Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Какова вероятность того, что случайно выбранный телефонный номер оканчивается двумя чётными цифрами?
2
Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
3
На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу
4
Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже чем 36,8 °С, равна 0,81. Найдите вероятность того, что в случайный момент времени у здорового человека температура окажется 36,8 °С или выше.
5
При изготовлении подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного не больше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 66,99 мм или больше чем 67,01 мм.
Пройти тестирование по этим заданиям
Пройти тестирование по 10 заданиям
Пройти тестирование по всем заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
В кармане у Миши было четыре конфеты — «Грильяж», «Белочка», «Коровка» и «Ласточка», а также ключи от квартиры. Вынимая ключи, Миша случайно выронил из кармана одну конфету. Найдите вероятность того, что потерялась конфета «Грильяж».
2
На экзамен вынесено 60 вопросов, Андрей не выучил 3 из них. Найдите вероятность того, что ему попадется выученный вопрос.
3
В среднем из 1400 садовых насосов, поступивших в продажу, 7 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.
4
Фабрика выпускает сумки. В среднем 8 сумок из 100 имеют скрытые дефекты. Найдите вероятность того, что купленная сумка окажется без дефектов.
Источник: ЕГЭ по математике. Основная волна 07.06.2021. Урал
5
При производстве в среднем на каждые 2982 исправных насоса приходится 18 неисправных. Найдите вероятность того, что случайно выбранный насос окажется неисправным.
Пройти тестирование по этим заданиям
Вероятностью события $А$ называется отношение числа благоприятных для $А$ исходов к числу всех
равновозможных исходов
$P(A)={m}/{n}$, где $n$ – общее количество возможных исходов, а $m$ – количество исходов, благоприятствующих событию
$А$.
Вероятность события — это число из отрезка $[0; 1]$
В фирме такси в наличии $50$ легковых автомобилей. $35$ из них чёрные, остальные — жёлтые.
Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета.
Решение:
Найдем количество желтых автомобилей:
$50-35=15$
Всего имеется $50$ автомобилей, то есть на вызов приедет одна из пятидесяти. Желтых автомобилей $15$,
следовательно, вероятность приезда именно желтого автомобиля равна ${15}/{50}={3}/{10}=0,3$
Ответ:$0,3$
Противоположные события
Два события называются противоположными, если в данном испытании они несовместимы и одно из них обязательно
происходит. Вероятности противоположных событий в сумме дают 1.Событие, противоположное событию $А$, записывают
${(А)}↖{-}$.
$Р(А)+Р{(А)}↖{-}=1$
Независимые события
Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того,
появилось другое событие или нет. В противном случае события называются зависимыми.
Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих
вероятностей:
$Р(А·В)=Р(А)·Р(В)$
Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый
лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович
участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того,
что Иван Иванович выиграет в обоих розыгрышах.
Решения:
Вероятность $Р(А)$ — выиграет первый билет.
Вероятность $Р(В)$ — выиграет второй билет.
События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба
события, нужно найти произведение вероятностей
$Р(А·В)=Р(А)·Р(В)$
$Р=0,15·0,12=0,018$
Ответ: $0,018$
Несовместные события
Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию
$А$, так и событию $В$. (События, которые не могут произойти одновременно)
Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих
событий:
$Р(А+В)=Р(А)+Р(В)$
На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность
того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему
«Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение:
Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения»,
ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух
несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:
$Р(А+В)=Р(А)+Р(В)$
$Р = 0,3+0,18=0,48$
Ответ: $0,48$
Совместные события
Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же
испытании. В противном случае события называются несовместными.
Вероятность суммы двух совместных событий $A$ и $B$ равна сумме вероятностей этих событий минус
вероятность их произведения:
$Р(А+В)=Р(А)+Р(В)-Р(А·В)$
В холле кинотеатра два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится
кофе, равна $0,6$. Вероятность того, что кофе закончится в обоих автоматах, равна $0,32$. Найдите вероятность того,
что к концу дня кофе закончится хотя бы в одном из автоматов.
Решение:
Обозначим события, пусть:
$А$ = кофе закончится в первом автомате,
$В$ = кофе закончится во втором автомате.
Тогда,
$A·B =$ кофе закончится в обоих автоматах,
$A + B =$ кофе закончится хотя бы в одном автомате.
По условию, $P(A) = P(B) = 0,6; P(A·B) = 0,32$.
События $A$ и $B$ совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий,
уменьшенной на вероятность их произведения:
$P(A + B) = P(A) + P(B) − P(A·B) = 0,6 + 0,6 − 0,32 = 0,88$
Ответ: $0,88$
Лучшие репетиторы для сдачи ЕГЭ
Задания по теме «Теория вероятностей»
Открытый банк заданий по теме теория вероятностей. Задания B4 из ЕГЭ по математике (профильный уровень)
Геометрические фигуры на плоскости: нахождение длины, площади, угла, координат
Задание №1060
Условие
На заводе керамической плитки 5% произведённых плиток имеют дефект. При контроле качества продукции обнаруживается лишь 40% дефектных плиток. Остальные плитки отправляются на продажу. Найдите вероятность того, что выбранная случайным образом при покупке плитка не будет иметь дефектов. Ответ округлите до сотых.
Показать решение
Решение
При контроле качества продукции выявляется 40% дефектных плиток, которые составляют 5% от произведённых плиток, и они не поступают в продажу. Значит, не поступает в продажу 0,4 · 5% = 2% от произведённых плиток. Остальная часть произведённых плиток — 100% − 2% = 98% поступает в продажу.
Не имеет дефектов 100% − 95% произведённых плиток. Вероятность того, что купленная плитка не имеет дефекта, равна 95% : 98% = frac{95}{98}approx 0,97
Ответ
0,97
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1059
Условие
Вероятность того, что аккумулятор не заряжен, равна 0,15. Покупатель в магазине приобретает случайную упаковку, которая содержит два таких аккумулятора. Найдите вероятность того, что оба аккумулятора в этой упаковке окажутся заряжены.
Показать решение
Решение
Вероятность того, что аккумулятор заряжён, равна 1-0,15 = 0,85. Найдём вероятность события «оба аккумулятора заряжены». Обозначим через A и B события «первый аккумулятор заряжён» и «второй аккумулятор заряжён». Получили P(A) = P(B) = 0,85. Событие «оба аккумулятора заряжены» — это пересечение событий A cap B, его вероятность равна P(A cap B) = P(A)cdot P(B) = 0,85cdot 0,85 = 0,7225.
Ответ
0,7225
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1058
Условие
Вероятность того, что новая стиральная машина в течение года поступит в гарантийный ремонт, равна 0,065. В некотором городе в течение года было продано 1200 стиральных машин, из которых 72 штуки было передано в гарантийную мастерскую. Определите, насколько отличается относительная частота наступления события «гарантийный ремонт» от его вероятности в этом городе?
Показать решение
Решение
Частота события «стиральная машина в течение года поступит в гарантийный ремонт» равна frac{72}{1200} = 0,06. От вероятности она отличается на 0,065-0,06=0,005.
Ответ
0,005
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1057
Условие
Вероятность того, что ручка бракованная, равна 0,05. Покупатель в магазине приобретает случайную упаковку, которая содержит две ручки. Найдите вероятность того, что обе ручки в этой упаковке окажутся исправными.
Показать решение
Решение
Вероятность того, что ручка исправная, равна 1-0,05 = 0,95. Найдём вероятность события «обе ручки исправны». Обозначим через A и B события «первая ручка исправна» и «вторая ручка исправна». Получили P(A) = P(B) = 0,95. Событие «обе ручки исправны» — это пересечение событий Acap B, его вероятность равна P(Acap B) = P(A)cdot P(B) = 0,95cdot 0,95 = 0,9025.
Ответ
0,9025
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1056
Условие
На рисунке изображён лабиринт. Жук заползает в лабиринт в точке «Вход». Развернуться и ползти в обратном направлении жук не может, поэтому на каждой развилке он выбирает один из путей, в котором еще не был. С какой вероятностью жук придет к выходу Д, если выбор дальнейшего пути является случайным.
Показать решение
Решение
Расставим на перекрёстках стрелки в направлениях, по которым может двигаться жук (см. рис.).
Выберем на каждом из перекрёстков одно направление из двух возможных и будем считать, что при попадании на перекрёсток жук будет двигаться по выбранному нами направлению.
Чтобы жук достиг выхода Д, нужно, чтобы на каждом перекрёстке было выбрано направление, обозначенное сплошной красной линией. Всего выбор направления делается 4 раза, каждый раз независимо от предыдущего выбора. Вероятность того, что каждый раз выбрана сплошная красная стрелка, равна frac12cdotfrac12cdotfrac12cdotfrac12= 0,5^4= 0,0625.
Ответ
0,0625
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1055
Условие
В секции 16 спортсменок, среди них две подруги — Оля и Маша. Спортсменок случайным образом распределяют по 4 равным группам. Найдите вероятность того, что Оля и Маша попадут в одну группу.
Показать решение
Решение
Сформируем группы по 16 : 4 = 4 (человека), последовательно помещая спортсменов на свободные места, при этом начнём с Оли и Маши. Сначала поместим Олю на случайно выбранное место из 16. Теперь помещаем на свободное место Машу (исходом этого эксперимента будем считать выбор места для неё). Всего имеется 15 свободных мест (одно уже заняла Оля), поэтому всего возможны 15 исходов. В одной группе с Олей останется 3 свободных места, поэтому событию «Оля и Маша в одной группе» благоприятствуют 3 исхода. Вероятность этого события равна frac{3}{15}=0,2.
Ответ
0,2
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1054
Условие
В группе туристов 50 человек. Их микроавтобусом в несколько приёмов завозят к отправной точке маршрута по 10 человек за рейс. Порядок перевозки туристов случаен. Найдите вероятность того, что турист П. отправится в первом рейсе микроавтобуса.
Показать решение
Решение
Пусть выбор места в микроавтобусе — исход, выбор места в первом микроавтобусе — благоприятный исход. Общее число исходов равно 50 (общее число мест), благоприятных исходов 10 (число мест на первом рейсе). По определению, вероятность равна frac{10}{50}=0,2.
Ответ
0,2
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1053
Условие
Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «сумма очков равна 7»?
Показать решение
Решение
Исходом будем считать пару чисел: очки при первом и втором броске. Тогда указанному событию благоприятствуют следующие исходы: 1-6, 2-5, 3-4, 4-3, 5-2, 6-1. Их количество равно 6.
Ответ
6
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1052
Условие
В классе 25 человек. С помощью жребия они выбирают трёх человек, которые должны пойти на митинг. Найдите вероятность того, что обучающийся в этом классе ученик К., пойдёт на митинг.
Показать решение
Решение
Пусть по жребию пойдут на митинг три человека, которые выберут жребии с номерами «1», «2» и «3» из 25 возможных. Пусть исходом будет получение учеником К. определённого номера. Тогда общее число исходов равно 25, благоприятных исходов 3. По определению, вероятность равна frac{3}{25}=0,12.
Ответ
0,12
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1051
Условие
Стоянка освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,4. Найдите вероятность того, что за год хотя бы одна лампа не перегорит.
Показать решение
Решение
Сначала найдём вероятность события «обе лампы перегорели в течение года», противоположного событию из условия задачи. Обозначим через A и B события «первая лампа перегорела в течение года» и «вторая лампа перегорела в течение года». По условию P(A) = P(B) = 0,4. Событие «обе лампы перегорели в течение года» — это A cap B, его вероятность равна P(A cap B) = P(A) cdot P(B) = 0,4 cdot 0,4 = 0,16 (так как события A и B независимы).
Искомая вероятность равна 1 — P(A cap B) = 1 — 0,16 = 0,84.
Ответ
0,84
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Лучшие репетиторы для сдачи ЕГЭ
Сложно со сдачей ЕГЭ?
Звоните, и подберем для вас репетитора: 78007750928
Еще одна статья по теории вероятностей. В ней собраны задачи на проценты, вероятности зависимых событий, а также задачи, требующие последовательного подсчёта разных вероятностей. Эти задачи относятся к категории «трудные задачи», однако разобрав их с нами, они таковыми вам уже не покажутся.
Теоретическая часть
Если имеются события А и В, то
Эти формулы следуют применять, когда А и В – зависимые совместные события (более простые случаи рассмотрены в предыдущих статьях (часть1, часть 2, часть 3, часть 4).
Задачи о зависимых событиях
Задача 5.1 В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,4. Вероятность того, что кофе закончится в обоих автоматах, равна 0,22. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
Решение.
1-й способ.
Так как 0,4 ·0,4 ≠ 0,22, то события «кофе закончился в 1-ом автомате» и «кофе закончился во 2-ом автомате» зависимые. Обозначим через А событие «кофе остался в первом автомате», через В – «кофе остался во втором автомате». Тогда .
Событие «кофе остался хотя бы в одном автомате» – это А U В, его вероятность равна Р(А U В) = 1 — 0,22 = 0,78, так как оно противоположно событию «кофе закончился в обоих автоматах». По формуле для пересечения событий: P(A ∩ B) = P(A) + P(B) — P(A ∪ B)= 0,6 + 0,6 — 0,78 = 0,42
2-й способ
Обозначим через Х событие «кофе закончился в первом автомате», через Y – «кофе закончился во втором автомате».
Тогда по условию Р(X) = Р(Y) = 0,4, P(X ∩ Y) = 0,22. Так как P(X ∩ Y) ≠ P(X) · P(Y), то события Х и Y зависимые. По формуле для объединения событий:
P(X∪Y)=P(X)+P(Y)-P(X∩Y) = 0,4 + 0,4 – 0,22 = 0,58.
Мы нашли вероятность события Х U Y «кофе закончился хотя бы в одном автомате». Противоположным событием будет «кофе остался в обоих автоматах», его вероятность равна = 1 –P(X ∪ Y) = 1 –0,58 = 0,42.
3-й способ.
Составим таблицу вероятностей возможных результатов в конце дня.
Второй автомат | |||
кофе закончился | кофе остался | ||
Первый автомат | кофе закончился | 0,22 | |
кофе остался |
По условию вероятность события «кофе закончился в обоих автоматах» равна 0,22. Это число мы сразу записали в соответствующую ячейку таблицы.
В первом автомате кофе закончится с вероятностью 0,4, поэтому сумма чисел в верхних ячейках таблицы должна быть равна 0,4. Значит, в правой верхней ячейке должно быть число 0,4 – 0,22 = 0,18.
Второй автомат | |||
кофе закончился | кофе остался | ||
Первый автомат | кофе закончился | 0,22 | 0,18 |
кофе остался |
Во втором автомате кофе закончится с вероятностью 0,4, поэтому сумма чисел в левых ячейках таблицы также должна быть равна 0,4. Значит, в левой нижней ячейке должно быть число 0,4 – 0,22 = 0,18.
Второй автомат | |||
кофе закончился | кофе остался | ||
Первый автомат | кофе закончился | 0,22 | 0,18 |
кофе остался | 0,18 |
Так как сумма чисел во всех четырёх ячейках должна быть равна 1, то искомое число в правой нижней ячейке равно 1 – 0,22 – 0,18 – 0,18 = 0,42.
Второй автомат | |||
кофе закончился | кофе остался | ||
Первый автомат | кофе закончился | 0,22 | 0,18 |
кофе остался | 0,18 | 0,42 |
Ответ: 0,42.
Задачи на проценты
Задача 5.2 Агрофирма закупает куриные яйца в двух домашних хозяйствах. 60% яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 40% яиц высшей категории. Всего высшую категорию получает 48% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Решение.
Пусть х – искомая вероятность. Пусть всего закуплено n яиц. Тогда в первом хозяйстве закуплено x · n яиц, из них 0,6х·n высшей категории. Во втором хозяйстве закуплено (1- x) · n яиц, из них 0,4 • (1- x) • n высшей категории. Всего высшую категорию имеют 0,48n яиц.
Отсюда
Ответ: 0,4
Задача 5.3 На фабрике керамической посуды 20% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 70% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Ответ округлите до сотых.
Решение.
Пусть всего произведено х тарелок. Качественных тарелок 0,8х (80% от общего числа), они поступают в продажу.
Дефектных тарелок 0,2х, из них в продажу поступает 30%, то есть 0,3 • 0,2х = 0,06x.
Всего в продажу поступило 0,8х + 0,06x = 0,86x тарелок.
Вероятность купить тарелку без дефектов равна ≈ 0,93
Ответ: 0,93.
Разные задачи
Задача 5.4 На рок-фестивале выступают группы – по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Финляндии будет выступать после группы из Бельгии, но перед группой из Греции? Результат округлите до сотых.
Решение.
1-й способ.
Будем считать исходом порядок выступления групп на фестивале. Разобьём множество исходов на подмножества следующим образом: в одно подмножество будем включать исходы, полученные перестановками рок-групп из Финляндии, Бельгии и Греции (с сохранением мест всех остальных рок-групп).
Тогда в каждом подмножестве будет 6 исходов: ФБГ, ФГБ, БГФ, БФГ, ГБФ, ГФБ. Из этих шести исходов благоприятным будет только БФГ. Следовательно, благоприятными являются 1/6 всех исходов. Искомая вероятность равна 16 ≈ 0,17
2-й способ (этот способ не является математически верным, но при решении на экзамене может помочь, если первый способ непонятен)
Так как в условии не указано общее число рок-групп, будем считать, что их всего три: из Финляндии, Бельгии и Греции. Будем считать исходом порядок выступлений, всего 6 исходов: ФБГ, ФГБ, БГФ, БФГ, ГБФ, ГФБ. Благоприятным является только исход БФГ. Искомая вероятность равна 16 ≈ 0,17.
Ответ: 0,17.
Задача 5.5 При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,2, а при каждом последующем 0,7. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?
Решение.
1-й способ
Вероятность промаха при первом выстреле равна 1 – 0,2 = 0,8. Вероятность промаха при каждом последующем равна 0,3. Подсчитаем число выстрелов, при котором цель остаётся непоражённой с вероятностью менее 1 – 0,98 = 0,02.
Вероятность непоражения
после второго выстрела равна 0,8 • 0,3 = 0,24;
после третьего 0,24 • 0,3 = 0,072;
после четвёртого 0,072 • 0,3 = 0,0216;
после пятого 0,0216 • 0,3 = 0,00648.
Следовательно, необходимо 5 выстрелов.
2-й способ (этот способ имеет математическое значение, но непригоден на экзамене из-за необходимости приближённого вычисления логарифма)
Вероятность непоражения после n выстрелов равна , так как при первом выстреле вероятность промаха 0,8, а при каждом последующем 0,3.
По условию необходимо, чтобы
Ответ: 5.
Задача 5.6 Чтобы поступить в институт на специальность «Архитектура», абитуриент должен набрать на ЕГЭ не менее 60 баллов по каждому из трёх предметов – математике, русскому языку и истории. Чтобы поступить на специальность «Живопись», нужно набрать не менее 60 баллов по каждому из трёх предметов – русскому языку, истории и литературе.
Вероятность того, что абитуриент Н. получит не менее 60 баллов по истории, равна 0,8, по русскому языку 0, 5, по литературе 0,6 и по математике 0,9.
Найдите вероятность того, что Н. сможет поступить хотя бы на одну из двух упомянутых специальностей.
Решение.
Вероятность того, что Н. не сможет набрать 60 баллов ни по литературе, ни по математике равна (1 – 0,6) • (1 –0,9) = 0,4 • 0,1 = 0,04. Следовательно, хотя бы по одному из этих двух предметов он получит 60 баллов с вероятностью 1 – 0,04 = 0,96.
Для поступления нужно набрать требуемый балл по русскому языку, истории и хотя бы по одному предмету из литературы и математики. Вероятность поступления равна 0,5 • 0,8 • 0,96 = 0,384.
Ответ: 0,384.
Задача 5.7 В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,9 погода завтра будет такой же, как и сегодня. Сегодня 11 марта, погода в Волшебной стране хорошая. Найдите вероятность того, что 14 марта в Волшебной стране будет отличная погода.
Решение.
Составим таблицу вероятностей для погоды в Волшебной стране.
11 марта | 12 марта | 13 марта | 14 марта | |
хорошая |
1 |
|||
отличная | 0 |
Погода 12 марта с вероятностью 0,9 останется хорошей, с вероятностью 0,1 станет отличной. Занесём эти данные в таблицу.
11 марта | 12 марта | 13 марта | 14 марта | |
хорошая | 1 | 0,9 | ||
отличная | 0 | 0,1 |
Хорошая погода 13 марта может быть в двух случаях.
1) Погода 12 марта была хорошей и не изменилась. Вероятность этого равна 0,9 • 0,9 = 0,81.
2) Погода 12 марта была отличной и изменилась. Вероятность этого равна 0,1 • 0,1 = 0,01.
Таким образом, вероятность хорошей погоды 13 марта равна 0,81 + 0,01 = 0,82. Вероятность отличной погоды 13 марта равна 1 – 0,82 = 0,18. Заносим эти данные в таблицу.
11 марта | 12 марта | 13 марта | 14 марта | |
хорошая | 1 | 0,9 | 0,82 | |
отличная | 0 | 0,1 | 0,18 |
Отличная погода 14 марта может быть в двух случаях.
1) Погода 13 марта была хорошей и изменилась. Вероятность этого равна 0,82 • 0,1 = 0,082.
2) Погода 13 марта была отличной и не изменилась. Вероятность этого равна 0,18 • 0,9 = 0,162.
Таким образом, вероятность отличной погоды 14 марта равна 0,082 + 0,162 = 0,244.
11 марта | 12 марта | 13 марта | 14 марта | |
хорошая | 1 | 0,9 | 0,82 | |
отличная | 0 | 0,1 | 0,18 | 0,244 |
Ответ: 0,244.
Подведем итог
Это последняя часть материала по началам теории вероятностей, знание которого необходимо для успешной сдачи ЕГЭ по математике профильного уровня.
Для закрепления изученного предлагаю вам задачи для самостоятельного решения.
Вы также можете проверить правильность их выполнения, внеся свои ответы в предлагаемую форму.
Также рекомендую изучить «Задачи с параметром» и другие уроки по решению заданий ЕГЭ по математике, которые представлены на нашем канале Youtube.
Спасибо, что поделились статьей в социальных сетях
Источник «Подготовка к ЕГЭ. Математика. Теория вероятностей». Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова
Все прототипы заданий темы «Вероятности сложных событий», которые могут выпасть на ЕГЭ по математике (профильный уровень). Источники заданий: fipi.ru, mathege.ru.
Условия прототипов взяты у Евгения Пифагора из его видеокурса: «1–11 задания ЕГЭ профиль (первая часть с нуля)».
Содержание видеокурса:
~ 10 часов теоретических видео (про все правила и формулы);
~ 70 часа разборов задач прототипов и ДЗ.
По отзывам покупателей Василий Васильевич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,93. Вероятность того, что этот товар доставят из магазина Б, равна 0,94. Василий Васильевич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.
Продолжить чтение Решение №2841 По отзывам покупателей Василий Васильевич оценил надёжность двух интернет-магазинов.
Стрелок стреляет по одному разу в каждую из четырёх мишеней. Вероятность попадания в мишень при каждом отдельном выстреле равна 0,9. Найдите вероятность того, что стрелок попадёт в первую мишень и не попадёт в три последние.
Продолжить чтение Решение №2840 Стрелок стреляет по одному разу в каждую из четырёх мишеней.
При выпечке хлеба производится контрольное взвешивание свежей буханки. Известно, что вероятность того, что масса окажется меньше 810 г, равна 0,98. Вероятность того, что масса окажется больше 790 г, равна 0,83. Найдите вероятность того, что масса буханки больше 790 г, но меньше 810 г.
Продолжить чтение Решение №2810 При выпечке хлеба производится контрольное взвешивание свежей буханки.
Биатлонист 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.
Продолжить чтение Решение №2555 Биатлонист 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6.
В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,25. Вероятность того, что кофе закончится в обоих автоматах, равна 0,1. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
Продолжить чтение Решение №2453 В торговом центре два одинаковых автомата продают кофе.
Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 25% этих стекол, вторая – 75%. Первая фабрика выпускает 5% бракованных стекол, а вторая – 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Продолжить чтение Решение №2338 Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 25% этих стекол, вторая – 75%.
На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,1. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Продолжить чтение Решение №2296 На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов.
Первый игральный кубик обычный, а на гранях второго кубика нет четных чисел, а нечетные числа встречаются по два раза. В остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 3 и 5 очков. Какова вероятность, что бросали второй кубик?
Продолжить чтение Решение №2167 Первый игральный кубик обычный, а на гранях второго кубика нет четных чисел, а нечетные числа встречаются по два раза.
События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).
Зачем нужна теория вероятности
Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.
Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.
В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.
Основные понятия теории вероятности
Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.
Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.
Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.
События А и В называется несовместными, если они не могут произойти одновременно.
Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .
Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .
Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.
- Вероятность принимает значения на отрезке от 0 до 1, т.е. .
- Вероятность невозможного события равна 0, т.е. .
- Вероятность достоверного события равна 1, т.e. .
- Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. .
Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.
Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .
Ответ получаем по формуле .
Пример задачи из ЕГЭ по математике по определению вероятности
На столе лежат 20 пирожков – 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?
Решение.
Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А – это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:
Ответ: 0,4
Независимые, противоположные и произвольные события
Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.
События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.
Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .
Теоремы сложения и умножения вероятностей, формулы
Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .
Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .
Последние 2 утверждения называются теоремами сложения и умножения вероятностей.
Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.
Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается “шесть факториал”.
В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае .
Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .
В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам
В нашем случае .
И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:
В нашем случае .
Примеры решения задач из ЕГЭ по математике на определение вероятности
Задача 1. Из сборника под ред. Ященко.
На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.
Решение:
.
Ответ: 0,3.
Задача 2. Из сборника под ред. Ященко.
В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.
Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:
Ответ: 0,98.
Задача 3.
Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.
Решение:
Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие “У. верно решит ровно 9 задач” входит в условие “У. верно решит больше 8 задач”, но не относится к условию “У. верно решит больше 9 задач”.
Однако, условие “У. верно решит больше 9 задач” содержится в условии “У. верно решит больше 8 задач”. Таким образом, если мы обозначим события: “У. верно решит ровно 9 задач” – через А, “У. верно решит больше 8 задач” – через B, “У. верно решит больше 9 задач” через С. То решение будет выглядеть следующим образом:
.
Ответ: 0,06.
Задача 4.
На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение.
Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме “Тригонометрия”, либо к теме “Внешние углы”. По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:
Ответ: 0,35.
Задача 5.
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Решение:
Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.
Тогда укажем варианты таких событий. Примем обозначения: – лампочка горит, – лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события “лампочка перегорела”, “лампочка горит”, “лампочка горит”: , где вероятность события “лампочка горит” подсчитывается как вероятность события, противоположного событию “лампочка не горит”, а именно: .
Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .
Ответ: 0,975608.
Еще одну задачку вы можете посмотреть на рисунке:
Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.