Решу егэ математика задание 27265

Задания

Версия для печати и копирования в MS Word

Тип 1 № 27265

В треугольнике ABC угол C равен 90°, CH − высота, AB = 13,  тангенс A = дробь: числитель: 1, знаменатель: 5 конец дроби . Найдите AH.

Спрятать решение

Решение.

Имеем:

AH=AC косинус A= левая круглая скобка AB косинус A правая круглая скобка косинус A = AB косинус в квадрате A=AB умножить на дробь: числитель: 1, знаменатель: 1 плюс тангенс в квадрате A конец дроби =13 умножить на дробь: числитель: 1, знаменатель: 1 плюс дробь: числитель: 1, знаменатель: 25 конец дроби конец дроби =13 умножить на дробь: числитель: 25, знаменатель: 26 конец дроби =12,5.

Ответ: 12,5.

Приведем решение без использования тригонометрии (Мария Казначеева).

Из треугольника ACH найдем  тангенс A= дробь: числитель: CH, знаменатель: AH конец дроби , значит,  дробь: числитель: 1, знаменатель: 5 конец дроби = дробь: числитель: CH , знаменатель: AH конец дроби , откуда  CH = дробь: числитель: AH , знаменатель: 5 конец дроби . По свойству прямоугольного треугольника  CH в квадрате = AH умножить на HB . Пусть AH=x , тогда  HB =13 минус x, следовательно,

 левая круглая скобка дробь: числитель: x, знаменатель: 5 конец дроби правая круглая скобка в квадрате =x левая круглая скобка 13 минус x правая круглая скобка равносильно дробь: числитель: x в квадрате , знаменатель: 25 конец дроби =13 x минус x в квадрате равносильно x в квадрате =13 умножить на 25 x минус 25 x в квадрате равносильно 26 x в квадрате минус 13 умножить на 25 x=0 равносильно 13 x левая круглая скобка 2 x минус 25 правая круглая скобка =0 ,

откуда x=0, что не подходит, или

2 x минус 25=0 равносильно 2x=25 равносильно x=12,5.

Аналоги к заданию № 27265: 30467 30557 30469 30471 30473 30475 30477 30479 30481 30483 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 1.2.1 Синус, косинус, тангенс, котангенс произвольного угла, 5.1.1 Треугольник

Спрятать решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь

  • ЗАДАЧИ ЕГЭ С ОТВЕТАМИ

  • АНГЛИЙСКИЙ без ГРАНИЦ

2012-07-12

НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Конструктор упражнений для позвоночника!

Отзывов (2)

  1. Andrey

    2013-02-17 в 12:03

    Зачем так все усложнять

    можно решить по другому

    допустим искомое значение х тогда ВН=13-х

    высота являеться средним геометрическим тоесть СН=у

    у=кв корень из x (13-x)

    tgA=CH/x=y/x

    y/x=1/5 выходит система

    {y=Vx (13-x)

    {x=5y

    Решаем

    y=V5y (13-5y)

    y^2=65y-25y^2

    26y^2=65y

    26y=65

    y=5/2

    x=5*5/2

    x=25/2

    x=12.5

    Ответить

    • Александр Крутицких

      2013-02-17 в 22:16

      Андрей, ни какого усложнения. Обычные действия с тригонометрическими формулами и определениями синуса и косинуса. Угол дан ведь не прсто так. Конечно, путь решения длиноват. Согласен, что способ ваш на много проще и рациональней. Спасибо, что написали. Если ещё что-то более рациональное покажете, буду рад. С уважением!!! 

      Ответить

Добавить комментарий

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

  • РубрикиРубрики
  • Задачи по номерам!

    №1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16

  • МЕТКИ

    БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие

  • ОСТЕОХОНДРОЗУ-НЕТ!

Автор Сообщение

Заголовок сообщения: Тренировочный вариант №421

Сообщение Добавлено: 11 мар 2023, 09:59 

Не в сети
Администратор
  • Центр пользователя



Зарегистрирован: 10 июн 2010, 15:00
Сообщений: 6119

https://alexlarin.net/ege/2023/trvar421.html

Вернуться наверх 

OlegTheMath

Заголовок сообщения: Re: Тренировочный вариант №421

Сообщение Добавлено: 11 мар 2023, 11:42 

Не в сети
  • Центр пользователя



Зарегистрирован: 06 май 2012, 21:09
Сообщений: 67

Спасибо за интересный вариант!
421.17

Подробности:

надеюсь, правильно.

Вернуться наверх 

hpbhpb

Заголовок сообщения: Re: Тренировочный вариант №421

Сообщение Добавлено: 11 мар 2023, 11:57 

Не в сети
Аватар пользователя
  • Центр пользователя



Зарегистрирован: 18 ноя 2015, 07:49
Сообщений: 1731
Откуда: Ставрополь

OlegTheMath писал(а):

Спасибо за интересный вариант!
421.17

Подробности:

надеюсь, правильно.

Да, правильно.

Вернуться наверх 

Владимiръ

Заголовок сообщения: Re: Тренировочный вариант №421

Сообщение Добавлено: Вчера, 18:48 

Не в сети
Аватар пользователя
  • Центр пользователя



Зарегистрирован: 08 мар 2017, 23:11
Сообщений: 546
Откуда: Пущино

Задача 18

Подробности:

Вернуться наверх 

Показать сообщения за:  Сортировать по:  

Версия для печатиPDF

Укажите варианты ответов, в которых в обоих словах одного ряда пропущена одна и та же буква. Запишите номера ответов.

1) (он) обездвиж..л (из-за травмы), микротрещ..на
2) чешуйч..тый, червоточ..на
3) ситц..вый, реч..вые (навыки)
4) дотанц..вался, книж..чка
5) занов.. (прочесть), бег..тня


Правильный ответ: 345|3 4 5|354|3 5 4|435|4 3 5|453|4 5 3|534|5 3 4|543|5 4 3

Пояснение: 

1) (он) обездвижел (из-за травмы), микротрещина — ряд не подходит
2) чешуйчатый, червоточина — ряд не подходит
3) ситцевый, речевые (навыки) — ряд подходит
4) дотанцевался, книжечка — ряд подходит
5) заново (прочесть), беготня — ряд подходит

Источник: 

СтатГрад, тренировочная работа №3 (16.11.2022). Вариант 1.

Связи с вариантами

Решение и ответы заданий варианта МА2210309 СтатГрад 28 февраля ЕГЭ 2023 по математике (профильный уровень). Тренировочная работа №3. ГДЗ профиль для 11 класса.
+Задания №1, №4, №6, №10 из варианта МА2210311.

❗Все материалы получены из открытых источников и публикуются после окончания тренировочного экзамена в ознакомительных целях.

❗Задания №13,16,17,18 долго оформлять, решу их позже, если будет время и желание. Решены те задания, у которых кнопка «Смотреть решение» зелёная.

Задание 1.
В треугольнике ABC угол C равен 90°, CH – высота, BC = 5, cosA=frac{2sqrt{6}}{5}. Найдите длину отрезка AH.

В треугольнике ABC угол C равен 90°, CH – высота, BC = 5

Задание 1 из варианта 2210311.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 1:3.
Найдите периметр прямоугольника, если его площадь равна 12, а отношение соседних сторон равно 13.

Задание 2.
Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2. Объём параллелепипеда равен 3,2. Найдите высоту цилиндра.

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 2.

Задание 3.
В группе 16 человек, среди них – Анна и Татьяна. Группу случайным образом делят на 4 одинаковые по численности подгруппы. Найдите вероятность того, что Анна и Татьяна окажутся в одной подгруппе.

Задание 4.
Агрофирма закупает куриные яйца только в двух домашних хозяйствах. Известно, что 40 % яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 60 % яиц высшей категории. В этой агрофирме 50 % яиц высшей категории. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Задание 4 из варианта 2210311.
Игральный кубик бросают дважды. Известно, что в сумме выпало 11 очков. Найдите вероятность того, что во второй раз выпало 5 очков.

Задание 5.
Решите уравнение frac{x–1}{5x+11}=frac{x–1}{3x-7}. Если уравнение имеет больше одного корня, в ответе запишите больший из корней.

Задание 6.
Найдите значение выражения frac{(4^{frac{3}{5} }cdot7^{frac{2}{3}})^{15}}{28^{9}} .

Задание 6 из варианта 2210311.
Найдите 98cos2α, если cosα = frac{4}{7}.

Задание 7.
На рисунке изображён график y = f’(x) – производной функции f(x), определённой на интервале (−5; 5). В какой точке отрезка [−4; −1] функция f(x) принимает наибольшее значение?

На рисунке изображён график y = f'(x) – производной функции f(x), определённой на интервале (−5; 5).

Задание 8.
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле FA = ρgl3, где l – длина ребра куба в метрах, ρ = 1000 кг/м3 – плотность воды, а g – ускорение свободного падения (считайте, что g = 9,8 Н/кг). Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше чем 2116800 Н? Ответ дайте в метрах.

Задание 9.
Пристани A и B расположены на озере, расстояние между ними равно 280 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.

Задание 10.
На рисунке изображён график функции f(x) = ax2 + bx + c. Найдите значение f(−1).

На рисунке изображён график функции f(x) = ax2 + bx + c.

Задание 10 из варианта 2210311.
На рисунке изображены графики функций f(x) = frac{k}{x} и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.

Найдите абсциссу точки B.

Задание 11.
Найдите точку минимума функции y = x3 − 27x2 + 13.

Задание 12.
а) Решите уравнение 2cos3x = –sin(frac{3pi}{2} + x)
б) Найдите все корни этого уравнения, принадлежащие отрезку [3π; 4π]

Задание 13.
Основанием правильной пирамиды PABCD является квадрат ABCD. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.
а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.
б) Найдите площадь сечения пирамиды, если AB = 30.

Задание 14.
Решите неравенство frac{9^{x}–13cdot 3^{x}+30}{3^{x+2}–3^{2x+1}}ge frac{1}{3^{x}}.

Задание 15.
По вкладу «А» банк в конце каждого года планирует увеличивать на 13 % сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» – увеличивать эту сумму на 7 % в первый год и на целое число n процентов за второй год. Найдите наименьшее значение n, при котором за два года хранения вклад «Б» окажется выгоднее вклада «А» при одинаковых суммах первоначальных взносов.

Задание 16.
В треугольнике ABC медианы AA1, BB1 и CC1 пересекаются в точке M. Известно, что AC = 3MB.
а) Докажите, что треугольник ABC прямоугольный.
б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 22.

Задание 17.
Найдите все значения a, при каждом из которых система уравнений 

begin{cases} (x-5a+1)^{2}+(y-2a-1)^{2}=a-2 \ 3x-4y=2a+3 end{cases}

не имеет решений.

Задание 18.
У Ани есть 800 рублей. Ей нужно купить конверты (большие и маленькие). Большой конверт стоит 32 рубля, а маленький – 25 рублей. При этом число маленьких конвертов не должно отличаться от числа больших конвертов больше чем на пять.
а) Может ли Аня купить 24 конверта?
б) Может ли Аня купить 29 конвертов?
в) Какое наибольшее число конвертов может купить Аня?

Источник варианта: СтатГрад/statgrad.org.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 3

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

Понравилась статья? Поделить с друзьями:
  • Решу егэ общество незнайка
  • Решу егэ математика задание 27211
  • Решу егэ общество 653
  • Решу егэ математика задание 27159
  • Решу егэ немецкий язык 11 класс