Сера химические свойства для егэ

1. Положение серы в периодической системе химических элементов
2. Электронное строение атома серы
3. Физические свойства и нахождение в природе
4. Соединения серы
5. Способы получения
6. Химические свойства
6.1. Взаимодействие с простыми веществами
6.1.1. Взаимодействие с кислородом
6.1.2. Взаимодействие с галогенами
6.1.3. Взаимодействие с серой и фосфором 
6.1.4. Взаимодействие с металлами
6.1.5. Взаимодействие с водородом
6.2. Взаимодействие со сложными веществами
6.2.1. Взаимодействие с окислителями
6.2.2. Взаимодействие с щелочами

Сероводород
1. Строение молекулы и физические свойства 
2. Способы получения
3. Химические свойства
3.1. Кислотные свойства
3.2. Взаимодействие с кислородом
3.3. Восстановительные свойства
3.4. Взаимодействие с солями тяжелых металлов

Сульфиды
Способы получения сульфидов
Химические свойства сульфидов

Оксиды серы
 1. Оксид серы (IV)
 2. Оксид серы (VI)

Серная кислота 
 1. Строение молекулы и физические свойства
 2. Способы получения 
3. Химические свойства

3.1. Диссоциация серной кислоты
3.2. Основные свойства серной кислоты
3.3. Взаимодействие с солями более слабых кислот
3.4. Разложение при нагревании
3.5. Взаимодействие с солями
3.6. Качественная реакция на сульфат-ионы
3.7. Окислительные свойства серной кислоты

Сернистая кислота 

Соли серной кислоты – сульфаты

Сера

Положение в периодической системе химических элементов

Сера расположена в главной подгруппе VI группы  (или в 15 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение серы

Электронная конфигурация  серы в основном состоянии:

Атом серы содержит на внешнем энергетическом уровне 2 неспаренных электрона и две неподеленные электронные пары в основном энергетическом состоянии. Следовательно, атом серы может образовывать 2 связи по обменному механизму, как и кислород. Однако, в отличие от кислорода, за счет вакантной 3d орбитали атом серы может переходить в возбужденные энергетические состояния. Электронная конфигурация  серы в первом возбужденном состоянии:

Электронная конфигурация  серы во втором возбужденном состоянии:

Таким образом, максимальная валентность серы в соединениях равна VI (в отличие от кислорода). Также для серы характерна валентность — IV.

Степени окисления атома серы – от -2 до +4. Характерные степени окисления -2, 0, +4, +6.

Физические свойства и нахождение в природе

Сера образует различные простые вещества (аллотропные модификации).

Наиболее устойчивая модификация серы – ромбическая сера S8. Это хрупкое вещество желтого цвета

Моноклинная сера – это аллотропная модификация серы, в которой атомы соединены в циклы в виде «короны». Это твердое вещество, состоящее из темно-желтых игл, устойчивое при температуре более 96оС, а при обычной температуре превращающееся в ромбическую серу. 

Пластическая сера – это вещество, состоящее из длинных полимерных цепей. Коричневая резиноподобная аморфная масса, нерастворимая в воде.

В природе сера встречается:

  • в самородном виде;
  • в составе сульфидов (сульфид цинка ZnS, пирит FeS2, сульфид ртути HgS — киноварь и др.)
  • в составе сульфатов (CaSO4·2H2O гипс, Na2SO4·10H2O — глауберова соль)

Соединения серы

Типичные соединения серы:

Степень окисления Типичные соединения
+6 Оксид серы(VI) SO3

Серная кислота H2SO4

Сульфаты MeSO4

Галогенангидриды: SО2Cl2

+4 Оксид серы (IV) SO2

Сернистая кислота H2SO3

Сульфиты MeSO3

Гидросульфиты MeHSO3

Галогенангидриды: SOCl2

–2 Сероводород H2S

Сульфиды металлов MeS

Способы получения серы

1. В промышленных масштабах серу получают открытым способом на месторождениях самородной серы, либо из вулканов. Из серной руды серу получают также пароводяными, фильтрационными, термическими, центрифугальными и экстракционными методами. Пароводяной метод —  это выплавление из руды с помощью водяного пара.

2. Способ получения серы в лаборатории – неполное окисление сероводорода.

2H2S   +   O2    →   2S    +   2H2O

3. Еще один способ получения серы – взаимодействие сероводорода с оксидом серы (IV):

2H2S  +  SO2   →   3S   +  2H2O

Химические свойства серы

В нормальных условиях химическая активность серы невелика: при нагревании сера активна, и может быть как окислителем, так и восстановителем.

1. Сера проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому сера реагирует с металлами и неметаллами.

1.1. При горении серы на воздухе образуется оксид серы (IV):

S  +  O2  →  SO2

1.2. При взаимодействии серы с галогенами (со всеми, кроме йода) образуются галогениды серы:

S   +   Cl2  →  SCl2   (S2Cl2)

S   +  3F2  →   SF6

1.3. При взаимодействии фосфора и углерода с серой образуются сульфиды фосфора и сероуглерод:

2P    +   3S   →   P2S3

2P    +   5S   →   P2S5

2S  +   C   →   CS2

1.4. При взаимодействии с металлами сера проявляет свойства окислителя, продукты реакции называют сульфидами. С щелочными металлами сера реагирует без нагревания, а с остальными металлами (кроме золота и платины) – только при нагревании.

Например, железо и ртуть реагируют с серой с образованием сульфидов железа (II)  и ртути:

S   +   Fe   →  FeS

S   +  Hg   →  HgS

Еще пример: алюминий взаимодействует с серой с образованием сульфида алюминия:

3S   +  2Al   →  Al2S3

1.5. С водородом сера взаимодействует при нагревании с образованием сероводорода:

S  +  H2  →  H2S

2. Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства. Сера диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителями сера окисляется до оксида серы (IV) или до серной кислоты (если реакция протекает в растворе).

Например, азотная кислота окисляет серу до серной кислоты:

S   +   6HNO3   →  H2SO4  +  6NO2   +   2H2O

Серная кислота также окисляет серу. Но, поскольку S+6 не может окислить серу же до степени окисления +6, образуется оксид серы (IV):

S    +    2H2SO4   →   3SO2   +   2H2O

Соединения хлора, например, бертолетова соль,  также окисляют серу до +4:

3S   +  2KClO3  →   3SO2   +   2KCl

Взаимодействие серы с сульфитами (при кипячении) приводит к образованию тиосульфатов:

S   +   Na2SO3  →   Na2S2O3

2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида.

Например, сера реагирует с гидроксидом натрия:

S    +   6NaOH   →  Na2SO3   +   2Na2S   +   3H2O

При взаимодействии с перегретым паром сера диспропорционирует:

3S   +   2H2O (пар)   →  2H2S   +   SO2

Сероводород

Строение молекулы и физические свойства

Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода похожа на структуру воды — уголковая молекула. Но валентный угол H-S-H меньше, чем угол H-O-H в воде и составляет 92,1о.

Способы получения сероводорода

В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например, при действии соляной кислоты на сульфид железа (II):

FeS   +   2HCl   →   FeCl2   +   H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

S  +  H2  →  H2S

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например, сероводород реагирует с гидроксидом натрия:

H2S  +  2NaOH  →   Na2S   +  2H2O
H2S  +  NaOH → NaНS   +  H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

2H2S   +   O2    →   2S    +   2H2O

В избытке кислорода:

2H2S   +   3O2    2SO2  +   2H2O           

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S  +  Br2     2HBr  +   S↓

H2S  +  Cl2   →  2HCl  +   S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

H2S   +  4Cl2   +   4H2O   H2SO4  +  8HCl

Например, азотная кислота окисляет сероводород до молекулярной серы:

H2S  +  2HNO3(конц.)    S  +  2NO2  +  2H2O

При кипячении сера окисляется до серной кислоты:

H2S   +  8HNO3(конц.)   H2SO4  +  8NO2   +   4H2O

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например, оксид серы (IV) окисляет сероводород:

2H2S  +  SO2  →  3S   +  2H2O

Соединения железа (III) также окисляют сероводород:

H2S  +  2FeCl3  →  2FeCl2  +  S  +  2HCl

Бихроматы, хроматы и прочие окислители также  окисляют сероводород до молекулярной серы:

3H2S   +   K2Cr2O7   +    4H2SO4      3S    +   Cr2(SO4)3   +   K2SO4   +   7H2O

2H2S   +   4Ag  +  O2   2Ag2S  +  2H2O

Серная кислота окисляет сероводород либо до молекулярной серы:

H2S   +   H2SO4(конц.)   S   +   SO2   +   2H2O

Либо до оксида серы (IV):

H2S   +   3H2SO4(конц.)   4SO2   +  4H2O

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например, сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

H2S   +   Pb(NO3)2   →  PbS   +   2HNO3

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Сульфиды

Сульфиды  это бинарные соединения серы и металлов или некоторых неметаллов, соли сероводородной кислоты.

По растворимости в воде и кислотах сульфиды разделяют на растворимые в воде, нерастворимые в воде, но растворимые в минеральных кислотах, нерастворимые ни в воде, ни в минеральных кислотах, гидролизуемые водой.

Растворимые в воде Нерастворимые в воде, но растворимые в минеральных кислотах Нерастворимые ни в воде, ни в минеральных кислотах (только в азотной и серной конц.) Разлагаемые водой, в растворе не существуют
Сульфиды щелочных металлов и аммония Сульфиды прочих металлов, расположенных  до железа в ряду активности. Белые и цветные сульфиды (ZnS, MnS, FeS, CdS) Черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS) Сульфиды трехвалентных металлов (алюминия и хрома (III))
Реагируют с минеральными кислотами с образованием сероводорода Не реагируют с минеральными кислотами, сероводород получить напрямую нельзя

Разлагаются водой

ZnS   +   2HCl   →   ZnCl2   +   H2S

Al2S+ 6H2O → 2Al(OH)+ 3H2S

Способы получения сульфидов

1. Сульфиды получают при взаимодействии серы с металлами. При этом сера проявляет свойства окислителя.

Например, сера взаимодействует с магнием и кальцием:

S    +   Mg   →   MgS

S    +   Ca   →   CaS

Сера взаимодействует с натрием:

S    +   2Na   →  Na2S

2. Растворимые сульфиды можно получить при взаимодействии сероводорода и щелочей.

Например, гидроксида калия с сероводородом:

H2S  +  2KOH  →   K2S   +  2H2O

3. Нерастворимые сульфиды получают взаимодействием растворимых сульфидов с солями (любые сульфиды) или взаимодействием сероводорода с солями (только черные сульфиды).

Например, при взаимодействии нитрата меди и сероводорода:

Pb(NO3)2   +  Н2S    →   2НNO3   +   PbS

Еще пример: взаимодействие сульфата цинка с сульфидом натрия:

ZnSO4   +  Na2S    →   Na2SO4   +   ZnS

Химические свойства сульфидов

1. Растворимые сульфиды гидролизуются по аниону, среда водных растворов сульфидов щелочная:

K2S  + H2O  ⇄  KHS  +  KOH
S2–  +  H2O  ⇄  HS  +  OH

2. Сульфиды металлов, расположенных в ряду напряжений левее железа (включительно), растворяются в сильных минеральных кислотах.

Например, сульфид кальция растворяется в соляной кислоте:

CaS  +  2HCl →  CaCl2  +  H2S

А сульфид никеля, например, не растворяется:

NiS   +   HСl   ≠

3. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте. При этом сера окисляется либо до простого вещества, либо до сульфата.

Например, сульфид меди (II) растворяется в горячей концентрированной азотной кислоте:

CuS   +   8HNO3  →   CuSO4   +   8NO2   +  4H2O

или горячей концентрированной серной кислоте:

CuS   +   4H2SO4(конц. гор.)  →   CuSO4   +   4SO2    +    4H2O

4. Сульфиды проявляют восстановительные свойства и окисляются пероксидом водорода, хлором и другими окислителями.

Например, сульфид свинца (II) окисляется пероксидом водорода до сульфата свинца (II):

PbS + 4H2O2    →   PbSO4 + 4H2O

Еще пример: сульфид меди (II) окисляется хлором:

СuS   +   Cl2  → CuCl2   +   S

5. Сульфиды горят (обжиг сульфидов). При этом образуются оксиды металла и серы (IV).

Например, сульфид меди (II) окисляется кислородом до оксида меди (II) и оксида серы (IV):

2CuS   +   3O2  →   2CuO   +   2SO2

Аналогично сульфид хрома (III) и сульфид цинка:

2Cr2S3   +   9O2  →   2Cr2O3   +   6SO2

2ZnS    +   3O2  →   2SO2   +   ZnO

6. Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественные на ион S2−.

Сульфиды свинца, серебра и меди — черные осадки, нерастворимые в воде и минеральных кислотах:

Na2S    +   Pb(NO3)2    →   PbS↓   +   2NaNO3

Na2S    +   2AgNO3    →   Ag2S↓   +   2NaNO3

Na2S    +   Cu(NO3)2    →   CuS↓   +   2NaNO3

7. Сульфиды трехвалентных металлов (алюминия и хрома) разлагаются водой (необратимый гидролиз).

Например, сульфид алюминия разлагается до гидроксида алюминия и сероводорода:

Al2S+ 6H2O → 2Al(OH)+ 3H2S

Разложение происходит и взаимодействии солей трехвалентных металлов с сульфидами щелочных металлов.

Например, сульфид натрия реагирует с хлоридом алюминия в растворе. Но сульфид алюминия не образуется, а сразу же необратимо гидролизуется (разлагается) водой:

3Na2S + 2AlCl3 + 6H2O → 2Al(OH)+ 3H2S + 6NaCl

Оксиды серы

Оксиды серы Цвет  Фаза Характер оксида
SO2 Оксид сера (IV), сернистый газ бесцветный газ кислотный
SOОксид серы (VI), серный ангидрид бесцветный жидкость кислотный

Оксид серы (IV)

Оксид серы (IV) –  это кислотный оксид. Бесцветный газ с резким запахом, хорошо растворимый в воде.

Cпособы получения оксида серы (IV):

1. Сжигание серы на воздухе:

S    +   O2  →  SO2

2. Горение сульфидов и сероводорода:

2H2S   +   3O2  →   2SO2   +   2H2O

2CuS   +   3O2  →   2SO2   +   2CuO

3. Взаимодействие сульфитов с более сильными кислотами:

Например, сульфит натрия взаимодействует с серной кислотой:

Na2SO3    +   H2SO4    →  Na2SO4   +   SO2    +   H2O

4. Обработка концентрированной серной кислотой неактивных металлов.

Например, взаимодействие меди с концентрированной серной кислотой:

Cu    +   2H2SO4   →   CuSO4   +   SO2   +   2H2O

Химические свойства оксида серы (IV):

Оксид серы (IV) – это типичный кислотный оксид. За счет серы в степени окисления +4 проявляет свойства окислителя и восстановителя.

1. Как кислотный оксид, сернистый газ реагирует с щелочами и оксидами щелочных и щелочноземельных металлов.

Например, оксид серы (IV) реагирует с гидроксидом натрия. При этом образуется либо кислая соль (при избытке сернистого газа), либо средняя соль (при избытке щелочи):

SO2   +   2NaOH(изб)   →   Na2SO3   +   H2O

SO2(изб)   +   NaOH  → NaHSO3

Еще пример: оксид серы (IV) реагирует с основным оксидом натрия:

SO2  +  Na2O   →  Na2SO3 

2. При взаимодействии с водой SO2 образует сернистую кислоту. Реакция обратимая, т.к. сернистая кислота в водном растворе в значительной степени распадается на оксид и воду.

SO2  +   H2O   ↔  H2SO3  

3. Наиболее ярко выражены восстановительные свойства SO2. При взаимодействии с окислителями степень окисления серы повышается.

Например, оксид серы окисляется кислородом на катализаторе в жестких условиях. Реакция также сильно обратимая:

2SO2    +   O2    ↔  2SO3

Сернистый ангидрид обесцвечивает бромную воду:

SO2   +   Br2  +   2H2O   →  H2SO4  +  2HBr

Азотная кислота очень легко окисляет сернистый газ:

SO2   +   2HNO3   →  H2SO4   +   2NO2

Озон также окисляет оксид серы (IV):

SO2    +   O3  →   SO3  +  O2

Качественная реакция на сернистый газ и на сульфит-ион – обесцвечивание раствора перманганата калия:

5SO2   +   2H2O   +   2KMnO4  → 2H2SO4   +   2MnSO4   +   K2SO4    

Оксид свинца (IV) также окисляет сернистый газ:

SO2   +   PbO2  → PbSO4

4. В присутствии сильных восстановителей SO2  способен проявлять окислительные свойства.

Например, при взаимодействии с сероводородом сернистый газ восстанавливается до молекулярной серы:

SO2    +   2Н2S    →    3S  +  2H2O

Оксид серы (IV) окисляет угарный газ и углерод:

SO2    +   2CO    →   2СО2    +    S 

SO2    +   С  →   S   +  СO2

Оксид серы (VI)

Оксид серы (VI) –  это кислотный оксид. При обычных условиях – бесцветная ядовитая жидкость. На воздухе «дымит», сильно поглощает влагу.

Способы получения. Оксид серы (VI) получают каталитическим окислением оксида серы (IV) кислородом.

2SO2    +   O2    ↔   2SO3

Сернистый газ окисляют и другие окислители, например, озон или оксид азота (IV):

SO2    +   O3  →   SO3   +   O2

SO +   NO2  →   SO3   +   NO

Еще один способ получения оксида серы (VI) – разложение сульфата железа (III):

Fe2(SO4)3    →   Fe2O3   +   3SO3

Химические свойства оксида серы (VI)

1. Оксид серы (VI) активно поглощает влагу и реагирует с водой с образованием серной кислоты:

SO3  +   H2O  →  H2SO4 

2. Серный ангидрид является типичным кислотным оксидом, взаимодействует с щелочами и основными оксидами.

Например, оксид серы (VI) взаимодействует с гидроксидом натрия. При этом образуются средние или кислые соли:

SO3  +  2NaOH(избыток)  →   Na2SO4   +   H2O

SO3(избыток)   +   NaOH → NaHSO4

Еще пример: оксид серы (VI) взаимодействует с оксидом оксидом (при сплавлении):

SO3  +  MgO   →  MgSO4 

3. Серный ангидрид – очень сильный окислитель, так как сера в нем имеет максимальную степень окисления (+6). Он энергично взаимодействует с такими восстановителями, как иодид калия, сероводород или фосфор:

SO3    +   2KI   →   I2    +   K2SO3

3SO3   +   H2S   →   4SO2     +    H2O

5SO3    +    2P   →    P2O5    +     5SO2

4. Растворяется в концентрированной серной кислоте, образуя олеум – раствор SO3 в H2SO4.

 Серная кислота

Строение молекулы и физические свойства

Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.

Растворение серной кислоты в воде сопровождается выделением значительного количества теплоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в воду небольшими порциями при постоянном перемешивании.

Валентность серы в серной кислоте равна VI.

Способы получения

1. Серную кислоту в промышленности производят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

Аппарат Назначение и уравненяи реакций
Печь для обжига 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800оС

Циклон  Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
Электрофильтр  Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башня  Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
Теплообменник  Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат  2SO2 + O2 ↔ 2SO3 + Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  •  температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500оС. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  •  давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башня  Получение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

nSO3 + H2SO4  →  H2SO4·nSO3

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Химические свойства

Серная кислота – это сильная двухосновная кислота.

1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:

H2SO4  ⇄  H+ + HSO4

По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:

HSO4  ⇄  H+ + SO42–

2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами  и амфотерными гидроксидами

Например, серная кислота взаимодействует с оксидом магния:

H2SO4    +   MgO   →   MgSO4   +   H2O

Еще пример: при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:

H2SO4    +   КОН     →     KHSО4  +   H2O

H2SO4    +   2КОН      →     К24  +   2H2O

Серная кислота взаимодействует с амфотерным гидроксидом алюминия:

3H2SO4     +    2Al(OH)3    →   Al2(SO4)3    +   6H2O

3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.).  Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).

Например, серная кислота взаимодействует с гидрокарбонатом натрия:

Н2SO4   +   2NaHCO3   →   Na2SO4   +   CO2   +  H2O

Или с силикатом натрия:

H2SO4    +   Na2SiO3    →  Na2SO4  +   H2SiO3

Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:

NaNO3 (тв.)   +   H2SO4   →   NaHSO4   +   HNO3

Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например, хлорида натрия:

NaCl(тв.)   +   H2SO4   →   NaHSO4   +   HCl

4. Также серная кислота вступает в обменные реакции с солями.

Например, серная кислота взаимодействует с хлоридом бария:

H2SO4  + BaCl2  →  BaSO4   +   2HCl

5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.

Например, серная кислота реагирует с железом. При этом образуется сульфат железа (II):

H2SO4(разб.)    +   Fe   →  FeSO4   +   H2

Серная кислота взаимодействует с аммиаком с образованием солей аммония:

H2SO4   +   NH3    →    NH4HSO4

Концентрированная серная кислота является сильным окислителем. При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы  S, или сероводорода Н2S.

Железо Fe, алюминий  Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.

6H2SO4(конц.)    +   2Fe   →   Fe2(SO4)3   +   3SO2   +  6H2O

6H2SO4(конц.)    +   2Al   →   Al2(SO4)3   +   3SO2   +  6H2O

При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:

2H2SO4(конц.)   +   Cu     →  CuSO4   +   SO2 ↑ +   2H2O

2H2SO4(конц.)   +   Hg     →  HgSO4   +   SO2 ↑ +   2H2O

2H2SO4(конц.)   +   2Ag     →  Ag2SO4   +   SO2↑+   2H2O

При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:

3Mg   +   4H2SO4   →   3MgSO4   +   S   +  4H2O

При взаимодействии с щелочными металлами и цинком  концентрированная серная кислота восстанавливается до сероводорода:

5H2SO4(конц.)   +  4Zn     →    4ZnSO4   +   H2S↑   +   4H2O

6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

BaCl2 + Na2SO4      BaSO4  + 2NaCl

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе  (качественная реакция на сульфат-ион) можно посмотреть здесь.

7. Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.

Например, концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):

5H2SO4(конц.)   +    2P     2H3PO4   +   5SO2↑  +   2H2O

2H2SO4(конц.)   +    С     СО2↑   +   2SO2↑  +   2H2O

2H2SO4(конц.)   +    S     3SO2 ↑  +   2H2O

Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:

3H2SO4(конц.)   +   2KBr    Br2↓   +  SO2↑   +   2KHSO4    +  2H2O

5H2SO4(конц.)   +   8KI      4I2↓    +   H2S↑   +   K2SO4   +  4H2O

H2SO4(конц.)   +   3H2S  4S↓  +  4H2O

Сернистая кислота

Сернистая кислота H2SO3 это двухосновная кислородсодержащая кислота. При нормальных условиях — неустойчивое вещество, которое распадается на диоксид серы и воду.

Валентность серы в сернистой кислоте равна IV, а степень окисления +4.

Химические свойства

1. Сернистая кислота H2SO3  в водном растворе – двухосновная кислота средней силы. Частично диссоциирует по двум ступеням:

H2SO3     ↔  HSO3   +  H+

HSO3    ↔  SO32–   +  H+

2. Сернистая кислота самопроизвольно распадается на диоксид серы и воду:

H2SO3     ↔   SO2   +  H2O

Соли серной кислоты – сульфаты

Серная кислота образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

1. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

BaCl2 + Na2SO4      BaSO4  + 2NaCl

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе  (качественная реакция на сульфат-ион) можно посмотреть здесь.

2. Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо (II) Fe  подвергаются термическому разложению на оксид металла, диоксид серы SO2 и кислород O2;

2CuSO4     2CuO   +   SO2   +   O2     (SO3)

2Al2(SO4)3      2Al2O3   +   6SO2   +   3O2

2ZnSO4     2ZnO   +   SO2   +   O2

2Cr2(SO4)3       2Cr2O3   +   6SO2   +   3O2

При разложении сульфата железа (II) в FeSO4 Fe (II)  окисляется до Fe (III)

4FeSO4      2Fe2O3   +   4SO2   +   O2  

Сульфаты самых тяжелых металлов разлагаются до металла.

3. За счет серы со степенью окисления +6 сульфаты проявляют окислительные свойства и могут взаимодействовать с восстановителями.

Например, сульфат кальция при сплавлении реагирует с углеродом с образованием сульфида кальция и угарного газа:

CaSO4  +  4C   →   CaS   +  4CO

4. Многие средние сульфаты образуют устойчивые кристаллогидраты:

Na2SO4 ∙ 10H2O − глауберова соль

CaSO4 ∙ 2H2O − гипс

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

Сера — элемент VIa группы 3 периода периодической таблицы Д.И. Менделеева. Относится к
группе халькогенов — элементов VIa группы.

Сера — S — простое вещество имеет светло-желтый цвет. Использовалась еще до нашей эры в составе священных курений при
религиозных обрядах.

Сера

Основное и возбужденное состояние атома серы

Электроны s- и p-подуровня способны распариваться и переходить на d-подуровень. Как и всегда, количество валентных
электронов отражает количество возможных связей у атома.

В разных электронных конфигурациях сера способна принимать валентности: II, IV и VI.

Основное и возбужденное состояние атома серы

Природные соединения
  • FeS2 — пирит, колчедан
  • ZnS — цинковая обманка
  • PbS — свинцовый блеск (галенит), Sb2S3 — сурьмяный блеск, Bi2S3 — висмутовый блеск
  • HgS — киноварь
  • CuFeS2 — халькопирит
  • Cu2S — халькозин
  • CuS — ковеллин
  • BaSO4 — барит, тяжелый шпат
  • CaSO4 — гипс

В местах вулканической активности встречаются залежи самородной серы.

Природные соединения серы

Получение

В промышленности серу получают из природного газа, который содержит газообразные соединения серы: H2S,
SO2.

H2S + O2 = S + H2O (недостаток кислорода)

SO2 + C = (t) S + CO2

Серу можно получить разложением пирита

FeS2 = (t) FeS + S

В лабораторных условиях серу можно получить слив растворы двух кислот: серной и сероводородной.

H2S + H2SO4 = S + H2O (здесь может также выделяться SO2)

Химические свойства

  • Реакции с неметаллами
  • На воздухе сера окисляется, образуя сернистый газ — SO2. Реагирует со многими неметаллами, без нагревания —
    только со фтором.

    S + O2 = (t) SO2

    S + F2 = SF6

    S + Cl2 = (t) SCl2

    S + C = (t) CS2

    Горение серы в кислороде

  • Реакции с металлами
  • При нагревании сера бурно взаимодействует со многими металлами с образованием сульфидов.

    K + S = (t) K2S

    Al + S = (t) Al2S3

    Fe + S = (t) FeS

  • Реакции с кислотами
  • При взаимодействии с концентрированными кислотами (при длительном нагревании) сера окисляется до сернистого газа или серной кислоты.

    S + H2SO4 = (t) SO2 + H2O

    S + HNO3 = (t) H2SO4 + NO2 + H2O

  • Реакции с щелочами
  • Сера вступает в реакции диспропорционирования с щелочами.

    S + KOH = (t) K2S + K2SO3 + H2O

  • Реакции с солями
  • Сера вступает в реакции с солями. Например, в кипящем водном растворе сера может реагировать с сульфитами с образованием тиосульфатов.

    Na2SO3 + S → (t) Na2S2O3

    Реакция серы и щелочи

Сероводород — H2S

Бесцветный газ с характерным запахом тухлых яиц. Огнеопасен. Используется в химической промышленности и в лечебных целях (сероводородные
ванны).

Сероводород

Получение

Сероводород получают в результате реакции сульфида алюминия с водой, а также взаимодействия разбавленных кислот с сульфидами.

Al2S3 + H2O = (t) Al(OH)3↓ + H2S↑

FeS + HCl = FeCl2 + H2S↑

Сульфид железа и соляная кислота

Химические свойства

  • Кислотные свойства
  • Сероводород плохо диссоциирует в воде, является слабой кислотой. Реагирует с основными оксидами, основаниями с образованием средних и кислых солей (зависит
    от соотношения основания и кислоты).

    MgO + H2S = (t) MgS + H2O

    KOH + H2S = KHS + H2O (гидросульфид калия, избыток кислоты)

    2KOH + H2S = K2S + 2H2O

    Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.

    Ca + H2S = (t) CaS + H2

  • Восстановительные свойства
  • Сероводород — сильный восстановитель (сера в минимальной степени окисления S2-). Горит в кислороде синим пламенем, реагирует с кислотами.

    H2S + O2 = H2O + S (недостаток кислорода)

    H2S + O2 = H2O + SO2 (избыток кислорода)

    H2S + HClO3 = H2SO4 + HCl

    Горение сероводорода

  • Качественная реакция
  • Качественной реакцией на сероводород является реакция с солями свинца, в ходе которой образуется сульфид свинца.

    H2S + Pb(NO3)2 = PbS↓ + HNO3

Оксид серы — SO2

Сернистый газ — SO2 — при нормальных условиях бесцветный газ с характерным резким запахом (запах загорающейся
спички).

Сернистый газ

Получение

В промышленных условиях сернистый газ получают обжигом пирита.

FeS2 + O2 = (t) FeO + SO2

В лаборатории SO2 получают реакцией сильных кислот на сульфиты. В ходе подобных реакций образуется сернистая кислота,
распадающаяся на сернистый газ и воду.

K2SO3 + H2SO4 = (t) K2SO4 + H2O + SO2

Сернистый газ получается также в ходе реакций малоактивных металлов с серной кислотой.

Cu + H2SO4(конц.) = (t) CuSO4 + SO2 + H2O

  • Кислотные свойства
  • С основными оксидами, основаниями образует соли сернистой кислоты — сульфиты.

    K2O + SO2 = K2SO3

    NaOH + SO2 = NaHSO3

    2NaOH + SO2 = Na2SO3 + H2O

    Сульфит натрия

  • Восстановительные свойства
  • Химически сернистый газ очень активен. Его восстановительные свойства продемонстрированы в реакциях ниже.

    Fe2(SO4)3 + SO2 + H2O = FeSO4 + H2SO4

    SO2 + O2 = (t, кат. — Pt) SO3

  • Как окислитель
  • В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства (понижать степень окисления).

    CO + SO2 = CO2 + S

    H2S + SO2 = S + H2O

Сернистая кислота

Слабая, нестойкая двухосновная кислота. Существует лишь в разбавленных растворах.

Получение

SO2 + H2O ⇄ H2SO3

Химические свойства

  • Диссоциация
  • Диссоциирует в водном растворе ступенчато.

    H2SO3 = H+ + HSO3

    HSO3 = H+ + SO32-

  • Кислотные свойства
  • В реакциях с основными оксидами, основаниями образует соли — сульфиты и гидросульфиты.

    CaO + H2SO3 = CaSO3 + H2O

    H2SO3 + 2KOH = 2H2O + K2SO3 (соотношение кислота — основание, 1:2)

    H2SO3 + KOH = H2O + KHSO3 (соотношение кислота — основание, 1:1)

  • Окислительные свойства
  • С сильными восстановителями сернистая кислота принимает роль окислителя.

    H2SO3 + H2S = S↓ + H 2O

  • Восстановительные свойства
  • Как и сернистый газ, сернистая кислота и ее соли обладают выраженными восстановительными свойствами.

    H2SO3 + Br2 = H2SO4 + HBr

    Получение бромоводорода

Оксид серы VI — SO3

Является высшим оксидом серы. Бесцветная летучая жидкость с удушающим запахом. Ядовит.

Получение

В промышленности данный оксид получают, окисляя SO2 кислородом при нагревании и присутствии катализатора
(оксид ванадия — Pr, V2O5).

SO2 + O2 = (кат) SO3

В лабораторных условиях разложением солей серной кислоты — сульфатов.

Fe2(SO4)3 = (t) SO3 + Fe2O3

Химические свойства

  • Кислотные свойства
  • Является кислотным оксидом, соответствует серной кислоте. При реакции с основными оксидами и основаниями образует ее соли — сульфаты и
    гидросульфаты. Реагирует с водой с образованием серной кислоты.

    SO3 + 2KOH = K2SO4 + 2H2O (основание в избытке — средняя соль)

    SO3 + KOH = KHSO4 + H2O (кислотный оксид в избытке — кислая соль)

    SO3 + Ca(OH)2 = CaSO4 + H2O

    Сульфат кальция

    SO3 + Li2O = Li2SO4

    SO3 + H2O = H2SO4

  • Окислительные свойства
  • SO3 — сильный окислитель. Чаще всего восстанавливается до SO2.

    SO3 + P = SO2 + P2O5

    SO3 + H2S = SO2 + H2O

    SO3 + KI = SO2 + I2 + K2SO4

    Выделение йода

    © Беллевич Юрий Сергеевич 2018-2023

    Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
    (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
    без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
    обратитесь, пожалуйста, к Беллевичу Юрию.

2. Химические свойства соединений серы с точки зрения изменения степеней окисления

В данном разделе реакции выходят за рамки С части ЕГЭ, но могут встретиться в тестовой части экзамена.

Все основные правила составления ОВР для С части, представлены в другом разделе.

Потренироваться составлять реакции онлайн (в рамках ЕГЭ) можно тут.

Правило 2.1. Соединения S+4 преимущественно проявляют восстановительные свойства при взаимодействии с большинством окислителей, т.е. довольно легко окисляются до S+6 :

С такими окислителями как кислород, пероксид водорода и оксиды азота:

2SO2 + O2 → 2SO3 (t, kt = V2O5)

SO2 + H2O2 → H2SO4

SO2 + NO2 → SO3 + NO

С солями Fe+3 и Cu+2:

SO2 + 2FeCl3 + 2H2O → 2FeCl2 + H2SO4 + 2HCl

SO2 + 2CuCl2 + 2H2O → 2CuCl + H2SO4+ 2HCl

С растворами галогенов (кроме F2):

SO2 + Cl2 + H2O → H2SO4 + 2HCl

SO2 + Br2 + H2O → H2SO4 + 2HBr

SO2 + I2 + H2O → H2SO4 + 2HI

С раствором перманганата калия в различных средах:

5SO2 + 2KMnO4 +2H2O → 2MnSO4 + K2SO4 + 2H2SO4

SO2 + 2KMnO4 + 4KOH → 2K2MnO4 +K2SO4 + 2H2O

Примеры реакций окисления сульфита натрия до сульфата различными окислителями:

Na2SO3 + Cl2 + H2O → Na2SO4 + 2HCl

Na2SO3 + H2O2 → Na2SO4 + H2O

Na2SO3 + H2SO4(к) → Na2SO4 + SO2 + H2O

5Na2SO3 + 2KMnO4 + 3H2SO4 → 5Na2SO4 + 2MnSO4 + K2SO4 + 3H2O

3Na2SO3 + 2KMnO4 + H2O → 2Na2SO4 + 2MnO2 + 2KOH

Na2SO3 + 2KMnO4 + 2KOH → Na2SO4 + 2K2MnO4 + H2O

3Na2SO3 + K2Cr2O7 + 4H2SO4 → 3Na2SO4 + Cr2(SO4)3 + K2SO4 + 4H2O

3Na2SO3 + K2Cr2O7 + 4H2O → 3Na2SO4 + 2Cr(OH)3 + 2KOH

Только очень сильными восстановителями S+4 восстанавливается до S0:

SO2 + 2H2S → 3S + 2H2O

SO2 + 2C → S + 2CO2

SO2 + 4HI → S + 2I2 + 2H2O

SO2 + 2CO → S + 2CO2 (Al2O3, 500°C)

Серная кислота (конц.)

Правило 2.2.

  • При взаимодействии H2SO4(к) со слабыми восстановителями (неметаллами: S, P, C, средне- и малоактивными металлами: Fe, Cu, Ag, сложными веществами: H2S, сульфидами металлов, солями Fe2+ и т.д.) образуются SO2 и H2O.
  • При взаимодействии H2SO4(к) с сильными восстановителями (активными металлами: Li-Zn, некоторыми сложными веществами: HI, KI) образуются H2S или S.

4Zn + 5H2SO4(конц.) → 4ZnSO4 + H2S + 4H2O (возможно образование SO2 и S, так как Zn — хороший восстановитель)

2Fe + 6H2SO4(конц.) → Fe2(SO4)3 + 3SO2 + 6H2O (только при нагревании)

Al, Cr, Fe пассивируются холодной концентрированной серной кислотой (т.е. покрываются оксидной пленкой, препятствующей дальнейшей реакции). Реакции идут только при нагревании.

C + H2SO4(конц.) → CO2 + 2SO2 + 2H2O (t)

S + H2SO4(конц.) → 3SO2 + 2H2O (t)

2P + 5H2SO4(конц.) → 2H3PO4 + 5SO2 + 2H2O (t)

Из галогеноводородов концентрированная серная кислота может окислить только ионы Br и I :

HF + H2SO4(конц.) → реакция не идет

HCl + H2SO4(конц.) → реакция не идет

2HBr + H2SO4(конц.) → Br2 + SO2 + 2H2O

8HI + H2SO4(конц.) → 4I2 + H2S + 4H2O

2CuI + 4H2SO4(конц.) → 2CuSO4 + I2 + 2SO2 + 4H2O

2CrCl2 + 4H2SO4(конц.) → Cr2(SO4)3 + SO2 + 4HCl + 2H2O

Соли меди восстанавливают кислоту до SO2, тогда как соли активных металлов до H2S:

2CuI + 4H2SO4(конц.) → 2CuSO4 + I2 + 2SO2 + 4H2O

8KI + 5H2SO4(конц.) → 4K2SO4 + 4I2 + H2S + 4H2O

Примеры реакций с солями (окисляем анион):

4H2SO4(конц., гор.) + CuS → CuSO4 + 4SO2 + 4H2O

Примеры реакций с солями (окисляем катион):

2H2SO4(к) + 2FeSO4 → Fe2(SO4)3 + SO2 + 2H2O

4H2SO4 + 2CrCl2 → Cr2(SO4)3 + SO2 + 4HCl + 2H2O

Правило 2.3. Окисление соединений S–2 до S+6 происходит под действием следующих окислителей: H2O2, Cl2(водн.), HNO3(конц.):

H2S + Cl2 + 4H2O → H2SO4 + 8HCl

PbS + 4H2O2 → PbSO4 + 4H2O (черный сульфид свинца превращается в белый сульфат)

H2S + 8HNO3(конц.) →  H2SO4 + 8NO2 + 4H2O (образование S будет считаться ошибкой!)

CuS + 8HNO3(конц., гор.) → CuSO4 + 8NO2 + 4H2O

Na2S + 8HNO3(конц, гор.) → Na2SO4 + 8NO2 + 4H2O

С H2SO4(к) при нагревании сероводород и сульфиды реагируют с образованием SO2, аналогично реакции кислоты с серой:

S + H2SO4(конц.) → 3SO2 + 2H2O (t)

H2S + 3H2SO4(конц.) → 4SO2 + 4H2O (t)

CuS + 4H2SO4(конц., гор.) → CuSO4 + 4SO2 + 4H2O

K2S + 4H2SO4(конц.) → K2SO4 + 4SO2 + 4H2O
В этой реакции сульфид-ион окисляется до SO2: S–2 -6e → S+4.
Часть сульфат-ионов восстанавливается также до SO2 и часть остается для образования соли K2SO4.

Без нагревания возможна реакция:

K2S + 2H2SO4 → S + SO2 + K2SO4 + 2H2O

Источник: лекция на youtube.com от разработчиков экзамена «Методические рекомендации по подготовке ЕГЭ по химии», время 49:52.

Правило 2.4. Сера в степени окисления -2 может быть окислена до простого вещества галогенами (Cl2, Br2, I2) или солями Fe+3, Mn+7 и Cr+6 :

1. Реакции с Cl2, Br2 и I2:

H2S + Cl2 (газ) → S + 2HCl

H2S + Br2 → S + 2HBr

H2S + I2 → S + 2HI

2. Реакции с солями Fe+3, Mn+7 и Cr+6:

3H2S + 2FeCl3 → S + 2FeCl2 + 2HCl

5H2S + 2KMnO4 + 3H2SO4 → 5S + 2MnSO4 + K2SO4 + 8H2O

3H2S + 2KMnO4 → 3S + 2MnO2 + 2KOH + 2H2O

3H2S + 2KMnO4 + 2CO2 → 3S + 2MnO2 + 2KHCO3 + 2H2O

3H2S + K2Cr2O7 + 4H2SO4 → 3S + Cr2(SO4)3 + K2SO4 + 7H2O

3H2S + 2K2CrO4 + 2H2O → 3S + 2Cr(OH)3 + 4KOH

3H2S + 2HMnO → 3S + 2MnO2+ 4H2O

3K2S + 2KMnO4 + 4H2O → 3S + 2MnO2 + 8KOH

3H2S + Na2Cr2O7 + 4H2SO4 → 3S + Cr2(SO4)3 + Na2SO4 + 7H2O

3Na2S + K2Cr2O7 + 7H2SO4 → 3S + Cr2(SO4)3 + K2SO4 + 3Na2SO4 + 7H2O

3(NH4)2S + K2Cr2O7 + 7H2SO4 → 3S + Cr2(SO4)3 + K2SO4 + 3(NH4)2SO4 + 7H2O.

Согласно разработчикам экзамена (Вебинар «Методические рекомендации по подготовке к ЕГЭ по химии от разработчиков«, время 33:41, ссылка естьв разделе «О проекте»), окисление сульфид-ионов протекает с образованием S0, но образование сульфат-иона (в реакциях с такими сильными окислителями, как KMnO4, K2Cr2O7) также будет засчитано как правильный ответ.

СЕРА

Сера является шестнадцатым по химической распространенности элементом в земной коре. Встречается в свободном (самородном) состоянии и связанном виде.

Важнейшие природные соединения серы: FeS2 — железный колчедан или пирит, ZnS — цинковая обманка или сфалерит (вюрцит), PbS — свинцовый блеск или галенит, HgS — киноварь, Sb2S3 — антимонит. Кроме того, сера присутствует в нефти, природном угле, природных газах и сланцах. Сера — шестой элемент по содержанию в природных водах, встречается в основном в виде сульфат-иона и обуславливает «постоянную» жёсткость пресной воды. Жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах.

Сера (англ. Sulfur, фр. Soufre, нем. Schwefel) в самородном состоянии, а также в виде сернистых соединений известна с древнейших времен. С запахом горящей серы, удушающим действием сернистого газа и отвратительным запахом сероводорода человек познакомился, вероятно, еще в доисторические времена. Именно из-за этих свойств сера использовалась жрецами в составе священных курений при религиозных обрядах. Сера считалась произведением сверхчеловеческих существ из мира духов или подземных богов. Сера применялась в составе различных горючих смесей для военных целей. Уже у Гомера описаны «сернистые испарения», смертельное действие выделений горящей серы. Сера, вероятно, входила в состав «греческого огня», наводившего ужас на противников. Около VIII в. китайцы стали использовать ее в пиротехнических смесях, в частности, в смеси типа пороха. Горючесть серы, лёгкость, с которой она соединяется с металлами с образованием сульфидов (например, на поверхности кусков металла), объясняют то, что ее считали «принципом горючести» и обязательной составной частью металлических руд. Пресвитер Теофил (XII в.) описывает способ окислительного обжига сульфидной медной руды, известный, вероятно, еще в древнем Египте. В период арабской алхимии возникла ртутно-серная теория состава металлов, согласно которой сера почиталась обязательной составной частью (отцом) всех металлов. В дальнейшем она стала одним из трех принципов алхимиков, а позднее «принцип горючести» явился основой теории флогистона. Элементарную природу серы установил Лавуазье в своих опытах по сжиганию. С введением пороха в Европе началось развитие добычи природной серы, а также разработка способа получения ее из пиритов; последний был распространен в древней Руси. Впервые в литературе он описан у Агриколы. Таким образом точно происхождение серы не установлено, но как сказано выше этот элемент использовался до Рождества Христова, а значит знаком людям с давних времен.

Происхождение латинского sulfur неизвестно. Русское название элемента обычно производят от санскритского «сира» — светло-желтый. Возможно родство «серы» с древнееврейским «серафим» — мн. числом от «сераф» — букв. сгорающий, а сера хорошо горит. На древнерусском и старославянском «сера» — вообще горючее вещество, в том числе и жир.

Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы — это порода с вкраплениями чистой серы. Когда образовались эти вкрапления — одновременно с сопутствующими породами или позже? От ответа на этот вопрос зависит направление поисковых и разведочных работ. Но, несмотря на тысячелетия общения с серой, человечество до сих пор не имеет однозначного ответа. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.

Физические свойства

Твердое кристаллическое вещество желтого цвета, нерастворима в воде, водой не смачивается (плавает на поверхности), tкип = 445С

Аллотропия

1)     ромбическая (α — сера) — S8

t0 пл. = 1130C; ρ = 2,07 г/см3

Наиболее устойчивая модификация.

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch2_5-1/img002.gif

2)     моноклинная (β — сера) — темно-желтые иглы

t0пл. = 1190C; ρ = 1,96 г/см3

Устойчивая при температуре более 960С; при обычных условиях превращается в ромбическую.

3)     пластическая — коричневая резиноподобная (аморфная) масса

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch2_5-1/img003.gif

Неустойчива, при затвердевании превращается в ромбическую.

Строение атома

Размещение электронов по уровням и подуровням

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch2_5-1/img004.gif

1s22p22p63s23p4

Размещение электронов по
орбиталям (последний слой)

Степень
окисления

Валентность

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch2_5-1/img006.gif

+2, -2

II

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch2_5-1/img008.gif

+4

IV

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch2_5-1/img010.gif

+6

VI

Получение

1.  Промышленный метод — выплавление из руды с помощью водяного пара.

2.  Неполное окисление сероводорода (при недостатке кислорода).

2H2S + O2 = 2S + 2H2O

3.      Реакция Вакенродера

2H2S + SO2 = 3S + 2H2O

Химические свойства

Окислительные свойства серы
(S
0 + 2ē = S-2)

1)      Сера реагирует со щелочными металлами без нагревания:

2Na + S = Na2S

      c остальными металлами (кроме Au, Pt) — при повышенной t0:

2Al + 3S  =Al2S3

Zn + S  = ZnS

2)     С некоторыми неметаллами сера образует бинарные соединения:

H2 + S = H2S

2P + 3S = P2S3

C + 2S = CS2

Восстановительные свойства сера проявляет в реакциях с сильными окислителями:
(S — 2ē = S
+2; S — 4ē = S+4; S — 6ē = S+6)

3)     c кислородом:

S + O2 = S+4O2

4)     c галогенами (кроме йода):

S + Cl2 = S+2Cl2

5)     c кислотами — окислителями:

S + 2H2SO4(конц) = 3S+4O2 + 2H2O

S + 6HNO3(конц) = H2S+6O4 + 6NO2 + 2H2O

Реакции диспропорционирования:

6)                                                                           

3S0 + 6KOH = K2S+4O3 + 2K2S-2 + 3H2O

7)     сера растворяется в концентрированном растворе сульфита натрия:

S0 + Na2S+4O3 = Na2S2O3 тиосульфат натрия

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch2_5-1/img011.gif

Применение

Вулканизация каучука, получение эбонита, производство спичек, пороха, в борьбе с вредителями сельского хозяйства, для медицинских целей (серные мази для лечения кожных заболеваний), для получения серной кислоты и т.д.

СЕРОВОДОРОД

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch2_5-1/img012.gif

Физические свойства

Газ, бесцветный, с запахом тухлых яиц, ядовит, растворим в воде (в 1V H2O растворяется 3V H2S при н.у.); t0пл. = -860C; t0кип. = -600С.

Получение

1)      

H2 + S  = H2S

2)      

FeS + 2HCl = FeCl2 + H2S

Химические свойства

1)     Раствор H2S в воде – слабая двухосновная кислота:

H2S = H+ + HS 

HS= H+ + S2-

K1 = ([H+] • [HS]) / [H2S] = 1 • 10-7

K2 = ([H+] • [S2-]) / [HS] = 1,3 • 10-14

Сероводородная кислота образует два ряда солей — средние (сульфиды) и кислые (гидросульфиды).

2)     Взаимодействует с основаниями:

H2S + 2NaOH = Na2S + 2H2O

3)     H2S проявляет очень сильные восстановительные свойства:

H2S-2 + Br2 = S0 + 2HBr

H2S-2 + 2FeCl3 = 2FeCl2 + S0 + 2HCl

H2S-2 + 4Cl2 + 4H2O = H2S+6O4 + 8HCl

3H2S-2 + 8HNO3(конц) = 3H2S+6O4 + 8NO + 4H2O

H2S-2 + H2S+6O4(конц) = S0 + S+4O2 + 2H2O

(при нагревании реакция идет по — иному:

H2S-2 + 3H2S+6O4(конц)  =  4S+4O2 + 4H2O)

4)     Сероводород окисляется:

при недостатке O2

2H2S-2 + O2 = 2S0 + 2H2O

при избытке O2

2H2S-2 + 3O2 = 2S+4O2 + 2H2O

5)     Серебро при контакте с сероводородом чернеет:

4Ag + 2H2S + O2 = 2Ag2S + 2H2O

6)     Качественная реакция на сероводород и растворимые сульфиды — образование темно-коричневого (почти черного) осадка PbS:

H2S + Pb(NO3)2 = PbS↓ + 2HNO3

Na2S + Pb(NO3)2 = PbS↓ + 2NaNO3

Pb2+ + S2- = PbS↓

Одной из основных причин потемнения художественных картин старых мастеров было использование свинцовых белил, которые за несколько веков, взаимодействуя со следами сероводорода в воздухе (образуются в небольших количествах при гниении белков; в атмосфере промышленных регионов и др.) превращаются в PbS.

7)     Реставрация:

PbS + 4H2O2 =  PbSO4(белый) + 4H2O

Сульфиды

Получение

1)     Многие сульфиды получают нагреванием металла с серой:

Hg + S = HgS

2)     Растворимые сульфиды получают действием сероводорода  на щелочи:

H2S + 2KOH = K2S + 2H2O

3)     Нерастворимые сульфиды получают обменными реакциями:

CdCl2 + Na2S = 2NaCl + CdS↓

Pb(NO3)2 + Na2S = 2NaNO3 + PbS↓

ZnSO4 + Na2S = Na2SO4 + ZnS↓

MnSO4 + Na2S = Na2SO4 + MnS↓

2SbCl3 + 3Na2S = 6NaCl + Sb2S3

SnCl2 + Na2S = 2NaCl + SnS↓

Химические свойства

1)     Растворимые сульфиды сильно гидролизованы, вследствие чего их водные растворы имеют щелочную реакцию:

K2S + H2O = KHS + KOH

S2- + H2O = HS + OH

2)     Сульфиды металлов, стоящих в ряду напряжений левее железа (включительно), растворимы в сильных кислотах:

ZnS + H2SO4 = ZnSO4 + H2S

HgS + H2SO4 ≠

Нерастворимые сульфиды можно перевести в растворимое состояние действием концентрированной HNO3:

FeS2 + 8HNO3 = Fe(NO3)3 + 2H2SO4 + 5NO + 2H2O

3)     Водорастворимые сульфиды растворяют серу с образованием полисульфидов:

Na2S + nS = Na2Sn+1 (1 < n < 5)

Полисульфиды при окислении превращаются в тиосульфаты, например:

2Na2S2 + 3O2 = 2Na2S2O3

На различной растворимости сульфидов и различной окраске многих из них основан качественный анализ катионов.

ОКСИДЫ СЕРЫ

Оксид серы IV

SO(сернистый ангидрид; сернистый газ)

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch2_5-1/img013.gif

Физические свойства

Бесцветный газ с резким запахом; хорошо растворим в воде (в 1V H2O растворяется 40V SO2 при н.у.); t0пл. = -75,50C; t0кип. = -100С.

Обесцвечивает многие красители, убивает микроорганизмы.

Получение

1)     При сжигании серы в кислороде:

S + O2 = SO2

2)     Окислением сульфидов:

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

3)     Обработкой солей сернистой кислоты минеральными кислотами:

Na2SO3 + 2HCl = 2NaCl + SO2 + H2O

4)     При окислении металлов концентрированной серной кислотой:

Cu + 2H2SO4(конц) = CuSO4 + SO2 + 2H2O

Химические свойства

1)     Сернистый ангидрид — кислотный оксид. При растворении в воде образуется слабая и неустойчивая сернистая кислота H2SO3 (существует только в водном растворе)

SO2 + H2O  ↔  H2SO3

 H2SO3↔H+ + HSO3 

H2SO3↔2H+ + SO32-

K1 = ([H+] • [HSO3]) / [H2SO3] = 1,6 • 10-2

K2 = ([H+] • [SO32-]) / [HSO3] = 1,3 • 10-7

H2SO3 образует два ряда солей — средние (сульфиты) и кислые (бисульфиты, гидросульфиты).

Ba(OH)2 + SO2 = BaSO3↓(сульфит бария) + H2O

Ba(OH)2 + 2SO2 = Ba(HSO3)2(гидросульфит бария)

2)     Реакции окисления  (S+4 – 2ē = S+6)

SO2 + Br2 + 2H2O = H2SO4 + 2HBr

5SO2 + 2KMnO4 + 2H2O = K2SO4 + 2MnSO4 + 2H2SO4

Водные растворы сульфитов щелочных металлов окисляются на воздухе:

2Na2SO3 + O2 = 2Na2SO4; 2SO32- + O2 = 2SO42-

3)     Реакции восстановления (S+4 + 4ē = S0)

SO2 + С  =  S + СO2

SO2 + 2H2S = 3S + 2H2O

Оксид серы VI

SO(серный ангидрид)

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch2_5-1/img014.gif

Физические свойства

Бесцветная летучая жидкость, t0пл. = 170C; t0кип. = 660С; на воздухе «дымит», сильно поглощает влагу (хранят в запаянных сосудах).

SO3 + H2O = H2SO4

Твердый SO3 существует в трех модификациях. SO3 хорошо растворяется в 100%-ной серной кислоте, этот раствор называется олеумом.

Получение

1)      

2SO2 + O2  =  2SO3

2)      

Fe2(SO4)3  = Fe2O3 + 3SO3

Химические свойства

1)     Серный ангидрид — кислотный оксид. При растворении в воде дает сильную двухосновную серную кислоту:

SO3 + H2O = H2SO4 

H2SO4 = H+ + HSO4 

H2SO4 = 2H+ + SO42-

H2SO4 образует два ряда солей — средние (сульфаты) и кислые (гидросульфаты):

2NaOH + SO3 = Na2SO4 + H2O

NaOH + SO3 = NaHSO4

2)     SO3 — сильный окислитель.

СЕРНАЯ КИСЛОТА

H2SO4

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch2_5-1/img015.gif

Физические свойства

Тяжелая маслянистая жидкость («купоросное масло»); ρ = 1,84 г/см3; нелетучая, хорошо растворима в воде – с сильным нагревом; t0пл. = 10,30C, t0кип. = 2960С, очень гигроскопична, обладает водоотнимающими свойствами (обугливание бумаги, дерева, сахара).

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch2_5-1/img016.gif

Помните!
Кислоту вливать малыми порциями в воду, а не наоборот!

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch2_5-1/img017.gif

Производство серной кислоты

1-я стадия. Печь для обжига колчедана.

4FeS2 + 11O2 = 2Fe2O3 + 8SO2 + Q

Процесс гетерогенный:

1)     измельчение железного колчедана (пирита)

2)     метод «кипящего слоя»

3)     8000С; отвод лишнего тепла

4)     увеличение концентрации кислорода в воздухе

2-я стадия. После очистки, осушки и теплообмена сернистый газ поступает в контактный аппарат, где окисляется в серный ангидрид (4500С – 5000С; катализатор V2O5):

2SO2 + O2  2SO3

3-я стадия. Поглотительная башня:

nSO3 + H2SO4(конц) = (H2SO4 • nSO3)(олеум)

Воду использовать нельзя из-за образования тумана. Применяют керамические насадки и принцип противотока.

Химические свойства

H2SO4 — сильная двухосновная кислота

H2SO4 = H+ + HSO4 

H2SO4 =2H+ + SO42-

Первая ступень (для средних концентраций) приводит к 100%-ой диссоциации:

K2 = ([H+] • [SO42-]) / [HSO4] = 1,2 • 10-2

1)     Взаимодействие с металлами:

a)     разбавленная серная кислота растворяет только металлы, стоящие в ряду напряжений левее водорода:

Zn0 + H2+1SO4(разб) = Zn+2SO4 + H2O

b)     концентрированная H2+6SO4 – сильный окислитель; при взаимодействии с металлами (кроме Au, Pt) может восстанавливаться до S+4O2, S0 или H2S-2 (без нагревания не реагируют также Fe, Al, Cr — пассивируются):

2Ag0 + 2H2+6SO4 = Ag2+1SO4 + S+4O2 + 2H2O

8Na0 + 5H2+6SO4 = 4Na2+1SO4 + H2S-2 + 4H2O

2)     концентрированная H2S+6O4 реагирует при нагревании с некоторыми неметаллами за счет своих сильных окислительных свойств, превращаясь в соединения серы более низкой степени окисления, (например, S+4O2):

С0 + 2H2S+6O4(конц) = C+4O2 + 2S+4O2 + 2H2O

S0 + 2H2S+6O4(конц) = 3S+4O2 + 2H2O

2P0 + 5H2S+6O4(конц) = 5S+4O2 + 2H3P+5O4 + 2H2O

3)     с основными оксидами:

CuO + H2SO4 = CuSO4 + H2O

CuO + 2H+ = Cu2+ + H2O

4)     с гидроксидами:

H2SO4 + 2NaOH = Na2SO4 + 2H2O

H+ + OH= H2O

H2SO4 + Cu(OH)2 = CuSO4 + 2H2O

2H+ + Cu(OH)2 = Cu2+ + 2H2O

5)     обменные реакции с солями:

BaCl2 + H2SO4 = BaSO4↓ + 2HCl

Ba2+ + SO42- = BaSO4

         Образование белого осадка BaSO4 (нерастворимого в кислотах) используется для идентификации серной кислоты и растворимых сульфатов.

MgCO3 + H2SO4 = MgSO4 +

H2O + CO2

MgCO3 + 2H+ = Mg2+ + H2O + CO2

СЫРЬЕ ДЛЯ  ПОЛУЧЕНИЯ СЕРНОЙ КИСЛОТЫ И ЭТАПЫ ПРОИЗВОДСТВА.

Исходными реагентами для получения серной кислоты могут быть элементная сера и серосодержащие соединения, из которых можно получить либо серу, либо диоксид серы

Традиционно основными источниками сырья являются сера и железный (серный) колчедан. Около половины серной кислоты получают из серы, треть — из колчедана. Значительное место в сырьевом балансе занимают отходящие газы цветной металлургии, содержащие диоксид серы.

Процесс состоит из трех стадий:

Стадия

Процессы

1.Обжиг пирита, Получение оксида серы (II). Очистка печного газа.

Уравнение реакции первой стадии:
4FeS2 + 11O2s 2Fe2O3 + 8SO2 + Q
Измельчённый очищенный влажный (после флотации) пирит сверху засыпают в печь для обжига в «
кипящем слое«. Снизу (принцип противотока) пропускают воздух, обогащённый кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 8000С. Пирит раскаляется до красна и находится в «подвешенном состоянии» из-за продуваемого снизу воздуха. Похоже это всё на кипящую жидкость раскалённо-красного цвета.
За счёт выделяющейся теплоты в результате реакции поддерживается температура в печи. Избыточное количество теплоты отводят: по периметру печи проходят трубы с водой, которая нагревается. Горячую воду используют дальше для центрального отопления рядом стоящих помещений.
Образовавшийся оксид железа Fe
2O3 (огарок) в производстве серной кислоты не используют. Но его собирают и отправляют на металлургический комбинат, на котором из оксида железа получают металл железо и его сплавы с углеродом — сталь (2% углерода С в сплаве) и чугун (4% углерода С в сплаве).
Таким образом выполняется принцип химического производства — безотходность производства.

Очистка печного газа

Из печи выходит печной газ, состав которого: SO2, O2, пары воды (пирит был влажный!) и мельчайшие частицы огарка (оксида железа). Такой печной газ необходимо очистить от примесей твёрдых частиц огарка и паров воды.
Очистка печного газа от твёрдых частичек огарка проводят в два этапа — в циклоне (используется центробежная сила, твёрдые частички огарка ударяются о стенки циклона и ссыпаются вниз) и в электрофильтрах (используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра, при достаточном накоплении под собственной тяжестью они ссыпаются вниз), для удаления паров воды в печном газе (осушка печного газа) используют серную концентрированную кислоту, которая является очень хорошим осушителем, поскольку поглощает воду.
Осушку печного газа проводят в сушильной башне — снизу вверх поднимается печной газ, а сверху вниз льётся концентрированная серная кислота. На выходе из сушильной башни печной газ уже не содержит ни частичек огарка, ни паров воды. Печной газ теперь представляет собой смесь оксида серы SO
2 и кислорода О2.

2. Окисление SO2 в SO3 кислородом.

Протекает в контактном аппарате.
Уравнение реакции этой стадии:
2SO2 + O2ss 2SO3 + Q
Сложность второй стадии заключается в том, что процесс окисления одного оксида в другой является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO
3):

а) температура:

Прямая реакция является экзотермической +Q, согласно правилам по смещению химического равновесия, для того, чтобы сместить равновесие реакции в сторону экзотермической реакции, температуру в системе необходимо понижать. Но, с другой стороны, при низких температурах, скорость реакции существенно падает. Экспериментальным путём химики-технологи установили, что оптимальной температурой для протекания прямой реакции с максимальным образованием SO

3 является температура 400-5000С. Это достаточно низкая температура в химических производствах. Для того, чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор. Экспериментальным путём установили, что наилучшим катализатором для этого процесса является оксид ванадия(V) V2O5.

б) давление:

Прямая реакция протекает с уменьшением объёмов газов: слева 3V газов (2V SO

2 и 1V O2), а справа — 2V SO3. Раз прямая реакция протекает с уменьшением объёмов газов, то, согласно правилам смещения химического равновесия давление в системе нужно повышать. Поэтому этот процесс проводят при повышенном давлении.
Прежде чем смесь SO
2 и O2 попадёт в контактный аппарат, её необходимо нагреть до температуры 400-500°С. Нагрев смеси начинается в теплообменнике, который установлен перед контактным аппаратом. Смесь проходит между трубками теплообменника и нагревается от этих трубок. Внутри трубок проходит горячий SO3 из контактного аппарата. Попадая в контактный аппарат смесь SO2 и О2 продолжает нагреваться до нужной температуры, проходя между трубками в контактном аппарате.
Температура 400-500
0С в контактном аппарате поддерживается за счёт выделения теплоты в реакции превращения SO2 в SO3. Как только смесь оксида серы и кислорода достигнет слоёв катализатора, начинается процесс окисления SO2 в SO3.
Образовавшийся оксид серы SO
3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

3. Получение H2SO4 

Протекает в поглотительной башне.
А почему оксид серы SO
3 не поглощают водой? Ведь можно было бы оксид серы растворить в воде:

SO3 + H2Os H2SO4.

Но дело в том, что если для поглощения оксида серы использовать воду, образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты (оксид серы растворяется в воде с выделением большого количества теплоты, серная кислота настолько разогревается, что закипает и превращается в пар). Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Два процента воды — это так мало, что нагревание жидкости будет слабым и неопасным. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.
Уравнение реакции этого процесса

nSO3 + H2SO4s H2SO4·nSO3


Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

*

Простые вещества — неметаллы.

В простых веществах атомы неметаллов связаны ковалентной неполярной связью. Благодаря этому формируется более устойчивая электронная система, чем у изолированных атомов. При этом образуются одинарные (например, в молекулах водорода $Н_2$, галогенов $F_2, Br_2, I_2$), двойные (например, в молекулах серы $S_2$), тройные (например, в молекулах азота $N_2$) ковалентные связи.

Как вам уже известно, простые вещества — неметаллы могут иметь:

  1. Молекулярное строение. При обычных условиях большинство таких веществ представляют собой газы ($H_2, N_2, O_2, F_2, Cl_2, O_3$) или твердые вещества ($I_2, P_4, S_8$), и лишь один-единственный бром ($Br_2$) является жидкостью. Все эти вещества имеют молекулярное строение, поэтому летучи. В твердом состоянии они легкоплавки из-за слабого межмолекулярного взаимодействия, удерживающего их молекулы в кристалле, и способны к возгонке.
  2. Атомное строение. Эти вещества образованы длинными цепями атомов ($Cn, Bn, Sin, Sen, Ten$). Из-за большой прочности ковалентных связей они, как правило, имеют высокую твердость, и любые изменения, связанные с разрушением ковалентной связи в их кристаллах (плавление, испарение), совершаются с большой затратой энергии. Многие такие вещества имеют высокие температуры плавления и кипения, а летучесть их весьма мала.

Многие элементы-неметаллы образуют несколько простых веществ — аллотропных модификаций. Как вы помните, это свойство атомов называют аллотропией. Аллотропия может быть связана и с разным составом молекул ($О_2, О_3$), и с разным строением кристаллов. Аллотропными модификациями углерода являются графит, алмаз, карбин, фуллерен.

Элементы-неметаллы, обладающие свойством аллотропии, обозначены в схеме звездочкой. Так что простых веществ — неметаллов гораздо больше, чем химических элементов — металлов. Вы знаете, что для большинства металлов, за редким исключением (золото, медь и некоторые другие), характерна серебристо-белая окраска. А вот у простых веществ — неметаллов гамма цветов значительно разнообразнее: $P, Se{аморф.}$ — желтые; $Bа{морф.}$ — коричневый; $О{2(ж)}$ — голубой; $Si, As{мет.}$ — серые; $Р_4$ — бледно-желтый; $I{1(г)}$ — фиолетово-черный с металлическим блеском; $Br{2(ж)}$ — бурая жидкость; $Cl{2(г)}$ — желто-зеленый; $F{2(г)}$ — бледно-зеленый; $S{8(т)}$ — желтая.

Несмотря на большие различия в физических свойствах неметаллов, все-таки нужно отметить и некоторые их общие черты. Все газообразные вещества, жидкий бром, а также типичные ковалентные кристаллы — диэлектрики, т.к. все внешние электроны их атомов использованы для образования химических связей. Кристаллы непластичны, и любая деформация вызывает разрушение ковалентных связей. Большинство неметаллов не имеют металлического блеска.

Общие химические свойства неметаллов.

Как мы уже отмечали, для атомов неметаллов, а следовательно, и для образованных ими простых веществ характерны как окислительные, так и восстановительные свойства.

Окислительные свойства простых веществ — неметаллов.

1. Окислительные свойства неметаллов проявляются, в первую очередь, при их взаимодействии с металлами (как вы знаете, металлы — всегда восстановители):

Окислительные свойства хлора $Cl_2$ выражены сильнее, чем у серы, поэтому и металл $Fe$, который имеет в соединениях устойчивые степени окисления $+2$ и $+3$, окисляется им до более высокой степени окисления.

2. Большинство неметаллов проявляют окислительные свойства при взаимодействии с водородом. В результате образуются летучие водородные соединения:

3. Любой неметалл выступает в роли окислителя в реакциях с теми неметаллами, которые имеют более низкое значение электроотрицательности:

Электроотрицательность серы больше, чем у фосфора, поэтому она здесь проявляет окислительные свойства:

Электроотрицательность фтора больше, чем у всех остальных химических элементов, поэтому он проявляет свойства окислителя.

Фтор $F_2$ — самый сильный окислитель из неметаллов, проявляет в реакциях только окислительные свойства.

4. Окислительные свойства неметаллы проявляют и в реакциях с некоторыми сложными веществами.

Отметим, в первую очередь, окислительные свойства неметалла кислорода в реакциях со сложными веществами:

а)${C}↖{-4}H_4+2{O_2}↖{0}→{C}↖{+4}{O_2}↖{-2}+2H_2{O}↖{-2}$

восстановитель ${C}↖{-4}-8{e}↖{-}→{C}↖{+4}|1$

окислитель ${O_2}↖{0}+4{e}↖{-}→2{O}↖{-2}|2$

б)$2{S}↖{+4}O_2+{O_2}↖{0}{→}↖{t°,кат.}2{S}↖{+6}{O_3}↖{-2}$

восстановитель ${S}↖{+4}-2{e}↖{-}→{S}↖{+6}|1$

окислитель ${O_2}↖{0}+4{e}↖{-}→2{O}↖{-2}|2$

Не только кислород, но и другие неметаллы также могут быть окислителями в реакциях со сложными веществами — неорганическими (а, б) и органическими (в, г):

а)$2{Fe}↖{+2}{Cl_2}↖{-1}+{Cl_2}↖{0}=2{Fe}↖{+3}{Cl_3}↖{-1}$

восстановитель ${Fe}↖{+2}-1{e}↖{-}→{Fe}↖{+3}|2$

окислитель ${Cl_2}↖{0}+2{e}↖{-}→2{Cl}↖{-}|1$

Сильный окислитель хлор $Cl_2$ окисляет хлорид железа (II) в хлорид железа (III);

б)$2{K}↖{+1}{I}↖{-1}+{Cl_2}↖{0}={K}↖{+1}{Cl}↖{-1}+{I_2}↖{0}$

восстановитель $2{I}↖{-1}-2{e}↖{-}→{I_2}↖{0}|1$

окислитель ${Cl_2}↖{0}+2{e}↖{-}→2{Cl}↖{-1}|1$

Хлор $Cl_2$ как более сильный окислитель вытесняет иод $I_2$ в свободном виде из раствора иодида калия;

в)${C}↖{-4}H_4+{Cl_2}↖{0}{→}↖{свет}{CH_3}↖{-2}{Cl}↖{-1}+H{Cl}↖{-1}$

восстановитель ${C}↖{-4}-2{e}↖{-}→{C}↖{-2}|1$

окислитель ${Cl_2}↖{0}+2{e}↖{-}→2{Cl}↖{-1}|1$

Галогенирование метана — характерная реакция для алканов;

г)${C}↖{-2}H_2{=}↙{водный р-р}{C}↖{-2}H_2+{Br_2}↖{0}→{C}↖{-1}H_2{Br}↖{-1}-{C}↖{-1}H_2{Br}↖{-1}$

восстановитель ${C}↖{-2}-1{e}↖{-}→{C}↖{-1}|2$

окислитель ${Br_2}↖{0}+2{e}↖{-}→2{Br}↖{-1}|1$

Вы помните, конечно, качественную реакцию на непредельные соединения — обесцвечивание бромной воды.

Восстановительные свойства простых веществ — неметаллов. При рассмотрении реакций неметаллов друг с другом мы уже отмечали, что, в зависимости от значения их электроотрицательности, один из них проявляет свойства окислителя, а другой — свойства восстановителя.

1. По отношению ко фтору все неметаллы (даже кислород) проявляют восстановительные свойства.

2. Разумеется, неметаллы, кроме фтора, служат восстановителями при взаимодействии с кислородом:

В результате реакций образуются оксиды неметаллов: несолеобразующие и солеобразующие кислотные. И хотя галогены непосредственно с кислородом не соединяются, известны их оксиды: ${Cl_2}↖{+1}{O}↖{−2}, {Cl}↖{+4}{O_2}↖{-2}, {Cl_2}↖{+7}{O_7}↖{-2}, {Br_2}↖{+1}{O}↖{-2}, {Br}↖{+4}{O_2}↖{-2}, {I_2}↖{+5}{O_5}↖{-2}$ и др., которые получают косвенным путем.

3. Многие неметаллы могут выступать в роли восстановителя в реакциях со сложными веществами — окислителями:

а)${H_2}↖{0}+{{Cu}↖{+2}O}↙{оксид}{→}↖{t°}{Cu}↖{0}+{H_2}↖{+1}C$

восстановитель ${H_2}↖{0}-2{e}↖{-}→2{H}↖{+1}|1$

окислитель ${Cu}↖{+2}+2{e}↖{-}→{Cu}↖{0}|1$

б)$6{P}↖{0}+5{K{Cl}↖{+5}O_3}↙{соль}{→}↖{t}5K{Cl}↖{-1}+3{P_2}↖{+5}O_5$

восстановитель ${P}↖{0}-5{e}↖{-}→{P}↖{+5}|6$

окислитель ${Cl}↖{+5}+6{e}↖{-}→{Cl}↖{-1}|5$

в)${C}↖{0}+4{H{NO}↖{+5}O_3}↙{кислота}{→}↖{t°}{C}↖{+4}O_2↑+4{N}↖{+4}O_2↑+2H_2O$

восстановитель ${C}↖{0}-4{e}↖{-}→{C}↖{+4}|1$

окислитель ${N}↖{+5}+1{e}↖{-}→{N}↖{+4}|4$

г)

восстановитель ${H_2}↖{0}-2{e}↖{-}→{2H}↖{+}|1$

окислитель ${C}↖{0}+2{e}↖{-}→{C}↖{-2}|1$

Существуют и такие реакции, в которых один и тот же неметалл является одновременно и окислителем, и восстановителем. Это реакции самоокисления-самовосстановления (диспропорционирования):

а)${Cl_2}↖{0}+H_2O⇄H{Cl}↖{-1}+H{Cl}↖{+1}O$

восстановитель ${Cl}↖{0}-1{e}↖{-}→{Cl}↖{+1}|1$

окислитель ${Cl}↖{0}+1{e}↖{-}→{Cl}↖{-1}|1$

б)$3{Cl_2}↖{0}+6KOH=5K{Cl}↖{-1}+K{Cl}↖{+5}O_3+2H_2O$

восстановитель ${Cl}↖{0}-5{e}↖{-}→{Cl}↖{+5}|1$

окислитель ${Cl}↖{0}+1{e}↖{-}→{Cl}↖{-1}|5$

Итак, подведем итоги. Большинство неметаллов могут выступать в химических реакциях как в роли окислителя, так и в роли восстановителя (восстановительные свойства не присущи только фтору $F_2$).

Водородные соединения неметаллов. Общим свойством всех неметаллов является образование летучих водородных соединений, в большинстве из которых неметалл имеет низшую степень окисления.

Период Группа
III IV V VI VII
$2$ ${B_2H_6}↙{диборан}$ $ {CH_4}↙{метан}$ $ {NH_3}↙{аммиак}$ $ {H_2O}↙{вода}$ $ {HF}↙{фтороводород}$
$3$   ${SiH_4}↙{силан}$ $PH_3↙{фосфин}$ ${H_2S}↙{сероводород}$ ${HCl}↙{хлороводород}$
$4$     ${AsH_3}↙{арсин}$ ${H_2Se}↙{селеноводород}$ ${HBr}↙{бромоводород}$
$5$       ${H_3Te}↙{теллуроводород}$ ${HI}↙{йодоводород}$

Среди приведенных формул веществ много таких, свойства, применение и получение которых вы изучали ранее: $CH_4, NH_3, H_2O, H_2S, HCl$.

Известно, что наиболее просто эти соединения можно получить непосредственно взаимодействием неметалла с водородом, т.е. синтезом:

$table 1.H_2+Cl_2=2HCl; 2.N_2+3H_2⇄2NH_3;}$ В промышленности так получают хлороводород и аммиак.

$table 3.C+2H_2=CH_4; 4.2H_2+O_2=2H_2O; 5.H_2+S⇄H_2S;}$ Синтезы метана, воды и сероводорода имеют в основном теоретическое значение.

Все водородные соединения неметаллов образованы ковалентными полярными связями, имеют молекулярное строение и при обычных условиях являются газами, кроме воды (жидкость).

Для водородных соединений неметаллов характерно различное отношение к воде. Метан и силан в ней практически нерастворимы. Аммиак при растворении в воде образует слабое основание — $NH_3·H_2O$.

При растворении в воде сероводорода, селеноводорода, теллуроводорода, а также галогеноводородов образуются кислоты с той же формулой, что и сами водородные соединения: $H_2S, H_2Se, H_2Te, HF, HCl, HBr, HI$.

Если сравнить кислотно-основные свойства водородных соединений, образованных неметаллами одного периода, например, второго ($NH_3, H_2O, HF$) или третьего ($PH_3, H_2S, HCl$), то можно сделать вывод о закономерном усилении их кислотных свойств и, соответственно, ослаблении основных. Это, очевидно, связано с тем, что увеличивается полярность связи Э—Н (где Э — неметалл).

Кислотно-основные свойства водородных соединений неметаллов одной подгруппы также отличаются. Например, в ряду галогеноводородов $HF, HCl, HBr, HI$ прочность связи Э—Н уменьшается, т. к. увеличивается длина связи. В растворах $HCl, HBr, HI$ диссоциируют практически полностью — это сильные кислоты, причем их сила увеличивается от $HF$ к $HI$. При этом $HF$ относится к слабым кислотам, что обусловлено еще одним фактором — межмолекулярным взаимодействием, образованием водородных связей $…Н—F…H—F…$. Атомы водорода связаны с атомами фтора $F$ не только своей молекулы, но еще и соседней.

Обобщая сравнительную характеристику кислотно-основных свойств водородных соединений неметаллов, сделаем вывод об усилении кислотных и ослаблении основных свойств этих веществ по периодам и главным подгруппам с увеличением атомных номеров образующих их элементов.

Кроме рассмотренных свойств, водородные соединения неметаллов в окислительно-восстановительных реакциях всегда проявляют свойства восстановителей, ведь в них неметалл имеет низшую степень окисления.

*

*

Химические свойства водорода.

В свободном состоянии водород существует в виде молекул $H_2$, атомы связаны в молекулу ковалентной неполярной связью.

Водород ($Н$) — самый легкий газ из всех газообразных веществ. Имеет самую высокую теплопроводность и самую низкую температуру кипения (после гелия). Малорастворим в воде. При температуре $–252,8°С$ и атмосферном давлении водород переходит в жидкое состояние.

1. Молекула водорода очень прочная, что делает ее малоактивной:

$H_2=2H – 432$ кДж$.

2. При обычных температурах водород вступает в реакцию с активными металлами:

$Ca+H_2=CaH_2$,

образуя гидрид кальция, и с $F_2$, образуя фтороводород:

$F_2+H_2=2HF$.

3. При высоких температурах получают аммиак:

$N_2+3H_2=2NH_3$.

и гидрид титана (металл в порошке):

$Ti+H_2=TiH_2$.

4. При поджигании водород реагирует с кислородом:

$2H_2+O_2=2H_2O+484 кДж$.

5. Водород обладает восстановительной способностью:

$CuO+H_2=Cu+H_2O$.

Химические свойства галогенов: хлор, бром, йод.

У галогенов наиболее ярко выражены свойства неметаллов.

Внешний энергетический уровень у атомов галогенов содержит семь электронов, что соответствует номеру группы Периодической системы — VII. Два электрона занимают s-орбиталь, пять — $p$-орбитали. Для элементов этой группы при увеличении числа заполненных электронами уровней размер атомов возрастает, а прочность связи с ядром снижается.

Молекулы галогенов двухатомные ($Cl_2, Br_2, I_2$). Галогены — вещества молекулярного строения. Температуры плавления и кипения веществ, состоящих из молекул, повышаются с увеличением молекулярной массы этих веществ. Хлор — газ желто-зеленого цвета, бром — красно-коричневая жидкость, йод — твердое вещество серо-фиолетового цвета. Водные растворы галогенов в воде называют хлорной, бромной и йодной водой.

1. Галогены — сильные окислители. Они окисляют простые и сложные вещества:

2. По окислительной активности каждый вышестоящий в Периодической таблице галоген является более сильным по отношению к нижестоящему. Поэтому каждый галоген вытесняет любой нижестоящий из его соединений:

3. Галогены активно реагируют с неметаллами:

На свету взрывается.

4. Галогены реагируют с водой, образуя атомарный кислород:

$H_2O+Cl_2=2HCl+O; O+O=O_2$.

5. Галогены очень активны в присутствии воды. Так, сухой хлор хранят в железных баллонах, а во влажном хлоре железо быстро ржавеет (совместное действие с водой продуктов реакции — кислоты и атомарного кислорода).

Водный раствор хлороводорода $HCl$ называют соляной, или хлороводородной, кислотой. Ей присущи все свойства кислот. Соляная кислота принимает участие в пищеварении живых организмов. В огромных масштабах соляная кислота используется во многих отраслях промышленности: химической, нефтедобывающей и нефтеперерабатывающей.

*

*

Химические свойства кислорода.

Кислород ($O$) — самый распространенный элемент на Земле. Он находится в атмосфере ($21%$ по объему), в земной коре ($92%$), в гидросфере ($89%$).

Кислород находится в VI группе Периодической системы, в главной подгруппе. Кислород проявляет во всех соединениях валентность II. Это низшая валентность из шести возможных в этой группе.

Кислород образует молекулы O2. Это газ без запаха, цвета и вкуса. Плотность кислорода при $0°С$ и давлении $1$ атм. $1,43$ г/л, что в $1,11$ раза больше плотности воздуха. Кислород малорастворим в воде. При $20°С$ и атмосферном давлении в $100$ объемах воды растворяется $3$ объема $O_2$. Температура кипения кислорода равна $–183°С$; при этой температуре и давлении $1$ атм. кислород превращается в жидкость голубого цвета.

Кислород является одним из самых активных веществ, легко вступающих в химические реакции.

Взаимодействие веществ с кислородом называется реакцией окисления этих веществ. Кислород принимает участие в таких окислительных процессах: горение, дыхание, ржавление металлов, гниение растительных и животных останков.

Реакции окисления, сопровождающиеся выделением теплоты и света, называются реакциями горения:

а) горение простых веществ:

— неметаллов:

$C+O_2=CO_2; S+O_2=SO_2; 4P+5O_2=2P_2O_5;$

— металлов:

$3Fe+2O_2=Fe_3O_4$, или $FeO·Fe_2O_3$.

Эти процессы горения происходят быстро. Возможно и медленное горение — окисление:

$2Cu+O_2=2CuO$;

б) горение сложных веществ:

$2{C_2H_2}↙{ацетилен}+5O_2→4CO_2+2H_2O$

У кислорода есть аллотропная модификация — озон $O_3$. Он образуется под воздействием солнечного излучения или электрического разряда:

Озон обладает запахом свежести. Разный состав молекул кислорода и озона определяет их разные свойства. Молекула озона очень непрочная, легко вступает в химические реакции. Озон проявляет сильные окислительные свойства, разрушает органические вещества (резину), окисляет металлы ($Au, Pt, Ag$):

${Ag+O_3=AgO+O_2↑}↙{text «(с кислородом серебро не реагирует)» }$

Химические свойства серы.

Атомы серы, как и атомы кислорода, имеют на внешнем энергетическом уровне $6{e}↖{-}$, два из них — неспаренные. Однако по сравнению с атомами кислорода атомы серы имеют больший радиус, меньшее значение электроотрицательности, поэтому проявляют восстановительные свойства, образуя соединения со степенями окисления $+2,+4,+6$. По отношению к водороду и металлам сера проявляет окислительные свойства со степенью окисления $–2$.

Сера ($S$) — твердое кристаллическое вещество желтого цвета, имеет молекулярную кристаллическую решетку, легко плавится, в воде нерастворима. Для серы характерна аллотропия. Ромбическая сера $S_8$ — стабильная модификация. Образует кристаллы октаэдрической формы лимонно-желтого цвета с $t°{пл}=112,8°С$. Моноклинная сера имеет игольчатые кристаллы с $t°{пл}=119,3°С$, легко переходит в ромбическую. Пластическая сера имеет линейное строение молекул, темно-коричневый цвет. Ее получают при выливании расплавленной при $160°С$ серы в холодную воду — образуется резиноподобная темно-коричневая масса.

В таблице обобщены химические свойства серы и ее соединений.

Сера и ее соединения.

Сера Соединения серы
Оксиды серы Серная кислота
1. При обычных условиях — твердое желтое кристаллическое вещество.
2. Горит в кислороде:
$S+O_2=SO_2$
(проявляет восстановительные свойства).
3. Взаимодействует с металлами и водородом:
$Fe+S=FeS$
$H_2+S=H_2S$
(проявляет окислительные свойства)
В природе самородная сера $S$, сульфиды: $FeS_2$ (пирит), $CuS$; сульфаты: $CaSO_4·2H_2O$ (гипс), $Na_2SO_4$
1. При обычных условиях $SO_2$ — газ, $SO_3$ — жидкое вещество ($t°*{пл}=16,8°С$).
2. Проявляют свойства кислотных оксидов, взаимодействуя:
— с водой:
$SO_2+H_2O⇄H_2SO_3$
$SO_3+H_2O=H_2SO_4$
— со щелочами:
$SO_2+2NaOH=Na_2SO_3+H_2O$
$SO_3+2NaOH=Na_2SO_4+H_2O$
— с основными оксидами:
$SO_3+CaO=CaSO_4$
Получение:
1) оксида серы (IV)
а) в промышленности:
— горение серы
$S+O_2=SO_2$
— обжиг пирита
$4FeS_2+11O_2=2Fe_2O_3+8SO_2$
б) в лаборатории:
$Na_2SO_3+H_2SO_4=Na_2SO_4+SO_2↑+H_2O$;
2) оксида серы (VI) в промышленности
— каталитическое окисление оксида серы (IV):
$2SO_2+O_2=2SO_3$
1. При обычных условиях — бесцветная тяжелая жидкость ($ρ≈2 г/см^3$), неограниченно растворимая в воде.
2. Сильная двухосновная кислота:
$H_2SO_4=H^{+}+HSO_4^{-}⇄2H^{+}+SO_4^{2-}$
3. Взаимодействует с металлами:
$Zn+H_2SO_4=ZnSO_4+H_2↑$
В концентрированной кислоте пассивируются $Al$ и $Fe$.
4. Взаимодействует со щелочами, основаниями и амфотерными гидроксидами:
$H_2SO_4+2NaOH=Na_2SO_4+2H_2O$
$H_2SO_4+Cа(OH)_2=CаSO_4+2H_2O$
$3H_2SO_4+2Al(OH)_3=Al_2(SO_4)_3+6H_2O$
5. Взаимодействует с основными и амфотерными оксидами:
$H_2SO_4+CuO=CuSO_4+H_2O$
$H_2SO_4+ZnO=ZnSO_4+H_2O$
6. Концентрированная кислота гигроскопична:

Получение в промышленности в соответствии со схемой:
$FeS_2(или S){→}↖{O_2}SO_2{→}↖{O_2}SO_3{→}↖{H_2O}H_2SO_4$

Химические свойства азота.

Азот ($N$) — первый представитель главной подгруппы V группы Периодической системы. Его атомы содержат на внешнем энергетическом уровне пять электронов, из которых три — неспаренные. Значит, атомы азота могут присоединять три электрона, завершая внешний энергетический уровень, и вследствие этого приобретают степени окисления $–3$ в соединениях с водородом (аммиак $NH_3$) и с металлами (нитриды $Li_3N, Mg_3N_2$).

Отдавая свои внешние электроны более электроотрицательным элементам (фтору, кислороду), атомы азота приобретают степени окисления $+3$ и $+5$. Атомы азота проявляют восстановительные свойства в степенях окисления $+1, +2, +4$.

Азот существует в свободном состоянии в виде молекулы $N_2$, атомы связаны прочной ковалентной связью $N≡N$. Азот — бесцветный газ без запаха и вкуса, в атмосфере его содержится $78%$. Азот — составная часть живых организмов.

Важнейшими соединениями азота являются аммиак, азотная кислота и ее соли. Азотная кислота и аммиак производятся в промышленности в больших объемах, т.к. соли ($NH_4NO_3, KNO_3$) являются удобрениями. Азотная кислота используется для получения красителей, пластмасс, взрывчатых веществ, лекарств.

Азот — жизненно важный элемент, поэтому круговорот азота в природе обеспечивает им атмосферу, почву, растительные и живые организмы.

В таблице обобщены химические свойства азота и его соединений.

Азот и его соединения.

Азот Соединения азота
Аммиак Оксиды азота Азотная кислота
1. Очень прочная и поэтому малореакционноспособная молекула.
2. Проявляет окислительные свойства (в реакциях с водородом и металлами):
$N_2+3H_2⇄2NH_3$
$N_2+3Mg=Mg_3N_2
3. Проявляет восстановительные свойства (в реакции с кислородом):
$N_2+O_2=2NO$
Получение
1. В промышленности ректификацией жидкого воздуха.
2. В лаборатории термическим разложением нитрита аммония:
$NH_4NO_2→↖{t°}N_2+2H_2O$
1. При н.у. бесцветный, резко пахнущий газ.
2. Взаимодействует с водой, образуя раствор слабого основания:
$NH_3+H_2O⇄NH_4^{+}+OH^{–}$

3. Схема электронного строения иона аммония:

4. Взаимодействует с кислотами:

$NH_3+H^{+}=NH_4^+$

5. Проявляет восстановительные свой ства:

$2NH_3+3CuO{→}↖{t°}3Cu+3H_2O+N_2$

$4NH_3+3O_2=2N_2+6H_2O$

$4NH_3+5O_2{→}↖{кат}4NO+6H_2O$

Получение

1. В промышленности:

$N_2+3H_2⇄2NH_3+92кДж$

2. В лаборатории:

$2NH_4Cl+Ca(OH)_2=CaCl_2+2NH_3↑+2H_2O$

1. Оксид азота (II) окисляется кислородом воздуха при комнатной температуре:

$2NO+O_2=2NO_2$

2. Оксид азота (IV) взаимодействует с водой в присутствии кислорода:

$4NO_2+O_2+2H_2O=4HNO_3$

Образуются при взаимодействии:

1) азота с кислородом при высокой температуре или в условиях электрического разряда:

$N_2+O_2=2NO$

2) аммиака с кислородом в присутствии катализатора:

$4NH_3+5O_2{→}↖{кат}4NO+6H_2O;$

3) меди с азотной кислотой:

а) концентрированной:

$Cu+4HNO_3=Cu(NO_3)_2+2NO_2↑+2H_2O;$

б) разбавленной:

$3Cu+8HNO_3=3Cu(NO_3)_2+2NO↑+4H_2O$

1. Неустойчива, разлагается под действием света:

$4HNO_3=2H_2O+4NO_2↑+O_2↑$

2. Является сильной кислотой, диссоциирует необратимо в водном растворе:

$HNO_3+H_2O=H_3O^{+}+NO_3^−$

3. Взаимодействует с основными оксидами:

$CаO+2HNO_3=Cа(NO_3)_2+H_2O$

$CаO+2H^{+}=Cа^{2+}+H_2O$

4. Взаимодействует с основаниями:

$Fe(OH)_3+3HNO_3=Fe(NO_3)_3+3H_2O$

$Fe(OH)*3+3H^{+}=Fe^{3+}+3H_2O$

5. Реагирует с металлами без выделения водорода и по-разному — в зависимости от концентрации кислоты и активности металла.

Получение

1. В промышленности взаимодействием оксида азота (IV) с водой и кислородом:

$4NO_2+O_2+2H_2O=4HNO_3$

2. В лаборатории вытеснением из солей нелетучей кислотой при нагревании:

$2NaNO*{3,кр}+H_2SO_4=2HNO_3+Na_2SO_4$

Химические свойства фосфора.

Фосфор ($P$) — аналог азота. Однако атом фосфора характеризуется большим радиусом, меньшим значением электроотрицательности и более выраженными восстановительными свойствами. У фосфора реже встречается степень окисления $–3$ (только в фосфидах $Ca_3P_2, Na_3P$), чаще фосфор в соединениях имеет степень окисления $+5$, а вот соединение фосфин ($PH_3$) — тот редкий случай, когда ковалентная связь между атомами разных элементов неполярная, т.к. электроотрицательности фосфора почти одинаковы.

Химический элемент фосфор образует несколько аллотропных модификаций. Рассмотрим два простых вещества фосфора: белый фосфор и красный фосфор. Белый фосфор имеет молекулярную кристаллическую решетку из молекул $P_4$. Он в порошкообразном состоянии воспламеняется, светится в темноте, ядовит. Красный фосфор имеет атомную кристаллическую решетку, окисляется на воздухе медленно, нерастворим, неядовит, не светится. Химические свойства фосфора и его соединений представлены в таблице.

В природе фосфор в свободном виде не встречается — только в виде соединений.

Фосфор также является составной частью тканей организма человека, животных и растений.

Фосфор и его соединения.

Фосфор Соединения фосфора
Оксид фосфора (V) Фосфорная кислота
1. При обычных условиях может существовать в виде двух аллотропных модификаций: красный и белый.

2. Горит в кислороде:

$4P+5O_2=2P_2O_5$

(проявляет восстановительные свойства). Белый фосфор окисляется на воздухе при комнатной температуре:

$P_4+3O_2=2P_2O_3$

Получение

$2Ca_3(PO_4)_2+10C+6SiO_2=P_4↑+10CO↑+6CaSiO_3–Q$

1. При обычных условиях очень гигроскопическое твердое вещество белого цвета.

2. Проявляет свойства кислотных оксидов, взаимодействуя

— с водой:

$P_2O_5+3H_2O=2H_3PO_4$

— со щелочами:

$P_2O_5+6NaOH=2Na_3PO_4+3H_2O$

— с основными оксидами:

$P_2O_5+3CaO=Ca_3(PO_4)_2$

Получение

Сжигание фосфора в избытке воздуха:

$4P+5O_2=2P_2O_5$

1. При обычных условиях бесцветное твердое вещество, неограниченно растворимое в воде.

2. Слабая трехосновная кислота:

$H_3PO_4⇄H^{+}+H_2PO_4^{-}⇄2H^{+}+HPO_4^{2−}⇄3H^{+}PO_4^{3−}$

3. Взаимодействует со щелочами, основаниями и амфотерными гидроксидами, а также с аммиаком:

$H_3PO_4+3NaOH=Na_3PO_4+3H_2O$
$H_3PO_4+2NaOH=Na_2HPO_4+2H_2O$
$H_3PO_4+NH_3=NH_4H_2PO_4$
$H_3PO_4+2NH_3=(NH_4)_2HPO_4$
4. Взаимодействует с основными оксидами:

$2H_3PO_4+3CaO=Ca_3(PO_4)_2+3H_2O$
5. Взаимодействует с фосфатом кальция, образуя дигидрофосфат (двойной суперфосфат):

$Ca_3(PO_4)_2+4H_3PO_4=3Ca(H_2PO_4)_2$
Получение в промышленности:

1) по реакции оксида фосфора (V) с водой:

$P_2O_5+3H_2O=2H_3PO_4;$
2) по реакции фосфата кальция с серной кислотой при нагревании:

$Ca_3(PO_4)_2+3H_2SO_4{→}↖{t°}3CaSO_4+2H_3PO_4$

Химические свойства углерода.

Углерод ($C$) — первый элемент главной подгруппы IV группы Периодической системы. На его высшем энергетическом уровне $4$ электрона, поэтому его атомы могут принимать четыре электрона, приобретая степень окисления $–4$, т.е. проявлять окислительные свойства, и отдавать свои электроны, проявляя восстановительные свойства, приобретая степень окисления $+4$.

О свойствах аллотропных модификаций алмаза и графита мы уже говорили ранее. Химические свойства углерода и его соединений обобщены в таблице.

Углерод — это особый химический элемент. Он — основа многообразия органических соединений, из которых построены все живые организмы на планете.

Углерод и его соединения.

Углерод Соединения углерода
Оксид углерода (IV) Угольная кислота
1. Имеет аллотропные модификации: алмаз, графит, карбин, фуллерен.
2. Проявляет восстановительные свойства:
а) горит в кислороде:
$C+O_2=CO_2+Q$
неполное сгорание:
$2C+O_2=2CO+Q;$
б) взаимодействует с оксидом углерода (IV), образуя ядовитое вещество — угарный газ:
$C+CO_2=2CO;$
в) восстанавливает металлы из их оксидов:
$C+2CuO=CO_2+2Cu$
Получение
Неполное сжигание метана:
$CH_4+O_2=C+2H_2O$
1. Газ без запаха, цвета и вкуса, тяжелее воздуха.
2. Кислотный оксид.
3. При растворении взаимодействует с водой:
$CO_2+H_2O⇄H_2CO_3$
4. Реагирует с основаниями (известковая вода при его пропускании мутнеет):
$CO2+Ca(OH)_2=CaCO_3↓+H_2O$
5. Реагирует с основными оксидами:
$CO_2+CaO=CaCO_3$
6. Образуется в реакциях:
— горения углерода в кислороде:
$C+O_2=CO_2$
— окисления оксида углерода (II):
$2CO+O_2=2CO_2$
— сгорания метана:
$CH_4+2O_2=CO_2+2H_2O$
— взаимодействия кислот с карбонатами:
$CaCO_3+2HCl=CaCl_2+CO_2↑+H_2O$
— термического разложения карбонатов и гидрокарбонатов:
$CaCO_3=CaO+CO_2↑$
$2NaHCO_3=Na_2CO_3+CO_2↑+H_2O$
— окислительных биохимических процессов дыхания, гниения
1. Непрочная молекула. Слабая двухосновная кислота.
Равновесие в водном растворе:
$CO_2+H_2O⇄H_2CO_3⇄H^{+}+HCO_3^{−}⇄2H^{+}+CO_3^{2−}$
2. Взаимодействует с растворами щелочей как раствор углекислого газа в воде с образованием кислых (гидрокарбонатов) и средних (карбонатов) солей:
$CO_2+NaOH=NaHCO_3$
$CO_2+2NaOH=Na_2CO_3+H_2O$
3. Вытесняется из солей более сильными кислотами:
$CaCO_3+2HCl=CaCl_2+CO_2↑+H_2O$
4. Соли угольной кислоты подвергаются гидролизу:
$2Na^{+}+CO_3^{2−}+H_2O⇄2Na^{+}+HCO_3^{−}+OH^{–}$
$CO_3^{2−}+H_2O⇄HCO_3^{−}+OH^–$

Химические свойства кремния.

Кремний ($Si$) — второй представитель главной подгруппы IV группы. По распространенности в природе кремний — второй после кислорода. Наиболее распространенными соединениями кремния являются диоксид кремния $SiO_2$ — кремнезем и силикаты.

Кристаллический кремний имеет структуру алмаза, очень хрупок, относится к тугоплавким веществам. При обычных условиях инертен, что объясняется прочностью его кристаллической решетки. В таблице обобщены химические свойства кремния и его соединений.

Соединения кремния служат основой производства стекла и цемента. Состав оконного стекла: $Na_2O·CaO·6SiO_2$.

Кремний и его соединения.

Кремний Соединения кремния
Оксид кремния (IV) Кремниевая кислота
1. Обладает полупроводниковыми свойствами.
2. Горит в кислороде:
$Si+O_2=SiO_2+Q$
Получение
— Восстановление оксида кремния (IV) углеродом (в промышленности):
$SiO_2+2C=Si+2CO$
— порошком магния (в лаборатории):
$SiO_2+2Mg=Si+2MgO$
1. Твердое бесцветное прозрачное вещество, легко затвердевающее в виде стекла.
2. В воде не растворяется и с водой не реагирует.
3. Как кислотный оксид взаимодействует с:
а) щелочами:
$SiO_2+2NaOH=Na_2SiO_3+H_2O;$
б) основными оксидами:
$SiO_2+CaO=CaSiO_3$
4. Вытесняет из солей летучие кислоты (реакции, лежащие в основе варки стекла):
$SiO_2+Na_2CO_3=Na_2SiO_3+CO_2↑$
$SiO_2+CaCO_3=CaSiO_3+CO_2↑$
1. Очень слабая двухосновная не растворимая в воде кислота состава
$mSiO_2·nH_2O(H_2SiO_3)$
2. Разлагается уже при несильном нагревании:
$H_2SiO_3=SiO_2+H_2O$
3. Соли кремниевой кислоты (силикаты) подвергаются гидролизу:
$4Na^{+}+2SiO_3^{2-}+2H_2O⇄4Na^{+}+Si_2O_5^{2−}+2OH^–$
$2SiO_3^{2-}+2H_2O⇄Si_2O_5^{2−}+2OH^–$
Получение
Действие кислот на растворимые силикаты:
$Na_2SiO_3+2HCl=2NaCl+H_2SiO_3↓$

Сера расположена в ВИа группе Периодической системы химических элементов Д.И. Менделеева.

На внешнем энергетическом уровне

атома

серы содержится 6 электронов, которые имеют

электронную конфигурацию

3s

2

3p

4

. В соединениях с металлами и водородом сера проявляет отрицательную степень окисления элементов -2, в соединениях с кислородом и другими активными неметаллами – положительные +2, +4, +6. Сера – типичный неметалл, в зависимости от типа превращения может быть окислителем и восстановителем.

сера строение атома

сера минералы в природе

Нахождение серы в природе

Сера встречается в свободном (самородном) состоянии и связанном виде.

Важнейшие природные соединения серы:

FeS

2

— железный колчедан или пирит,

ZnS — цинковая обманка или сфалерит (вюрцит),

PbS — свинцовый блеск или галенит,

HgS — киноварь,

Sb

2

S

3

— антимонит.

Кроме того, сера присутствует в нефти, природном угле, природных газах, в природных водах (в виде сульфат-иона и обуславливает «постоянную» жёсткость пресной воды). Жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах.


Аллотропные модификации серы


Аллотропия

— это способность одного и того же элемента существовать в разных молекулярных формах (молекулы содержат разное количество атомов одного и того же элемента, например, О

2

и О

3

, S

2

и S

8

, Р

2

и Р

4

и т.д).

сера аллотропные модификации

Сера отличается способностью образовывать устойчивые цепочки и циклы из атомов. Наиболее стабильны  S

8

,  образующие ромбическую и моноклинную серу. Это кристаллическая сера — хрупкое вещество жёлтого цвета.

Открытые  цепи имеет пластическая сера, вещество коричневого цвета, которая получается при резком охлаждении расплава серы (пластическая сера уже через несколько часов становится хрупкой, приобретает жёлтый цвет и постепенно превращается в ромбическую).

сера аллотропия

1) ромбическая — S

8

t°пл. = 113°C; r = 2,07 г/см

3

Наиболее устойчивая модификация.

2)     моноклинная — темно-желтые иглы

t°пл. = 119°C; r = 1,96 г/см

3

Устойчивая при температуре более 96°С; при обычных условиях превращается в ромбическую.

3)     пластическая — коричневая резиноподобная (аморфная) масса

Неустойчива, при затвердевании превращается в ромбическую


Получение серы

  1. Промышленный метод — выплавление из руды с помощью водяного пара.
  2. Неполное окисление сероводорода (при недостатке кислорода):

2H

2

S + O

2

→ 2S + 2H

2

O

  1. Реакция Вакенродера:

2H

2

S + SO

2

→ 3S + 2H

2

O


Химические свойства серы


Окислительные свойства серы

(


S



0



+ 2ē



S



-2



)

1)      Сера реагирует со щелочными

металлами

без нагревания:

2Na + S → Na

2

S

c остальными

металлами

(кроме Au, Pt) — при повышенной t°:

2Al + 3S  –→  Al

2

S

3

Zn + S  –→  ZnS

2)     С некоторыми неметаллами сера образует бинарные соединения:

H

2

+ S → H

2

S

2P + 3S → P

2

S

3

C + 2S → CS

2


Восстановительные свойства сера проявляет в реакциях с сильными окислителями:

(


S


— 2ē →


S



+2



;


S


— 4ē →


S



+4



;


S


— 6ē →


S



+6



)

3)     c

кислородом:

S + O

2








S

+4

O

2

2S + 3O

2



t


°;


pt

→   2S

+6

O

3

4)

c галогенами

(кроме йода):

S + Cl

2




S

+2

Cl

2

S + 3F

2




SF

6

Со сложными веществами:

5)     c кислотами — окислителями:

S + 2H

2

SO

4

(конц)



3S

+4

O

2

+ 2H

2

O

S + 6HNO

3

(конц)



H

2

S

+6

O

4

+ 6NO

2

+ 2H

2

O


Реакции диспропорционирования:

6)     3S

0

+ 6KOH → K

2

S

+4

O

3

+ 2K

2

S

-2

+ 3H

2

O

7)     сера растворяется в концентрированном растворе сульфита натрия:

S

0

+ Na

2

S

+4

O

3

→ Na

2

S

2

O

3

тиосульфат натрия

сера химические свойства

сера химические свойства, получение, ВИа группа

Сероводород H2S и сульфиды- химические свойства

Соединения серы +4: сернистый газ, сернистая кислота и её соли сульфиты.

Серная кислота – химические свойства и промышленное производство

Биологическая роль р-элементов VIA группы. Применение их соединений в медицине

2.3.2. Химические свойства кислорода и серы.

Химические свойства кислорода

Химический элемент кислород может существовать в виде двух аллотропных модификаций, т.е. образует два простых вещества. Оба этих вещества имеют молекулярное строение. Одно из них имеет формулу O2 и имеет название кислород, т.е. такое же, как и название химического элемента, которым оно образовано.

Другое простое вещество, образованное кислородом, называется озон. Озон в отличие от кислорода состоит из трехатомных молекул, т.е. имеет формулу O3.

Поскольку основной и наиболее распространенной формой кислорода является молекулярный кислород O2, прежде всего мы рассмотрим именно его химические свойства.

Химический элемент кислород находится на втором месте по значению электроотрицательности среди всех элементов и уступает лишь фтору. В связи с этим логично предположить высокую активность кислорода и наличие у него практически только окислительных свойств. Действительно, список простых и сложных веществ, с которыми может реагировать кислород огромен. Однако, следует отметить, что поскольку в молекуле кислорода имеет место прочная двойная связь, для осуществления большинства реакций с кислородом требуется прибегать к нагреванию. Чаще всего сильный нагрев требуется в самом начале реакции (поджиг) после чего многие реакции идут далее уже самостоятельно без подвода тепла извне.

Среди простых веществ не окисляются кислородом лишь благородные металлы (Ag, Pt, Au), галогены и инертные газы.

Сера сгорает в кислороде с образованием диоксида серы:

Характерные химические свойства кислорода и серы

Фосфор в зависимости от избытка или недостатка кислорода может образовать как оксида фосфора (V), так и оксид фосфора (III):

4P + 5O2 = 2P2O5

Взаимодействие кислорода с азотом протекает в крайне жестких условиях, в виду того что энергии связи в молекулах кислорода и особенно азота очень велики. Также свой вклад в сложность протекания реакции делает высокая электроотрицательность обоих элементов. Реакция начинается лишь при температуре более 2000 oC и является обратимой:

N2 + O2 = 2NO

Не все простые вещества, реагируя с кислородом образуют оксиды. Так, например, натрий, сгорая в кислороде образует пероксид:

2Na + O2 = Na2O2

а калий – надпероксид:

2.3.2. Химические свойства кислорода и серы.

Чаще всего, при сгорании в кислороде сложных веществ образуется смесь оксидов элементов, которыми было образовано исходное вещество. Так, например:

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

2CH3OH + 3O2 = 2CO2 + 4H2O

Однако, при сгорании в кислороде азотсодержащих органических веществ вместо оксида азота образуется молекулярный азот N2. Например:

4C2H5NH2 + 15O2 = 8CO2 + 14H2O + 2N2

При сгорании в кислороде хлорпроизводных вместо оксидов хлора образуется хлороводород:

C2H5Cl + 3O2 = 2CO2 + 2H2O + HCl

Химические свойства озона:

Озон является более сильным окислителем, чем кислород. Обусловлено это тем, что одна из кислород-кислородных связей в молекуле озона легко рвется и в результате образуется чрезвычайно активный атомарный кислород. Озон в отличие от кислорода не требует для проявления своих высоких окислительных свойств нагревания. Он проявляет свою активность при обычной и даже низкой температурах:

PbS + 4O3 = PbSO4 + 4O2

Как было сказано выше, серебро с кислородом не реагирует, однако, реагирует с озоном:

2Ag + O3 = Ag2O + O2

Качественной реакцией на наличие озона является то, что при пропускании исследуемого газа через раствор иодида калия наблюдается образование йода:

2KI + O3 + H2O = I2↓ + O2 + 2KOH

Химические свойства серы

Сера как химический элемент может существовать в нескольких аллотропных модификациях. Различают ромбическую, моноклинную и пластическую серу. Моноклинная сера может быть получена при медленном охлаждении расплава ромбической серы , а пластическая напротив получается при резком охлаждении расплава серы, предварительно доведенного до кипения. Пластическая сера обладает редким для неорганических веществ свойством эластичности – она способна обратимо растягиваться под действием внешнего усилия, возвращаясь в исходную форму при прекращении этого воздействия. Наиболее устойчива в обычных условиях ромбическая сера и все иные аллотропные модификации со временем переходят в нее.

Молекулы ромбической серы состоят из восьми атомов, т.е. ее формулу можно записать как S8. Однако, поскольку химические свойства всех модификаций достаточно схожи, чтобы не затруднять запись уравнений реакций любую серу обозначают просто символом S.

Сера может взаимодействовать и с простыми и со сложными веществами. В химических реакциях проявлет как окислительные, так и восстановительные свойства.

Окислительные свойства серы проявляются при ее взаимодействии с металлами, а также неметаллами, образованными атомами менее электроотрицательного элемента (водород, углерод, фосфор):

2Al + 3S = Al2S3

Hg + S = HgS

S + H2 = H2S

2S + C = CS2

3S + 2P = P2S3

Как восстановитель сера выступает при взаимодействии с неметаллами, образованными более электроотрицательными элементами (кислород, галогены), а также сложными веществами с ярко выраженной окислительной функцией, например, серной и азотной концентрированной кислотами:

2.3.2. Химические свойства кислорода и серы.

2.3.2. Химические свойства кислорода и серы.

2.3.2. Химические свойства кислорода и серы.

2.3.2. Химические свойства кислорода и серы.

Также сера взаимодействует при кипячении с концентрированными водными растворами щелочей. Взаимодействие протекает по типу диспропорционирования, т.е. сера одновременно и понижает, и повышает свою степень окисления:

Характерные химические свойства кислорода и серы

Понравилась статья? Поделить с друзьями:
  • Сепаратор химия применение егэ
  • Сепаратизм это егэ обществознание
  • Сентября 3 вторник стрельцы роптали повсюду егэ
  • Сентиментализм егэ литература
  • Сентиментализм в творчестве карамзина кратко сочинение