Хромосомная теория наследственности
Концепция данной теории заключается в том, что передача наследственной информации в ряду поколений осуществляется путем передачи хромосом, в которых в определенной линейной последовательности расположены гены.
Данная теория была сформулирована в начале XX века. Значительный вклад в ее развитие внес американский генетик Томас Морган.
Рекомендую осознать и запомнить следующие положения хромосомной теории:
- Гены расположены в хромосомах в линейном порядке
- Каждый ген занимает в хромосоме определенное место — локус
- Гены, расположенные в одной хромосоме, образуют группу сцепления
- Сцепление генов может нарушаться в результате кроссинговера
- Частота кроссинговера между генами прямо пропорциональна расстоянию между ними
- Расстояние между генами измеряется в морганидах (1 морганида — 1% кроссинговера)
Группы сцепления
В предыдущей статье были раскрыты суть и применение в задачах III закона Менделя, закона независимого наследования,
в основе которого лежат гены, расположенные в разных хромосомах. Но что если гены лежат в одной хромосоме? Такие гены образуют группу сцепления, в этом
случае говорят о сцепленном наследовании.
Группа сцепления — совокупность всех генов, расположенных в одной хромосоме, вследствие чего они наследуются совместно. Число групп сцепления равно гаплоидному набору хромосом: у женщины 23 группы сцепления (23 пара —
половые хромосомы XX), а у мужчины — 24 группы сцепления (X и Y представляют собой две отдельные группы).
Сцепление генов
Томас Морган в своих экспериментах изучал наследование признаков плодовых мушек дрозофил: серый (A) — черный (a) цвет тела,
длинные (B) — зачаточные (b) крылья. В первом эксперименте Морган скрестил чистые линии плодовых мушек: серых с длинными
крыльями (AABB) и черных с зачаточными (aabb).
Только что вы видели первый закон Менделя (единообразия) в действии, правда, в несколько ином варианте — при дигибридном
скрещивании. Но суть та же: в первом поколении все особи получаются единообразны по исследуемому признаку, с генотипом
AaBb — с серым телом и длинными крыльями.
Далее Морган применил анализирующее скрещивание. Полученную в первом поколении дигетерозиготу (AaBb) он скрестил с черной особью с
зачаточными крыльями (aabb). Результат весьма удивил Моргана и его коллег: помимо потомства с ожидаемыми фенотипами
(серое тело + длинные крылья, черное тело + зачаточные крылья) были получены особи со смешанными признаками.
Потомство со смешанными признаками подразумевает под собой особи Aabb (серое тело + зачаточные крылья) и aaBb (черные тело +
длинные крылья). Но откуда они могли взяться, если гены A и B находятся в одной хромосоме? Значит, образовались еще какие-то дополнительные гаметы, помимо AB и ab?
Объясняя полученные в потомстве фенотипы, которые содержали смешанные признаки, Томас Морган пришел к выводу, что
между гомологичными хромосомами произошел кроссинговер, в результате которого образовались гаметы Ab, aB — кроссоверные
гаметы.
Очевидно, что в данном случае расстояние между генами A и B было 17 морганид, так как каждой кроссоверной гаметы (соответственно и особей) образовалось
по 8.5%. Не забывайте, что процент кроссинговера равен расстоянию между генами. Поскольку расстояние было 17 морганид = 17%, то на каждую из кроссоверных гамет приходится половина — 8.5%
Пример решения генетической задачи №1
«Катаракта и полидактилия у человека обусловлены доминантными аутосомными генами, расположенными в одной хромосоме.
Гены полностью сцеплены. Какова вероятность родить здорового ребенка в семье, где муж нормален, жена гетерозиготна
по обоим признакам, мать жены также страдала обеими аномалиями, а отец был нормален».
Очень важно обратить внимание на то, что «гены полностью сцеплены» — это говорит об отсутствии кроссинговера, и то, что
мы заметили это, обеспечивает верное решение задачи.
Самое главное, что вам следует усвоить: поскольку гены полностью сцеплены (кроссинговер отсутствует), женщина с генотипом AaBb может образовать только два типа гамет — AB, ab. Кроссоверные гаметы (Ab, aB) не образуются. Всего возможных генотипов потомков получается два, из которых
здоров только один — aabb. Шанс родить здорового ребенка в такой семье ½ (50%).
Пример решения генетической задачи №2
«Гены доминантных признаков катаракты и эллиптоцитоза локализованы в 1-й аутосоме. Гены неполностью сцеплены. Женщина, болеющая
катарактой и эллиптоцитозом, отец которой был здоров, выходит замуж за здорового мужчину. Определите возможные фенотипы потомства и вероятность рождения
больного обеими аномалиями ребенка в этой семье».
Ключевые слова в тексте этой задачи, на которые следует обратить внимание: «гены неполностью сцеплены». Это означает, что между ними
происходит кроссинговер.
Генотип женщины остается неясен из текста задачи. Раз она больна, то он может быть: AaBb, AABB, AABb, AaBB. Однако в тексте дано то, что развеет
сомнения: «отец которой был здоров». Если ее отец был здоров, то его генотип был aabb, значит он передал дочери гамету ab. Теперь
становится очевидно, что генотип дочери AaBb — она дигетерозиготна.
В данном случае между генами A и B произошел кроссинговер, их сцепление нарушилось. В результате образовались кроссоверные гаметы
Ab, aB — которые привели к образованию особей с со смешанными признаками (Aabb, aaBb). Вероятность рождения в этой семье ребенка,
больного обеими аномалиями, составляет ¼ (25%).
Наследование, сцепленное с полом
Половые хромосомы X и Y определяют пол человека. Генотип XX характерен для женщин, а XY — для мужчин. Мужская Y-хромосома
не содержит аллелей многих генов, которые есть в X-хромосоме, вследствие этого наследственными заболеваниями, сцепленными с
полом, чаще болеют мужчины.
Природа, несомненно, бережет женских особей. Женщины имеют две гомологичные хромосомы XX, и если ген наследственного заболевания
попал в одну из X-хромосом, то чаще всего в другой X-хромосоме окажется «здоровый» ген, доминантный, которой подавит действие
рецессивного гена. С генетической точки зрения, женщина будет носительницей заболевания, может его передать по поколению, но
сама болеть не будет.
У мужчин если ген заболевания оказался в X-хромосоме, то не проявиться он не может. Именно по этой причине мужчины чаще
страдают дальтонизмом, гемофилией и т.д.
Не у всех организмов особь мужского пола характеризуется набором хромосом XY, а женского — XX. У пресмыкающихся, птиц,
бабочек женские особи имеют гетерогаметный пол- XY, а мужские — XX. То же самое относится к домашним курам: петух — XX, курица — XY.
Решим несколько задач по теме наследования, сцепленного с полом. Речь в них будет идти о сцепленных с полом признаками —
признаками, гены которых лежат не в аутосомах, а в гетеросомах (половых хромосомах).
Пример решения генетической задачи №3
«Рецессивный ген дальтонизма располагается в X-хромосоме. Женщина с нормальным зрением (отец был дальтоник) выходит замуж
за мужчину с нормальным зрением, отец которого был дальтоником. Определите возможные фенотипы потомства».
Подробности о родословной важны и помогают заполнить белые пятна. Если отец женщины был дальтоником (XdY), то
очевидно, что он передал ей хромосому Xd, так как от отца дочери всегда передается X-хромосома. Значит женщина
гетерозиготна по данному признаку, а у мужчины возможен лишь один вариант здорового генотипа — XDY. То, что его
отец был дальтоником несущественно, ведь отец всегда передает сыну Y-хромосому.
Возможные фенотипы потомства:
- XDXD, XDXd — фенотипически здоровые девочки
- XDY — здоровый мальчик
- XdY — мальчик, который болен дальтонизмом
Пример решения генетической задачи №4
«Гипоплазия зубной эмали наследуется как сцепленный с X-хромосомой доминантный признак, шестипалость — как аутосомно-доминантный.
В семье, где мать шестипалая, а у отца гипоплазия, родился пятипалый здоровый мальчик. Напишите генотипы всех членов семьи по данным
признакам. Возможно ли у них рождение ребенка с двумя аномалиями одновременно?»
Ответ на вопрос: «Каковы генотипы матери и отца?» — лежат в потомстве. Пятипалый здоровый мальчик имеет генотип aaXbY.
Чтобы сформировался такой генотип, от матери должна прийти гамета aXb, а от отца — aY. Выходит, что единственно возможный генотип
матери — AaXbXb, а генотип отца — aaXBY.
Рождение ребенка с двумя аномалиями возможно — AaXBXb, вероятность такого события ¼ (25%).
Пример решения генетической задачи №5
«Рецессивные гены, кодирующие признаки дальтонизма и гемофилии, сцеплены с X-хромосомой. Мужчина с нормальным цветовым зрением и гемофилией женится на здоровой женщине, отец которой был дальтоником, но не гемофиликом. Известно, что мать женщины была гомозиготна по исследуемым признакам. Какое потомство
получится от брака их дочери со здоровым мужчиной?»
Генотип мужчины вопросов не вызывает, так как единственный возможный вариант — XhDY. Генотип женщины
дает возможность узнать ее отец (XHdY), который передал ей гамету XHd (отец всегда передает
дочке X хромосому, а сыну — Y), следовательно, ее генотип — XHDXHd
Как оказалось, возможны два варианта генотипа дочери: XHDXhD, XHdXhD.
Генотип здорового мужчины XHDY. Следуя логике задачи, мы рассмотрим два возможных варианта брака.
Не забывайте, что на экзамене схема задачи не является ответом. Ответ начинается только после
того, как вы напишите слово «Ответ: …». В ответе должны быть указаны все фенотипы потомства, их описание, что возможно
покажется рутинными при большом числе потомков, но весьма приятным, если вы верно решили задачу и получили за нее заслуженные
баллы
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
1. Задачи на наследование двух признаков, сцепленных с полом
При решении подобных задач следует использовать принципы решения задач на дигибридное скрещивание, с учетом особенностей наследования признаков, сцепленных с полом.
Задача 1-1
Рецессивные гены, кодирующие признаки гемофилии и дальтонизма, сцеплены с Х-хромосомой. Мужчина, больной гемофилией, женится на здоровой женщине, отец которой был дальтоником, но не гемофиликом. Какое потомство получится от брака их дочери со здоровым мужчиной?
Решение
А – нормальная свертываемость, а – гемофилия,
В – нормальное цветоощущение, b – дальтонизм.
- Генотип мужчины – ХаВY, так как он несет признак гемофилии и не является дальтоником.
- Отец женщины был дальтоником, следовательно, она получила от него рецессивный ген дальтонизма. Вторая аллель этого гена находится в доминантном состоянии, так как женщина является здоровой. По признаку гемофилии женщина гомозиготна, так как здорова (доминантный признак), и ее отец был здоров. Генотип женщины – ХАВХАb.
- Генотип мужа дочери – ХАВY, так как он не страдает ни дальтонизмом, ни гемофилией.
- По признаку гемофилии дочь является гетерозиготной, так как от отца она может получить только рецессивный ген, а от гомозиготной матери – только доминантный. Отец передал ей доминантный ген по признаку дальтонизма, а мать могла передать ей как доминантный, так и рецессивный ген. Следовательно, генотип дочери может быть ХаВХАb или ХаВХАВ. Задача имеет два варианта решения.
Ответ
В первом случае – 25% детей (половина мальчиков) будут болеть гемофилией, во втором – половина мальчиков будет страдать гемофилией, а половина – дальтонизмом.
Задача 1-2
Рецессивные гены гемофилии и дальтонизма связаны с Х-хромосомой. Какое потомство будет получено от брака мужчины, больного гемофилией, и женщины, больной дальтонизмом (гомозиготной по признаку отсутствия гемофилии)?
Задача 1-3
Мужчина, страдающий гемофилией и дальтонизмом, женился на здоровой женщине, не являющейся носительницей генов этих заболеваний. Какова вероятность, что у ребенка от брака его дочери со здоровым мужчиной:
- будет одно из этих заболеваний;
- будут обе аномалии?
Кроссинговер между генами дальтонизма и гемофилии отсутствует.
Задача 1-4
В Х-хромосоме человека могут располагаться рецессивные гены, определяющие развитие гемофилии и дальтонизма. Женщина имеет отца, страдающего гемофилией, но не дальтонизмом, и здоровую по признаку гемофилии (гомозиготную) мать-дальтоника. Эта женщина выходит замуж за здорового мужчину. Какова вероятность рождения у нее ребенка с одной аномалией, если предположить, что кроссинговер между генами гемофилии и дальтонизма отсутствует?
Задача 1-5
Ген цветной слепоты и ген ночной слепоты наследуются через Х-хромосому и находятся на расстоянии 50 морганид друг от друга. Оба признака рецессивны. Определите вероятность рождения детей одновременно с обеими аномалиями в семье, где мать имела нормальное зрение, но ее мать обладала ночной слепотой, а отец цветной слепотой, муж нормален в отношении обоих признаков.
Задача 1-6
У дрозофилы ген «изрезанных» крыльев и ген «гранатовых» глаз сцеплены и находятся в Х-хромосоме, при этом количество обычных и кроссоверных гамет образуется в равных частях. Соответствующие доминантные аллели дикого типа определяют нормальную длину крыльев и красные глаза. В эксперименте скрещивали самок чистых линий дикого типа и рецессивных по обоим генам самцов (гетерогаметный пол). Затем гибриды первого поколения скрещивали между собой, при этом было получено 56 яиц. Рассчитайте, из скольких яиц появятся самцы с «изрезанными» крыльями и «гранатовыми» глазами.
2. Задачи на наследование признаков, сцепленных с У-хромосомой.
Признаки, детерминируемые генами, расположенными в негомологичных участках Y-хромосом, всегда проявляются у мужчин и никогда не встречаются у женщин.
Задача 2-1
Перепончатопалость передается через Y-хромосому. Определить возможные фенотипы детей от брака перепончатопалого мужчины и нормальной женщины.
Решение
- Генотип мужчины – ХYА, так как он несет ген перепончатопалости (ген можно обозначать и заглавной, и строчной буквой, так как понятие доминантности или рецессивности в данном случае не имеет смысла).
- Генотип женщины – ХХ, поскольку у нее отсутствует Y-хромосома, содержащая ген перепончатопалости.
Схема брака
Р |
♀XX нормальная |
× |
♂XYА перепончатопалый |
гаметы |
|
||
F1 |
♀XX нормальная |
♂XYА перепончатопалый |
Ответ
Все девочки будут здоровы, а мальчики будут перепончатопалыми.
Задача 2-2
При скрещивании серых самок аквариумных рыбок «гуппи» с пестро окрашенным самцом в первом поколении получены серые самки и пестрые самцы в соотношении 1:1. Такое же соотношение наблюдалось во всех последующих поколениях. Как объяснить полученные результаты?
-
Основные термины генетики
-
Законы Г. Менделя
-
Первый закон Менделя — закон единообразия гибридов
-
Второй закон Менделя — закон расщепления
-
Третий закон Менделя — закон независимого наследования
-
Закон (гипотеза) «чистоты» гамет
-
Анализирующее скрещивание
-
Наследование групп крови (система АВ0)
-
Наследование признаков, сцепленных с полом
-
Типичные задания ЕГЭ по генетике
-
Определение числа типов гамет
-
Задачи на моно- и дигибридное скрещивание
-
На моногибридное скрещивание
-
На дигибридное скрещивание
-
Доминантные гены известны
-
Доминантные гены неизвестны
-
Решение задач на группы крови (система АВ0)
-
Решение задач на наследование признаков, сцепленных с полом
-
Решение задач смешанного типа
-
Задачи для самостоятельного решения
-
Ответы
Автор статьи — профессиональный репетитор, кандидат биологических наук Д. А. Соловков.
Среди заданий по генетике на ЕГЭ по биологии можно выделить 6 основных типов. Первые два — на определение числа типов гамет и моногибридное скрещивание — встречаются чаще всего в части А экзамена (вопросы А7, А8 и А30).
Задачи типов 3, 4 и 5 посвящены дигибридному скрещиванию, наследованию групп крови и признаков, сцепленных с полом. Такие задачи составляют большинство вопросов С6 в ЕГЭ.
Шестой тип задач — смешанный. В них рассматривается наследование двух пар признаков: одна пара сцеплена с Х-хромосомой (или определяет группы крови человека), а гены второй пары признаков расположены в аутосомах. Этот класс задач считается самым трудным для абитуриентов.
В этой статье изложены теоретические основы генетики, необходимые для успешной подготовки к заданию С6, а также рассмотрены решения задач всех типов и приведены примеры для самостоятельной работы.
к оглавлению ▴
Основные термины генетики
Ген — это участок молекулы ДНК, несущий информацию о первичной структуре одного белка. Ген — это структурная и функциональная единица наследственности.
Аллельные гены (аллели) — разные варианты одного гена, кодирующие альтернативное проявление одного и того же признака. Альтернативные признаки — признаки, которые не могут быть в организме одновременно.
Гомозиготный организм — организм, не дающий расщепления по тем или иным признакам. Его аллельные гены одинаково влияют на развитие данного признака.
Гетерозиготный организм — организм, дающий расщепление по тем или иным признакам. Его аллельные гены по-разному влияют на развитие данного признака.
Доминантный ген отвечает за развитие признака, который проявляется у гетерозиготного организма.
Рецессивный ген отвечает за признак, развитие которого подавляется доминантным геном. Рецессивный признак проявляется у гомозиготного организма, содержащего два рецессивных гена.
Генотип — совокупность генов в диплоидном наборе организма. Совокупность генов в гаплоидном наборе хромосом называется геномом.
Фенотип — совокупность всех признаков организма.
к оглавлению ▴
Законы Г. Менделя
Первый закон Менделя — закон единообразия гибридов
Этот закон выведен на основании результатов моногибридного скрещивания. Для опытов было взято два сорта гороха, отличающихся друг от друга одной парой признаков — цветом семян: один сорт имел желтую окраску, второй — зеленую. Скрещивающиеся растения были гомозиготными.
Для записи результатов скрещивания Менделем была предложена следующая схема:
— желтая окраска семян
— зеленая окраска семян
Формулировка закона: при скрещивании организмов, различающихся по одной паре альтернативных признаков, первое поколение единообразно по фенотипу и генотипу.
к оглавлению ▴
Второй закон Менделя — закон расщепления
Из семян, полученных при скрещивании гомозиготного растения с желтой окраской семян с растением с зеленой окраской семян, были выращены растения, и путем самоопыления было получено .
Формулировка закона: у потомства, полученного от скрещивания гибридов первого поколения, наблюдается расщепление по фенотипу в соотношении , а по генотипу — .
к оглавлению ▴
Третий закон Менделя — закон независимого наследования
Этот закон был выведен на основании данных, полученных при дигибридном скрещивании. Мендель рассматривал наследование двух пар признаков у гороха: окраски и формы семян.
В качестве родительских форм Мендель использовал гомозиготные по обоим парам признаков растения: один сорт имел желтые семена с гладкой кожицей, другой — зеленые и морщинистые.
— желтая окраска семян, — зеленая окраска семян,
— гладкая форма, — морщинистая форма.
Затем Мендель из семян вырастил растения и путем самоопыления получил гибриды второго поколения.
В произошло расщепление на фенотипических класса в соотношении . всех семян имели оба доминантных признака (желтые и гладкие), — первый доминантный и второй рецессивный (желтые и морщинистые), — первый рецессивный и второй доминантный (зеленые и гладкие), — оба рецессивных признака (зеленые и морщинистые).
При анализе наследования каждой пары признаков получаются следующие результаты. В частей желтых семян и части зеленых семян, т.е. соотношение . Точно такое же соотношение будет и по второй паре признаков (форме семян).
Формулировка закона: при скрещивании организмов, отличающихся друг от друга двумя и более парами альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всевозможных сочетаниях.
Третий закон Менделя выполняется только в том случае, если гены находятся в разных парах гомологичных хромосом.
к оглавлению ▴
Закон (гипотеза) «чистоты» гамет
При анализе признаков гибридов первого и второго поколений Мендель установил, что рецессивный ген не исчезает и не смешивается с доминантным. В проявляются оба гена, что возможно только в том случае, если гибриды образуют два типа гамет: одни несут доминантный ген, другие — рецессивный. Это явление и получило название гипотезы чистоты гамет: каждая гамета несет только один ген из каждой аллельной пары. Гипотеза чистоты гамет была доказана после изучения процессов, происходящих в мейозе.
Гипотеза «чистоты» гамет — это цитологическая основа первого и второго законов Менделя. С ее помощью можно объяснить расщепление по фенотипу и генотипу.
к оглавлению ▴
Анализирующее скрещивание
Этот метод был предложен Менделем для выяснения генотипов организмов с доминантным признаком, имеющих одинаковый фенотип. Для этого их скрещивали с гомозиготными рецессивными формами.
Если в результате скрещивания все поколение оказывалось одинаковым и похожим на анализируемый организм, то можно было сделать вывод: исходный организм является гомозиготным по изучаемому признаку.
Если в результате скрещивания в поколении наблюдалось расщепление в соотношении , то исходный организм содержит гены в гетерозиготном состоянии.
к оглавлению ▴
Наследование групп крови (система АВ0)
Наследование групп крови в этой системе является примером множественного аллелизма (это существование у вида более двух аллелей одного гена). В человеческой популяции имеется три гена , кодирующие белки-антигены эритроцитов, которые определяют группы крови людей. В генотипе каждого человека содержится только два гена, определяющих его группу крови: первая группа ; вторая и ; третья и и четвертая .
к оглавлению ▴
Наследование признаков, сцепленных с полом
У большинства организмов пол определяется во время оплодотворения и зависит от набора хромосом. Такой способ называют хромосомным определением пола. У организмов с таким типом определения пола есть аутосомы и половые хромосомы — и .
У млекопитающих (в т.ч. у человека) женский пол обладает набором половых хромосом , мужской пол — . Женский пол называют гомогаметным (образует один тип гамет); а мужской — гетерогаметным (образует два типа гамет). У птиц и бабочек гомогаметным полом являются самцы , а гетерогаметным — самки .
В ЕГЭ включены задачи только на признаки, сцепленные с -хромосомой. В основном они касаются двух признаков человека: свертываемость крови ( — норма; — гемофилия), цветовое зрение ( — норма, — дальтонизм). Гораздо реже встречаются задачи на наследование признаков, сцепленных с полом, у птиц.
У человека женский пол может быть гомозиготным или гетерозиготным по отношению к этим генам. Рассмотрим возможные генетические наборы у женщины на примере гемофилии (аналогичная картина наблюдается при дальтонизме): — здорова; — здорова, но является носительницей; — больна. Мужской пол по этим генам является гомозиготным, т.к. -хромосома не имеет аллелей этих генов: — здоров; — болен. Поэтому чаще всего этими заболеваниями страдают мужчины, а женщины являются их носителями.
к оглавлению ▴
Типичные задания ЕГЭ по генетике
Определение числа типов гамет
Определение числа типов гамет проводится по формуле: , где — число пар генов в гетерозиготном состоянии. Например, у организма с генотипом генов в гетерозиготном состоянии нет, т.е. , следовательно, , и он образует один тип гамет . У организма с генотипом одна пара генов в гетерозиготном состоянии , т.е. , следовательно, , и он образует два типа гамет. У организма с генотипом три пары генов в гетерозиготном состоянии, т.е. , следовательно, , и он образует восемь типов гамет.
к оглавлению ▴
Задачи на моно- и дигибридное скрещивание
На моногибридное скрещивание
Задача: Скрестили белых кроликов с черными кроликами (черный цвет — доминантный признак). В белых и черных. Определите генотипы родителей и потомства.
Решение: Поскольку в потомстве наблюдается расщепление по изучаемому признаку, следовательно, родитель с доминантным признаком гетерозиготен.
к оглавлению ▴
На дигибридное скрещивание
Доминантные гены известны
Задача: Скрестили томаты нормального роста с красными плодами с томатами-карликами с красными плодами. В все растения были нормального роста; — с красными плодами и — с желтыми. Определите генотипы родителей и потомков, если известно, что у томатов красный цвет плодов доминирует над желтым, а нормальный рост — над карликовостью.
Решение: Обозначим доминантные и рецессивные гены: — нормальный рост, — карликовость; — красные плоды, — желтые плоды.
Проанализируем наследование каждого признака по отдельности. В все потомки имеют нормальный рост, т.е. расщепления по этому признаку не наблюдается, поэтому исходные формы — гомозиготны. По цвету плодов наблюдается расщепление , поэтому исходные формы гетерозиготны.
к оглавлению ▴
Доминантные гены неизвестны
Задача: Скрестили два сорта флоксов: один имеет красные блюдцевидные цветки, второй — красные воронковидные цветки. В потомстве было получено красных блюдцевидных, красных воронковидных, белых блюдцевидных и белых воронковидных. Определите доминантные гены и генотипы родительских форм, а также их потомков.
Решение: Проанализируем расщепление по каждому признаку в отдельности. Среди потомков растения с красными цветами составляют , с белыми цветами — , т.е. . Поэтому — красный цвет, — белый цвет, а родительские формы — гетерозиготны по этому признаку (т.к. есть расщепление в потомстве).
По форме цветка также наблюдается расщепление: половина потомства имеет блюдцеобразные цветки, половина — воронковидные. На основании этих данных однозначно определить доминантный признак не представляется возможным. Поэтому примем, что — блюдцевидные цветки, — воронковидные цветки.
— красные блюдцевидные цветки,
— красные воронковидные цветки,
— белые блюдцевидные цветки,
— белые воронковидные цветки.
к оглавлению ▴
Решение задач на группы крови (система АВ0)
Задача: у матери вторая группа крови (она гетерозиготна), у отца — четвертая. Какие группы крови возможны у детей?
Решение:
к оглавлению ▴
Решение задач на наследование признаков, сцепленных с полом
Такие задачи вполне могут встретиться как в части А, так и в части С ЕГЭ.
Задача: носительница гемофилии вышла замуж за здорового мужчину. Какие могут родиться дети?
Решение:
к оглавлению ▴
Решение задач смешанного типа
Задача: Мужчина с карими глазами и группой крови женился на женщине с карими глазами и группой крови. У них родился голубоглазый ребенок с группой крови. Определите генотипы всех лиц, указанных в задаче.
Решение: Карий цвет глаз доминирует над голубым, поэтому — карие глаза, — голубые глаза. У ребенка голубые глаза, поэтому его отец и мать гетерозиготны по этому признаку. Третья группа крови может иметь генотип или , первая — только . Поскольку у ребенка первая группа крови, следовательно, он получил ген и от отца, и от матери, поэтому у его отца генотип .
Задача: Мужчина дальтоник, правша (его мать была левшой) женат на женщине с нормальным зрением (ее отец и мать были полностью здоровы), левше. Какие могут родиться дети у этой пары?
Решение: У человека лучшее владение правой рукой доминирует над леворукостью, поэтому — правша, — левша. Генотип мужчины (т.к. он получил ген от матери-левши), а женщины — .
Мужчина-дальтоник имеет генотип , а его жена — , т.к. ее родители были полностью здоровы.
к оглавлению ▴
Задачи для самостоятельного решения
- Определите число типов гамет у организма с генотипом .
- Определите число типов гамет у организма с генотипом .
- Определите число типов гамет у организма с генотипом .
- Скрестили высокие растения с низкими растениями. В — все растения среднего размера. Какое будет ?
- Скрестили белого кролика с черным кроликом. В все кролики черные. Какое будет ?
- Скрестили двух кроликов с серой шерстью. В с черной шерстью, — с серой и с белой. Определите генотипы и объясните такое расщепление.
- Скрестили черного безрогого быка с белой рогатой коровой. В получили черных безрогих, черных рогатых, белых рогатых и белых безрогих. Объясните это расщепление, если черный цвет и отсутствие рогов — доминантные признаки.
- Скрестили дрозофил с красными глазами и нормальными крыльями с дрозофилами с белыми глазами и дефектными крыльями. В потомстве все мухи с красными глазами и дефектными крыльями. Какое будет потомство от скрещивания этих мух с обоими родителями?
- Голубоглазый брюнет женился на кареглазой блондинке. Какие могут родиться дети, если оба родителя гетерозиготны?
- Мужчина правша с положительным резус-фактором женился на женщине левше с отрицательным резусом. Какие могут родиться дети, если мужчина гетерозиготен только по второму признаку?
- У матери и у отца группа крови (оба родителя гетерозиготны). Какая группа крови возможна у детей?
- У матери группа крови, у ребенка — группа. Какая группа крови невозможна для отца?
- У отца первая группа крови, у матери — вторая. Какова вероятность рождения ребенка с первой группой крови?
- Голубоглазая женщина с группой крови (ее родители имели третью группу крови) вышла замуж за кареглазого мужчину со группой крови (его отец имел голубые глаза и первую группу крови). Какие могут родиться дети?
- Мужчина-гемофилик, правша (его мать была левшой) женился на женщине левше с нормальной кровью (ее отец и мать были здоровы). Какие могут родиться дети от этого брака?
- Скрестили растения земляники с красными плодами и длинночерешковыми листьями с растениями земляники с белыми плодами и короткочерешковыми листьями. Какое может быть потомство, если красная окраска и короткочерешковые листья доминируют, при этом оба родительских растения гетерозиготны?
- Мужчина с карими глазами и группой крови женился на женщине с карими глазами и группой крови. У них родился голубоглазый ребенок с группой крови. Определите генотипы всех лиц, указанных в задаче.
- Скрестили дыни с белыми овальными плодами с растениями, имевшими белые шаровидные плоды. В потомстве получены следующие растения: с белыми овальными, с белыми шаровидными, с желтыми овальными и с желтыми шаровидными плодами. Определите генотипы исходных растений и потомков, если у дыни белая окраска доминирует над желтой, овальная форма плода — над шаровидной.
к оглавлению ▴
Ответы
- типа гамет.
- типов гамет.
- типа гамет.
- высоких, средних и низких (неполное доминирование).
- черных и белых.
- — черные, — белые, — серые. Неполное доминирование.
- Бык: , корова — . Потомство: (черные безрогие), (черные рогатые), (белые рогатые), (белые безрогие).
- — красные глаза, — белые глаза; — дефектные крылья, — нормальные. Исходные формы — и , потомство .
Результаты скрещивания:
а)б)
- — карие глаза, — голубые; — темные волосы, — светлые. Отец , мать — .
- — правша, — левша; — положительный резус, — отрицательный. Отец , мать — . Дети: (правша, положительный резус) и (правша, отрицательный резус).
- Отец и мать — . У детей возможна третья группа крови (вероятность рождения — ) или первая группа крови (вероятность рождения — ).
- Мать , ребенок ; от матери он получил ген , а от отца — . Для отца невозможны следующие группы крови: вторая , третья , первая , четвертая .
- Ребенок с первой группой крови может родиться только в том случае, если его мать гетерозиготна. В этом случае вероятность рождения составляет .
- — карие глаза, — голубые. Женщина , мужчина . Дети: (карие глаза, четвертая группа), (карие глаза, третья группа), (голубые глаза, четвертая группа), (голубые глаза, третья группа).
- — правша, — левша. Мужчина , женщина . Дети (здоровый мальчик, правша), (здоровая девочка, носительница, правша), (здоровый мальчик, левша), (здоровая девочка, носительница, левша).
- — красные плоды, — белые; — короткочерешковые, — длинночерешковые.
Родители: и . Потомство: (красные плоды, короткочерешковые), (красные плоды, длинночерешковые), (белые плоды, короткочерешковые), (белые плоды, длинночерешковые).
Скрестили растения земляники с красными плодами и длинночерешковыми листьями с растениями земляники с белыми плодами и короткочерешковыми листьями. Какое может быть потомство, если красная окраска и короткочерешковые листья доминируют, при этом оба родительских растения гетерозиготны? - — карие глаза, — голубые. Женщина , мужчина . Ребенок:
- — белая окраска, — желтая; — овальные плоды, — круглые. Исходные растения: и . Потомство:
с белыми овальными плодами,
с белыми шаровидными плодами,
с желтыми овальными плодами,
с желтыми шаровидными плодами.
Если вы хотите разобрать большее количество примеров — записывайтесь на курсы подготовки к ЕГЭ по биологии онлайн
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задания по генетике на ЕГЭ по биологии. Задача С6.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
09.03.2023
Одна из самых сложных тем в генетике — сцепленный тип наследования. Чтобы определить его, нужно внимательно читать условие задачи и составлять схему. Если параметры отходят от тех, что встречаются в законах Менделя, можно сделать вывод о существовании сцепления. Разбираемся, как решать задачи на сцепленное наследование генов.
Краткая теория
Впервые о сцепленном наследовании узнали ученые У. Бэтсон и Р. Пеннет. В 1906 году они проводили исследования на душистом горошке и выяснили, что не все потомство подчиняется закону независимого наследования. Впоследствии этим вопросом занимался Томас Морган. Его законы и являются основой при решении задач. Он изучал скрещивание дрозофил и вычислил, что большая часть потомства имеют родительские признаки. Лишь небольшой процент мушек стали кроссоверными. Он предположил, что образуется так называемая группа сцепления — несколько генов, которые наследуются совместно. Термины, касающиеся современной теории сцепленного наследования:
- сцепленное наследование (рецессивное или доминантное) — совместное наследование участков, которые расположены в одной хромосоме. Иногда при образовании гамет происходит кроссинговер, и группы сцепления разрушаются. Особи получаются рекомбинантными;
- полное сцепление — гены расположены очень близко, всегда наследуются вместе;
- неполное сцепление — расстояние есть, кроссинговер возможен.
Приведем хромосомную теорию наследственности Моргана. Она пригодится при решении задач на сцепленное наследование признаков:
- гены располагаются в хромосомах. Их количество и состав для негомологичных хромосом уникален;
- у каждого гена есть свое место, называемое локусом;
- распределение генов — точно заданная линейная последовательность;
- гены из одной хромосомы образуют группу сцепления. Количество таких групп равно гаплоидному набору хромосом;
- рекомбинантные хромосомы образуются при нарушении сцепления, кроссинговере;
- для создания хромосомных карт нужно знать расстояние между генами. Оно определяется из частоты рекомбинации. 1 морганида равна 1% кроссинговера.
Пример решения задачи
Решим задачу на скрещивание.
Задание. В качестве родительской особи использовалось высокорослое растение с цельной листовой пластинкой. Провели анализирующее скрещивание. В потомстве были высокорослые растения: 42 с расчлененной пластинкой, 9 с цельной, и карликовые: 40 с цельной, 10 с расчлененной.
Решение. Потомство представлено 4 фенотипическими группами. Скрещивание анализирующее, следовательно, одна из взятых особей — дигомозигота по рецессиву, а другая — дигетерозигота. Фенотип указывает на доминантные аллели. Кратко записываем условие:
А — высокий рост
а — карликовый рост
B — цельные листья
b — расчлененные листья
Определяем фенотипические группы, соответствующие наибольшему количеству потомства: высокорослость + расчлененная пластина, карликовость + цельная пластина. Они указывают на сцепленные гены. Записываем схему, включая в нее эту информацию.
Р: AaBb х aabb
высок, цельн карлик, расчлен
G: AB, Ab (сцеп), aB (сцеп), ab
F: AaBb Aabb aaBb aabb
высок, цельн высок, расчлен карлик, цельн карлик, расчлен
В ответе указываем, что наблюдается неполное сцепление, для 2 гамет из 4 произошел кроссинговер.
Мы провели анализ сцепленного наследования. Чтобы точно решить задание на экзамене, практикуйтесь. Сложно учиться самостоятельно? Записывайтесь на курсы подготовки к ЕГЭ «Уникум» при Российском университете дружбы народов. Их преимущества:
- учеба в главном корпусе университета м. Беляево/Юго-Западная. Это полное погружение в атмосферу студенчества;
- опытные преподаватели-эксперты ЕГЭ, которые помогут повысить ваши баллы;
- при поступлении в РУДН предоставляется скидка на первый год обучения.
Содержание данной статьи носит ознакомительный характер. Для подготовки к сдаче ЕГЭ пользуйтесь дополнительными источниками информации!