ЕГЭ по математике — Профиль 2022. Открытый банк заданий с ответами.
Главная » ЕГЭ » ЕГЭ 2022. Математика. Профильный уровень. 40 тренировочных вариантов. Под. ред. Лысенко Ф.Ф.
Пособие предназначено для качественной подготовки к профильному уровню ЕГЭ по математике в 2022 году. Книга содержит: • 40 новых тренировочных вариантов, составленных в соответствии с проектами демоверсии и спецификации 2022 года профильного уровня ЕГЭ по математике, опубликованными на сайте ФИПИ 25.08.2021 г.; подробное решение 10 вариантов; краткий теоретический справочник; ответы ко всем вариантам. Материал пособия позволит выпускникам и абитуриентам получить на ЕГЭ желаемый результат — от минимального количества баллов до 100 баллов. Книга адресована выпускникам общеобразовательных учреждений и учителям. Она может использоваться также и при дистанционном обучении.
- Рубрика: ЕГЭ / ЕГЭ по математике
- Автор: Под. ред. Лысенко Ф.Ф.
- Год: 2021
- Для учеников: 10-ых — 11-ых классов
- Язык учебника: Русский
- Формат: PDF
- Страниц: 336
Перейти к содержимому
И.В. Ященко, И.Р. Высоцкий, Е. А. Коновалов ЕГЭ-2022. Сборник тренировочных вариантов. Книга предназначена для подготовки учащихся к ЕГЭ по математике. В сборнике представлены: 36 типовых экзаменационных вариантов, составленных в соответствии с проектом демоверсии КИМ ЕГЭ 2022 года; ответы ко всем заданиям и критерии оценивания.
Читать онлайн и скачать сборник в формате PDF: Скачать
* Еще больше пособий ЕГЭ и ОГЭ
* Учебные материалы
Поделиться:
Задания первой части (1-11) профильного ЕГЭ по математике в новом формате 2022.
Все задачи для тестов взяты из открытого банка с сайта mathege.ru. Подборка группы vk.com/egeatom/
Предыдущие варианты:
4ege.ru/tr…
4ege.ru/tr…
ЕГЭ 2022, полный разбор 36 варианта Ященко ФИПИ школе 36 вариантов. Решаем типовые варианты от Ященко 2022 года ЕГЭ профиль!
Решаем 36 вариант Ященко 2022 года сборника ФИПИ школе 36 вариантов. Разбор 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 задания.
Больше разборов на моем ютуб-канале
Задание 1
Найдите корень уравнения $$sqrt{frac{6}{4x-54}}=frac{1}{7}.$$
Ответ: 87
Скрыть
$$(sqrt{frac{6}{4x-54}})^2=(frac{1}{7})^2$$
$$frac{6}{4x-54}=frac{1}{49}$$
$$4x – 54 = 294$$
$$4x = 294 + 54$$
$$4x = 348$$
$$x = 87$$
Задание 2
На рок-фестивале выступают группы — по одной от каждой из заявленных стран, в том числе группы из Италии, Германии, Австрии и Испании. Порядок выступления определяется жребием. Какова вероятность того, что группа из Германии будет выступать позже групп из Италии, Австрии и Испании? Ответ округлите до сотых.
Ответ: 0,25
Скрыть
Если поставить Германию после трех групп, то количество перестановок без повторений из этих 3 групп (Италии, Австрии и Испании) будет равно 3! . Заметим, что это благоприятствующие исходы m.
А общее количество перестановок из всех 4 групп равно 4! это n.
Таким образом, вероятность того, что группа из Германии будет выступать позже групп из Италии, Австрии и Испании будет равна
$$P(A)=frac{3!}{4!}=frac{1cdot2cdot3}{1cdot2cdot3cdot4}=frac{1}{4}=0,25$$
Задание 3
Основания равнобедренной трапеции равны 24 и 10. Радиус описанной окружности равен 13. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.
Ответ: 17
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 4
Найдите значение выражения: $$3^{2+log_{3}7}$$
Ответ: 63
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 5
В основании прямой призмы лежит прямоугольный треугольник с катетами 5 и 6. Боковые рёбра призмы равны $$frac{4}{pi}$$. Найдите объём цилиндра, описанного около этой призмы.
Ответ: 61
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 6
Прямая $$y=-5x+6$$ является касательной к графику функции $$28x^2+23x+c$$. Найдите с.
Ответ: 13
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 7
Груз массой 0,58 кг колеблется на пружине. Его скорость $$v$$ (в м/с) меняется по закону $$v=v_{0}sin frac{2pi t}{T}$$, где t — время с момента начала колебаний в секундах, Т=6 с — период колебаний, $$v_{0}$$=2 м/с. Кинетическая энергия Е (в Дж) груза вычисляется по формуле $$E=frac{mv^{2}}{2}$$, где m — масса груза (в кг), $$v$$ — скорость груза (в м/с). Найдите кинетическую энергию груза через 4 секунды после начала колебаний. Ответ дайте в джоулях.
Ответ: 0,87
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 8
Каждый из двух рабочих одинаковой квалификации может выполнить заказ за 21 час. Через 5 часов после того, как один из них приступил к выполнению заказа, к нему присоединился второй рабочий, и работу над заказом они довели до конца уже вместе. Сколько часов потребовалось на выполнение всего заказа?
Ответ: 13
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 9
На рисунке изображена часть графика функции $$f(x)=|kx+b|.$$ Найдите $$f(-15).$$
Ответ: 1,2
Скрыть
$$f(x)$$ проходит через $$(-2;4)$$ и $$(-7;2).$$
При этом изображено «положительное» раскрытие модуля, т. е. $$f(x)=kx+b,kgeq0.$$
Получим:
$$left{begin{matrix} 4=-2k+b\ 2=-7k+b end{matrix}right.Leftrightarrowleft{begin{matrix} k=0,4\ b=4,8 end{matrix}right.$$
Получим:
$$f(x)=|0,4x+4,8|, тогда: f(-15)=|0,4cdot(-15)+4,8|=|-1,2|=1,2.$$
Задание 10
В викторине участвуют 15 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды. Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником. Известно, что в первых 8 играх победила команда А. Какова вероятность того, что эта команда выиграет девятый раунд?
Ответ: 0,9
Скрыть
Если команда «А» выиграла n раундов, то вероятность, что команда «А» выиграет в n+1 раунде:
$$1-frac{1}{n+2}$$
Тогда:
$$1-frac{1}{8+2}=1-frac{1}{10}=1-0,1=0,9$$
Задание 11
Найдите наименьшее значение функции $$y=6+frac{sqrt{3}pi}{2}-3sqrt{3}x-6sqrt{3}cos x$$ на отрезке $$[0;frac{pi}{2}]$$
Ответ: -3
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 12
а) Решите уравнение: $$cos 4x-sin 2x=0$$
б) Найдите все корни этого уравнения, принадлежащие отрезку $$[0;pi]$$
Ответ: а)$$frac{pi}{12}+frac{pi k}{3}, kin Z$$ б)$$frac{pi}{12};frac{5pi}{12};frac{3pi}{4}$$
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 13
В правильной четырёхугольной пирамиде SABCD все рёбра равны 1. Точка F — середина ребра SB, G — середина ребра SC.
а) Постройте прямую пересечения плоскостей ABG и GDF.
б) Найдите угол между плоскостями ABG и GDF.
Ответ: $$arccos frac{9}{11}$$
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 14
Решите неравенство: $$9^{x}-10cdot 3^{x+1}+81geq 0$$
Ответ: $$(-infty;1]cup[3;+infty)$$
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 15
31 декабря 2014 года Михаил взял в банке некоторую сумму в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Михаил переводит в банк 2 928 200 рублей. Какую сумму взял Михаил в банке, если он выплатил долг четырьмя равными платежами (то есть за четыре года)?
Ответ: 9 282 000 рублей
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 16
Четырёхугольник ABCD вписан в окружность, причём сторона CD — диаметр этой окружности. Продолжение перпендикуляра AH к диагонали BD пересекает сторону CD в точке E, а окружность — в точке F, причём H — середина AE.
а) Докажите, что четырёхугольник BCFE — параллелограмм.
б) Найдите площадь четырёхугольника ABCD, если известно, что АВ=6 и АН=$$2sqrt{5}$$.
Ответ: $$48+18sqrt{5}$$
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 17
Найдите все значения а, при каждом из которых функция
$$f(x)=x^{2}-4|x-a^{2}|-8x$$
имеет хотя бы одну точку максимума.
Ответ: $$ain(-sqrt{6};-sqrt{2})cup(sqrt{2};sqrt{6})$$
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Задание 18
Имеется 8 карточек. На них записывают по одному каждое из чисел -1, 3, 4, -5, 7, -9, -10, 11. Карточки переворачивают и перемешивают. На их чистых сторонах заново пишут по одному каждое из чисел -1, 3, 4, -5, 7, -9, -10, 11. После этого числа на каждой карточке складывают, а полученные восемь сумм перемножают.
а) Может ли в результате получиться 0?
б) Может ли в результате получиться 1?
в) Какое наименьшее целое неотрицательное число может в результате получиться?
Ответ: нет; нет; 16
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
ID товара
2870388
Год издания
2022
ISBN
978-5-377-17227-7
Количество страниц
231
Размер
29×20.5×1
Тип обложки
Мягкий переплет
Тираж
50000
Вес, г
349
Авторы пособия — ведущие специалисты, принимающие непосредственное участие в разработке методических материалов для подготовки к выполнению контрольных измерительных материалов ЕГЭ. Книга содержит 50 типовых вариантов экзаменационных заданий по математике, составленных с учетом всех особенностей и требований Единого государственного экзамена по математике профильного уровня 2022 года. Назначение пособия — предоставить читателям информацию о структуре и содержании контрольных измерительных материалов по математике профильного уровня, степени трудности заданий. В сборнике даны ответы на все варианты тестов, приводятся решения всех заданий части 2 пяти вариантов. Кроме того, приведены образцы бланков, используемых на ЕГЭ для записи ответов и решений. Пособие может быть использовано учителями для подготовки учащихся к экзамену по математике в форме ЕГЭ, а также старшеклассниками — для самоподготовки и самоконтроля.
Авторы пособия — ведущие специалисты, принимающие непосредственное участие в разработке методических материалов для подготовки к выполнению контрольных измерительных материалов ЕГЭ. Книга содержит 50 типовых вариантов экзаменационных заданий по математике, составленных с учетом всех особенностей и требований Единого государственного экзамена по математике профильного уровня 2022 года. Назначение пособия — предоставить читателям информацию о структуре и содержании контрольных измерительных материалов по математике профильного уровня, степени трудности заданий. В сборнике даны ответы на все варианты тестов, приводятся решения всех заданий части 2 пяти вариантов. Кроме того, приведены образцы бланков, используемых на ЕГЭ для записи ответов и решений. Пособие может быть использовано учителями для подготовки учащихся к экзамену по математике в форме ЕГЭ, а также старшеклассниками — для самоподготовки и самоконтроля.
Экзамен
Как получить бонусы за отзыв о товаре
1
Сделайте заказ в интернет-магазине
2
Напишите развёрнутый отзыв от 300 символов только на то, что вы купили
3
Дождитесь, пока отзыв опубликуют.
Если он окажется среди первых десяти, вы получите 30 бонусов на Карту Любимого Покупателя. Можно писать
неограниченное количество отзывов к разным покупкам – мы начислим бонусы за каждый, опубликованный в
первой десятке.
Правила начисления бонусов
Если он окажется среди первых десяти, вы получите 30 бонусов на Карту Любимого Покупателя. Можно писать
неограниченное количество отзывов к разным покупкам – мы начислим бонусы за каждый, опубликованный в
первой десятке.
Правила начисления бонусов
Книга «ЕГЭ-2022. Математика. Профильный уровень. 50 вариантов. Типовые варианты экзаменационных заданий» есть в наличии в интернет-магазине «Читай-город» по привлекательной цене.
Если вы находитесь в Москве, Санкт-Петербурге, Нижнем Новгороде, Казани, Екатеринбурге, Ростове-на-Дону или любом
другом регионе России, вы можете оформить заказ на книгу
Иван Ященко
«ЕГЭ-2022. Математика. Профильный уровень. 50 вариантов. Типовые варианты экзаменационных заданий» и выбрать удобный способ его получения: самовывоз, доставка курьером или отправка
почтой. Чтобы покупать книги вам было ещё приятнее, мы регулярно проводим акции и конкурсы.
Пробные варианты ЕГЭ 2022 по математике профильного уровня из различных источников.
Пробные варианты ЕГЭ 2022 по математике (профиль)
egemath.ru | |
Вариант 10 | скачать |
Вариант 11 | скачать |
Вариант 12 | скачать |
Вариант 13 | скачать |
Вариант 14 | скачать |
Вариант 15 | скачать |
Вариант 16 | скачать |
Вариант 17 | скачать |
ЕГЭ 100 баллов (с решениями) | |
Вариант 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 20 | скачать |
variant 21 | скачать |
math100.ru (с ответами) | |
variant 150 | math100-ege22-v150 |
variant 151 | math100-ege22-v151 |
variant 152 | math100-ege22-v152 |
variant 153 | math100-ege22-v153 |
variant 154 | math100-ege22-v154 |
variant 155 | math100-ege22-v155 |
variant 156 | math100-ege22-v156 |
variant 157 | math100-ege22-v157 |
variant 158 | math100-ege22-v158 |
variant 159 | math100-ege22-v159 |
variant 160 | math100-ege22-v160 |
variant 161 | math100-ege22-v161 |
alexlarin.net | |
Вариант 370 | проверить ответы |
Вариант 371 | проверить ответы |
Вариант 372 | проверить ответы |
Вариант 373 | проверить ответы |
Вариант 374 | проверить ответы |
Вариант 375 | проверить ответы |
Вариант 376 | проверить ответы |
Вариант 377 | проверить ответы |
Вариант 378 | проверить ответы |
Вариант 379 | проверить ответы |
vk.com/pro_matem | |
variant 1 | pro_matem-prof-ege22-var1 |
variant 2 | pro_matem-prof-ege22-var2 |
variant 3 | pro_matem-prof-ege22-var3 |
variant 4 | разбор |
→ Купить сборники тренировочных вариантов ЕГЭ 2022 по математике |
Инструкция по выполнению работы
Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий с кратким ответом базового и повышенного уровней сложности.
Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.
На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).
Ответы к заданиям 1–11 записываются по приведённому образцу в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите их в бланк ответов № 1
При выполнении заданий 12–18 требуется записать полное решение и ответ в бланке ответов № 2.
Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.
При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы
Связанные страницы:
Пробные варианты ЕГЭ 2022 по математике (базовый уровень)
Сборник задач по стереометрии для 10-11 классов
Задание 10 по профильной математике — новые задачи по теории вероятностей в ЕГЭ-2022
Тест по теме «Производная» 11 класс алгебра с ответами
Основные тригонометрические тождества и формулы