, расположенном во втором городе, трудятся суммарно t2 часов в неделю, то за эту неделю они производят 4t единиц товара.

За каждый час работы (на каждом из заводов) Григорий платит рабочему 500 рублей.

Григорий готов выделять 5 000 000 рублей в неделю на оплату труда рабочих. Какое наибольшее количество единиц товара можно произвести за неделю на этих двух заводах?

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.


16

В остроугольном треугольнике ABC провели высоту BH, из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно.

а)  Докажите, что треугольник MBK подобен треугольнику ABC.

б)  Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH  =  2, а радиус окружности, описанной около треугольника ABC равен 4.

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.


17

Найдите все значения k, при каждом из которых уравнение

 дробь: числитель: 6k минус левая круглая скобка 2 минус 3k правая круглая скобка косинус t, знаменатель: синус t минус косинус t конец дроби =2

имеет хотя бы одно решение на отрезке  левая квадратная скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая квадратная скобка .

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.


18

На доске написано 30 различных натуральных чисел, каждое из которых либо четное, либо его десятичная запись заканчивается на цифру 7. Сумма написанных чисел равна 810.

а)  Может ли быть 24 четных числа?

б)  Может ли быть на доске ровно два числа, оканчивающихся на 7?

в)  Какое наименьшее количество чисел с последней цифрой 7 может быть на доске?

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

Завершить тестирование, свериться с ответами, увидеть решения.

Новый тренировочный вариант №41054181 решу ЕГЭ 2022 по математике профильный уровень 11 класс для подготовки, данный вариант составлен по новой демоверсии ФИПИ экзамена ЕГЭ 2022 года, к тренировочным заданиям прилагаются решения и правильные ответы.

скачать вариант ЕГЭ 2022

скачать ответы и решения

Решу ЕГЭ 2022 по математике профиль тренировочный вариант №41054181

Ответы и решения для варианта:

Задание 2 решу ЕГЭ № 320185 В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что наступит исход ОР (в первый раз выпадает орёл, во второй — решка).

Ответ: 0,25

Задание 3 решу ЕГЭ № 27930 Угол между стороной правильного n-угольника, вписанного в окружность, и радиусом этой окружности, проведенным в одну из вершин стороны, равен 54°. Найдите n.

Ответ: 5

Задание 6 решу ЕГЭ № 27487 На рисунке изображен график функции y = f(x), определенной на интервале (−6; 8). Определите количество целых точек, в которых производная функции положительна.

Ответ: 4

Задание 7 решу ЕГЭ № 27962 Для нагревательного элемента некоторого прибора экспериментально была получена зависимость температуры (в кельвинах) от времени работы: где – время в минутах, К, К/мин К/мин. Известно, что при температуре нагревателя свыше 1760 К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.

Ответ: 2

Задание 8 решу ЕГЭ № 99593 Товарный поезд каждую минуту проезжает на 750 метров меньше, чем скорый, и на путь в 180 км тратит времени на 2 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.

Ответ: 45

Задание 10 решу ЕГЭ № 320187 При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем— 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?

Ответ: 5

Задание 13 решу ЕГЭ № 516799 Сечением прямоугольного параллелепипеда ABCDA1B1C1D1 плоскостью α содержащей прямую BD1 и параллельной прямой AC, является ромб. а) Докажите, что грань ABCD — квадрат. б) Найдите угол между плоскостями α и BCC1 , если AA1 = 6, AB = 4.

Задание 15 решу ЕГЭ № 509505 Григорий является владельцем двух заводов в разных городах. На заводах производятся абсолютно одинаковые товары, но на заводе, расположенном во втором городе, используется более совершенное оборудование. В результате, если рабочие на заводе, расположенном в первом городе, трудятся суммарно t 2 часов в неделю, то за эту неделю они производят 3 t единиц товара; если рабочие на заводе, расположенном во втором городе, трудятся суммарно t 2 часов в неделю, то за эту неделю они производят 4t единиц товара. За каждый час работы (на каждом из заводов) Григорий платит рабочему 500 рублей. Григорий готов выделять 5 000 000 рублей в неделю на оплату труда рабочих. Какое наибольшее количество единиц товара можно произвести за неделю на этих двух заводах?

Ответ: 500 единиц товара.

Задание 16 решу ЕГЭ № 505473 В остроугольном треугольнике ABC провели высоту BH, из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно. а) Докажите, что треугольник MBK подобен треугольнику ABC. б) Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH = 2, а радиус окружности, описанной около треугольника ABC равен 4.

Задание 18 решу ЕГЭ № 517584 На доске написано 30 различных натуральных чисел, каждое из которых либо четное, либо его десятичная запись заканчивается на цифру 7. Сумма написанных чисел равна 810. а) Может ли быть 24 четных числа? б) Может ли быть на доске ровно два числа, оканчивающихся на 7? в) Какое наименьшее количество чисел с последней цифрой 7 может быть на доске?

Ответ: а) да; б) нет; в) 4.

Другие тренировочные варианты ЕГЭ 2022 по математике:

28.09.2021 Математика 11 класс МА2110101-МА2110112 ЕГЭ 2022 работа статград ответы и задания

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ

Перейти к контенту

На рок-фестивале выступают группы  — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых.

Спрятать решение

Решение.

Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (Д  — Дания, Ш  — Швеция, Н  — Норвегия):

…Д…Ш…Н…, …Д…Н…Ш…, …Ш…Н…Д…, …Ш…Д…Н…, …Н…Д…Ш…, …Н…Ш…Д…

Дания находится после Швеции и Норвегии в двух случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна

 дробь: числитель: 2, знаменатель: 6 конец дроби = дробь: числитель: 1, знаменатель: 3 конец дроби approx 0,33.

Ответ: 0,33.

Замечание.

Пусть требуется найти вероятность того, что датские музыканты окажутся последними среди n выступающих от разных государств групп. Поставим команду Дании на последнее место и найдем количество перестановок без повторений из n минус 1 предыдущих групп: оно равно  левая круглая скобка n минус 1 правая круглая скобка ! Общее количество перестановок из всех n групп равно n! Поэтому искомая вероятность равна

 дробь: числитель: левая круглая скобка n минус 1 правая круглая скобка !, знаменатель: n! конец дроби = дробь: числитель: 1, знаменатель: n конец дроби .

Автор Сообщение

Заголовок сообщения: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 09:59 

Не в сети
Администратор
  • Центр пользователя

Зарегистрирован: 10 июн 2010, 15:00
Сообщений: 6119

https://alexlarin.net/ege/2023/trvar421.html

Вернуться наверх 

OlegTheMath

Заголовок сообщения: Re: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 11:42 

Не в сети
  • Центр пользователя

Зарегистрирован: 06 май 2012, 21:09
Сообщений: 67

Спасибо за интересный вариант!
421.17

Подробности:

надеюсь, правильно.

Вернуться наверх 

hpbhpb

Заголовок сообщения: Re: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 11:57 

Не в сети
Аватар пользователя
  • Центр пользователя

Зарегистрирован: 18 ноя 2015, 07:49
Сообщений: 1730
Откуда: Ставрополь

OlegTheMath писал(а):

Спасибо за интересный вариант!
421.17

Подробности:

надеюсь, правильно.

Да, правильно.

Вернуться наверх 
Показать сообщения за:  Сортировать по:  

Новые тренировочные варианты в формате решу ЕГЭ 2022 по математике профильный уровень 11 класс для подготовки к экзамену, каждый вариант составлен по новой демоверсии ФИПИ ЕГЭ 2022 года, к тренировочным заданиям прилагаются правильные ответы и пояснения.

  • Тренировочный вариант №41054170 с ответами

  • Тренировочный вариант №41054171 с ответами

  • Тренировочный вариант №41054172 с ответами

  • Тренировочный вариант №41054173 с ответами

  • Тренировочный вариант №41054174 с ответами

  • Тренировочный вариант №41054175 с ответами

  • Тренировочный вариант №41054176 с ответами

  • Тренировочный вариант №41054177 с ответами

  • Тренировочный вариант №41054178 с ответами

  • Тренировочный вариант №41054179 с ответами

  • Тренировочный вариант №41054180 с ответами

  • Тренировочный вариант №41054181 с ответами

  • Тренировочный вариант №41054182 с ответами

  • Тренировочный вариант №41054183 с ответами

  • Тренировочный вариант №41054184 с ответами

Другие тренировочные варианты ЕГЭ 2022 по математике:

Тренировочные варианты ЕГЭ по математике 11 класс задания с ответами

Пробный вариант ЕГЭ 2022 №211004 по математике 11 класс с ответами

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ

Информация о генераторе вариантов:

📚 На данный момент в базе заданий 838 заданий (обновление было 20.09.2022) – только те, которые могут выпасть на экзамене. Варианты максимально приближены к вариантам реального ЕГЭ.

Источники заданий:

1) Прототипы из fipi.ru;
2) Прототипы из os.fipi.ru;
3) Прототипы с реальных ЕГЭ всех лет;
4) Прототипы с mathege.ru.
    На каждую позицию рандомно выпадает случайное задание из базы заданий.

Описание каждой из позиций №1–18:

✅ Задание 1. Планиметриявсе 160 прототипов темы, выпадающие на ЕГЭ.
✅ Задание 2. Стереометриявсе 183 прототипа темы, выпадающие на ЕГЭ.
✅ Задание 3. Начала теории вероятностейвсе 40 прототипов темы, выпадающие на ЕГЭ.
✅ Задание 4. Вероятности сложных событийвсе 37 прототипов темы, выпадающие на ЕГЭ
✅ Задание 5. Простейшие уравнения все 38 прототипов темы, выпадающие на ЕГЭ.
• Задание 6. Вычисления и преобразования – на данный момент 10 прототипов.
✅ Задание 7. Производная и первообразнаявсе 44 прототипа темы, выпадающие на ЕГЭ.

✅ Задание 8. Задачи с прикладным содержанием все 71 прототип темы, выпадающие на ЕГЭ.
✅ Задание 9. Текстовые задачивсе 93 прототипа темы, выпадающие на ЕГЭ.
✅ Задание 10. Функции и их свойствавсе 54 прототипа темы, выпадающие на ЕГЭ.
✅ Задание 11. Наибольшее и наименьшее значение функциивсе 54 прототипа темы, выпадающие на ЕГЭ.
    Условия прототипов заданий первой части взяты у Евгения Пифагора из его видеокурса: «1–11 задания ЕГЭ профиль (первая часть с нуля)».

Задание 12. Уравнения – на данный момент 10 прототипов.
Задание 13. Стереометрическая задача – на данный момент 4 прототипа.
Задание 14. Неравенства – на данный момент 10 прототипов.
Задание 15. Финансовая математика – на данный момент 9 прототипов.
Задание 16. Планиметрическая задача – на данный момент 4 прототипа.
Задание 17. Задача с параметром – на данный момент 7 прототипов.
Задание 18. Числа и их свойства – на данный момент 9 прототипов.

✏ База заданий постоянно дополняется, в течение года будут добавлены все необходимые для подготовки прототипы.

Решать варианты ЕГЭ 2022 по математике (профильный уровень)Примеры заданий, тестовая часть.

Решать варианты ЕГЭ 2022 по математике (профильный уровень)

Примеры заданий, развёрнутая часть.

🕓 На выполнение экзаменационной работы отводится 3 часа 55 минут.

Решать варианты ЕГЭ 2022 по математике (профильный уровень)

Время выполнения варианта.

➡ Тестовая часть проверяется автоматически, а развёрнутая часть самостоятельно вами по решениям и их критериям.

Решать варианты ЕГЭ 2022 по математике (профильный уровень)Пример критерия задания из развёрнутой части на 2 балла.

Решать варианты ЕГЭ 2022 по математике (профильный уровень)Пример задания из развёрнутой части на 4 балла.

➡ В итоге выводится количество набранных баллов и ссылки на решения задач варианта:

Решать варианты ЕГЭ 2022 по математике (профильный уровень)

Решать варианты ЕГЭ 2022 по математике (профильный уровень)Итог работы, ссылки на подробные решения всех задач.

Теги: тренировочные варианты, 11 класс, 2021, с ответами, новый вариант, профиль, пробный егэ.

На чтение 1 мин Просмотров 2 Опубликовано 5 марта, 2023

Решу ЕГЭ 2022 тренировочный вариант №41054181 по математике профиль 11 класс с ответами Решение и ответы на задачи на официальном сайте источника онлайн.

Новый тренировочный вариант №41054181 решу ЕГЭ 2022 по математике профильный уровень 11 класс для подготовки, данный вариант составлен по новой

Варианты ответов и решение задачи ТУТ: https://100ballnik.com/%d1%80%d0%b5%d1%88%d1%83-%d0%b5%d0%b3%d1%8d-2022-%d1%82%d1%80%d0%b5%d0%bd%d0%b8%d1%80%d0%be%d0%b2%d0%be%d1%87%d0%bd%d1%8b%d0%b9-%d0%b2%d0%b0%d1%80%d0%b8%d0%b0%d0%bd%d1%82-%e2%84%9641054181-%d0%bf/

Ответы и решение задачи онлайн

Оставляйте комментарии на сайте, обсуждайте их решения и ответы, предлагайте альтернативные варианты ответов.

Решение заданий варианта досрочного периода ЕГЭ 2022 от 28 марта 2022 по математике (профильный уровень). Досрочник КИМ. Досрочная волна 2022. Полный разбор. ГДЗ профиль решебник для 11 класса. Ответы с решением.

❗Все материалы получены из открытых источников и публикуются после окончания экзамена в ознакомительных целях.

Задание 1.
Найдите корень уравнения log2(7 – x) = 5.

Задание 2.
В чемпионате по гимнастике участвуют 4 спортсменки из Аргентины, 7 из Бразилии, 5 из Германии и 4 из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Бразилии.

ИЛИ

В чемпионате по гимнастике участвуют 70 спортсменок: 25 из США, 17 из Мексики, остальные из Канады. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Канады.

Задание 3.
В четырёхугольник ABCD вписана окружность, AB = 8, BC = 5 и CD = 27. Найдите четвёртую сторону четырёхугольника.

В четырёхугольник ABCD вписана окружность, AB=8, BC=5 и CD=27.

ИЛИ

В четырехугольник ABCD, периметр которого равен 56, вписана окружность. Найдите AB, если CD = 13.

В четырехугольник ABCD, периметр которого равен 56, вписана окружность. Найдите AB, если CD = 13.

Задание 4.
Найдите значение выражения 4^{frac{1}{5}}cdot 16^{frac{9}{10}}

ИЛИ

Найдите значение выражения frac{5^{3,7}cdot 6^{4,7}}{30^{2,7}}

Задание 5.
Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру.

ИЛИ

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 37. Найдите площадь боковой поверхности исходной призмы.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру.

Задание 6.
На рисунке изображён график функции y = f ′(x) − производной функции f(x), определённой на интервале (−3; 8). Найдите точку максимума функции f(x).

На рисунке изображён график функции 𝑦 = 𝑓′ (𝑥) − производной функции 𝑓(𝑥), определённой на интервале (−3; 8). Найдите точку максимума функции 𝑓(𝑥).

ИЛИ

На рисунке изображён график y = f ′(x) – производной функции f(x), определённой на интервале (−7; 6). Найдите точку минимума функции f(x).

На рисунке изображён график y = f ′(x) - производной функции f(x), определённой на интервале (−7; 6).

Задание 7.
При сближении источника и приёмника звуковых сигналов, движущихся в некоторой среде по прямой навстречу друг другу со скоростями u и v (в м/с) соответственно, частота звукового сигнала f (в Гц), регистрируемого приёмником, вычисляется по формуле:  , где f0 = 170 Гц – частота исходного сигнала, c – скорость распространения сигнала в среде (в м/с), а u = 2 м/с и v = 17 м/с – скорости приёмника и источника относительно среды. При какой скорости c (в м/с) распространения сигнала в среде частота сигнала в приёмнике f будет равна 180 Гц? Ответ дайте в м/с.

ИЛИ

В розетку электросети подключены приборы, общее сопротивление которых составляет R1 = 90 Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите наименьшее возможное сопротивление R2 этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями R1 Ом и R2 Ом их общее сопротивление дается формулой Rобщ =  (Ом), а для нормального функционирования электросети общее сопротивление в ней должно быть не меньше 9 Ом. Ответ выразите в Омах.

Задание 8.
Имеется два сплава. Первый содержит 50% никеля, второй – 15% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

ИЛИ

Имеется два сплава. Первый сплав содержит 5 % меди, второй – 14 % меди. Масса второго сплава больше массы первого на 5 кг. Из этих двух сплавов получили третий сплав, содержащий 12 % меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Задание 9.
На рисунке изображён график функции f(x) = 5+ 9 и g(x) = ax2 + bx + c, которые пересекаются в точках А и В. Найдите абсциссу точки В.

На рисунке изображён график функции f(x)=5x+9 и g(x)=ax^2+bx+c, которые пересекаются в точках А и В. Найдите абсциссу точки В.

ИЛИ

На рисунке изображены графики функций видов f(x) = a√x и g(x) = kx, пересекающиеся в точках A и B. Найдите абсциссу точки B.

На рисунке изображены графики функций видов f(x) = a√x и g(x) = kx, пересекающиеся в точках A и B.

Задание 10.
Помещение освещается тремя лампами. Вероятность перегорания каждой лампы в течение года равна 0,3. Лампы перегорают независимо друг от друга. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

ИЛИ

Биатлонист 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.

Задание 11.
Найдите точку минимума функции y = xx – 5x + 4.

Задание 12.
а) Решите уравнение 4sin x + 4sin(x + π) = frac{5}{2}.
б) Найдите все корни этого уравнения, принадлежащие отрезку [frac{5pi}{2};4pi].

Задание 13.
Вне плоскости правильного треугольника ABC взята точка D так, что cos∠DAB = cos∠DAC = 0, 2.
а) Докажите, что прямые AD и BC перпендикулярны.
б) Найдите расстояние между прямыми AD и BC, если известно, что AB = 2.

Задание 14.
Решите неравенство frac{log_{2}^{}(32x)-1}{log_{2}^{2}x-log_{2}^{}x^{5}}ge -1

Задание 15.
15-го декабря планируется взять кредит размером 600 тыс. рублей в банке на 26 месяцев. Условия возврата таковы:
– 1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца с 1-го по 25-й долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца;
– к 15-му числу 26-го месяца кредит должен быть полностью погашен.
Какой долг будет 15-го числа 25-го месяца, если общая сумма выплат после полного погашения кредита составит 691 тысяч рублей?

Задание 16.
В треугольник ABC вписана окружность, которая касается AB в точке P. Точка М середина стороны AB.
а) Докажите, что MP=frac{|BC-AC|}{2}.
б) Найдите углы треугольника ABC, если известно, что отрезок MP равен половине радиуса окружности вписанной в треугольник ABC, BC > AC, отрезки MC и MA равны.

Задание 17.
Найдите всe значения параметра a, при каждом их которых система

begin{cases} frac{xy^{2}-2xy-4y+8}{sqrt{4-y}}=0, y=ax. end{cases}

имеет ровно 3 различных решения.

Задание 18.
Каждое из четырех последовательных натуральных чисел поделили на его первую цифру и сложили все полученные числа, а полученную сумму обозначили за S.
а) Может ли S = 41frac{11}{24}?
б) Может ли S = 569frac{29}{72}?
в) Какое наибольшее целое значение может принимать S, если известно, что 4 исходных числа не меньше 400 и не больше 999?

Источники заданий варианта: школа Пифагора, Профиматика, беседы vk.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4.7 / 5. Количество оценок: 12

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставь контакт для связи, если хочешь, что бы я тебе ответил.

решу егэ 2022 варианты ответы

Решу ЕГЭ

Решу егэ по математике профиль 2022 гущин с решением и пояснениямиАвтор 100balnik

ПОДЕЛИТЬСЯ

Новые тренировочные варианты в формате решу ЕГЭ 2022 по математике профильный уровень 11 класс для подготовки к экзамену, каждый вариант составлен по новой демоверсии ФИПИ ЕГЭ 2022 года, к тренировочным заданиям прилагаются правильные ответы и пояснения.

  • Тренировочный вариант №41054170 с ответами

  • Тренировочный вариант №41054171 с ответами

  • Тренировочный вариант №41054172 с ответами

  • Тренировочный вариант №41054173 с ответами

  • Тренировочный вариант №41054174 с ответами

  • Тренировочный вариант №41054175 с ответами

  • Тренировочный вариант №41054176 с ответами

  • Тренировочный вариант №41054177 с ответами

  • Тренировочный вариант №41054178 с ответами

  • Тренировочный вариант №41054179 с ответами

  • Тренировочный вариант №41054180 с ответами

  • Тренировочный вариант №41054181 с ответами

  • Тренировочный вариант №41054182 с ответами

  • Тренировочный вариант №41054183 с ответами

  • Тренировочный вариант №41054184 с ответами

Другие тренировочные варианты ЕГЭ 2022 по математике:

Тренировочные варианты ЕГЭ по математике 11 класс задания с ответами

Пробный вариант ЕГЭ 2022 №211004 по математике 11 класс с ответами


Skip to content

Тренировочные варианты профильного ЕГЭ 2023 по математике с ответами.

Тренировочные варианты профильного ЕГЭ 2023 по математике с ответами.admin2023-03-05T21:56:54+03:00

Используйте LaTeX для набора формулы

Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2022 из различных источников.

 Тренировочные варианты ЕГЭ 2022 по математике (профиль)

egemath.ru
Вариант 1 скачать
Вариант 2 скачать
Вариант 3 скачать
Вариант 4 скачать
Вариант 5 скачать
Вариант 6 скачать
Вариант 7 скачать
variant 8 скачать
variant 9 скачать
variant 10 скачать
variant 11 скачать
variant 12 скачать
variant 13 скачать
variant 14 скачать
variant 15 скачать
variant 16 скачать
variant 17 скачать
variant 18 скачать
variant 19 скачать
variant 20 скачать
yagubov.ru
вариант 21 ege2022-yagubov-prof-var21
вариант 22 ege2022-yagubov-prof-var22
вариант 23 ege2022-yagubov-prof-var23
вариант 24 ege2022-yagubov-prof-var24
вариант 25 ege2022-yagubov-prof-var25
вариант 26 ege2022-yagubov-prof-var26
вариант 27 ege2022-yagubov-prof-var27
вариант 28 ege2022-yagubov-prof-var28
Досрочный Москва 28.03.2022 скачать
egemathschool.ru
вариант 1 ответ
вариант 2 ответ
вариант 3 ответ
вариант 4 ответ
ЕГЭ 100 баллов (с решениями) 
Вариант 1 скачать
Вариант 2 скачать
Вариант 3 скачать
Вариант 4 скачать
Вариант 5 скачать
Вариант 6 скачать
Вариант 7 скачать
Вариант 8 скачать
Вариант 9 скачать
Вариант 10 скачать
variant 11 скачать
variant 12 скачать
variant 13 скачать
variant 14 скачать
variant 15 скачать
variant 16 скачать
variant 17 скачать
variant 18 скачать
variant 20 скачать
variant 21 скачать
variant 23 скачать
variant 24 скачать
variant 25 скачать
variant 26 скачать
variant 29 скачать
variant 30 скачать
math100.ru (с ответами) 
Вариант 140 скачать
Вариант 141 скачать
Вариант 142 скачать
Вариант 143 math100-ege22-v143
Вариант 144 math100-ege22-v144
Вариант 145 math100-ege22-v145
Вариант 146 math100-ege22-v146
variant 147 math100-ege22-v147
variant 148 math100-ege22-v148
variant 149 math100-ege22-v149
variant 150 math100-ege22-v150
variant 151 math100-ege22-v151
variant 152 math100-ege22-v152
variant 153 math100-ege22-v153
variant 154 math100-ege22-v154
variant 155 math100-ege22-v155
variant 156 math100-ege22-v156
variant 157 math100-ege22-v157
variant 158 math100-ege22-v158
variant 159 math100-ege22-v159
variant 160 math100-ege22-v160
variant 161 math100-ege22-v161
variant 162 math100-ege22-v162
variant 163 math100-ege22-v163
variant 164 math100-ege22-v164
variant 165 math100-ege22-v165
variant 166 math100-ege22-v166
variant 167 math100-ege22-v167
variant 168 math100-ege22-v168
variant 169 math100-ege22-v169
variant 170 math100-ege22-v170
variant 171 math100-ege22-v171
variant 172 math100-ege22-v172
variant 173 math100-ege22-v173
variant 174 math100-ege22-v174
alexlarin.net 
Вариант 358
скачать
Вариант 359 скачать
Вариант 360 скачать
Вариант 361 скачать
Вариант 362 проверить ответы
Вариант 363 проверить ответы
Вариант 364 проверить ответы
Вариант 365 проверить ответы
Вариант 366 проверить ответы
Вариант 367 проверить ответы
Вариант 368 проверить ответы
Вариант 369 проверить ответы
Вариант 370 проверить ответы
Вариант 371 проверить ответы
Вариант 372 проверить ответы
Вариант 373 проверить ответы
Вариант 374 проверить ответы
Вариант 375 проверить ответы
Вариант 376 проверить ответы
Вариант 377 проверить ответы
Вариант 378 проверить ответы
Вариант 379 проверить ответы
Вариант 380 проверить ответы
Вариант 381 проверить ответы
Вариант 382 проверить ответы
Вариант 383 проверить ответы
Вариант 384 проверить ответы
Вариант 385 проверить ответы
Вариант 386 проверить ответы
Вариант 387 проверить ответы
Вариант 388 проверить ответы
vk.com/ekaterina_chekmareva (задания 1-12)
Вариант 1 ответы
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Вариант 6
Вариант 7 ответы
Вариант 8
Вариант 9
Вариант 10
vk.com/matematicalate
Вариант 1 matematikaLite-prof-ege22-var1
Вариант 2 matematikaLite-prof-ege22-var2
Вариант 3 matematikaLite-prof-ege22-var3
Вариант 4 matematikaLite-prof-ege22-var4
Вариант 5 matematikaLite-prof-ege22-var5
Вариант 6 matematikaLite-prof-ege22-var6
Вариант 7 matematikaLite-prof-ege22-var7
Вариант 8 matematikaLite-prof-ege22-var8
vk.com/pro_matem
variant 1 pro_matem-prof-ege22-var1
variant 2 pro_matem-prof-ege22-var2
variant 3 pro_matem-prof-ege22-var3
variant 4 разбор
variant 5 разбор
vk.com/murmurmash
variant 1 otvet
variant 2 otvet
→  Купить сборники тренировочных вариантов ЕГЭ 2022 по математике

Структура варианта КИМ ЕГЭ

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и количеству заданий:

– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;

– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).

Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.

Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.

Связанные страницы:

Средний балл ЕГЭ 2021 по математике

Решение задач с параметром при подготовке к ЕГЭ

Изменения в КИМ ЕГЭ 2022 года по математике

Купить сборники типовых вариантов ЕГЭ по математике

Как решать экономические задачи ЕГЭ по математике профильного уровня?

Like this post? Please share to your friends:
  • Решу егэ математика профиль баллы за задания
  • Решу егэ математика профиль 920
  • Решу егэ математика профиль 911
  • Решу егэ математика профиль 9 задание графики 2022
  • Решу егэ математика профиль 621901