Серебро теория егэ

Марганец

Содержится в количестве 0,03% по массе в земной коре. Наряду с железом и его сплавами относится к черным металлам.

Оксид меди (II)

Для соединений марганца характерны степени окисления +2, +3, +4, +6 +7. В соединения +2 и +3 марганец проявляет основные свойства, +4 —
амфотерные, +6, +7 — кислотные.

Степени окисления марганца и его свойства

Наиболее известными минералами, в которых содержится марганец, являются:

  • MnO2 — пиролюзит
  • MnO(OH) — бурая марганцевая руда, манганит
  • 3Mn2O3*MnSiO3 — браунит

Природные соединения марганца

Получают марганец алюминотермией, восстановлением коксом, электролизом.

MnO2 + Al = (t) Al2O3 + Mn

MnO2 + C = (t) Mn + CO

MnSO4 + H2O = (электролиз) Mn + O2 + H2SO4

Химические свойства

  • Реакции с неметаллами
  • На воздухе марганец вступает во взаимодействие с кислородом, пассивируется: на поверхности металла образуется оксидная пленка.

    Mn + O2 = MnO2

    При нагревании марганец реагирует с азотом, углеродом, кремнием, бором и фосфором.

    Mn + N2 = (t) Mn3N2

    Mn + C = (t) Mn3C

    Mn + Si = (t) Mn2Si

    Mn + P = (t) Mn3P2

    Нитрид марганца

  • Реакция с водой
  • При нагревании марганец вытесняет водород из воды.

    Mn + H2O = (t) Mn(OH)2 + H2

  • Реакции с кислотами
  • Марганец стоит в ряду напряжений до водорода и способен вытеснить его из кислот.

    Mn + HCl = MnCl2 + H2

    Под воздействием кислот, которые обладают окислительными свойствами, марганец окисляется.

    Mn + H2SO4(конц.) = MnSO4 + SO2 + H2O

    Mn + HNO3(конц.) = (t) Mn(NO3)2 + NO2 + H2O

    Mn + HNO3(разб.) = (t) Mn(NO3)2 + NO + H2O

    Реакция марганца с азотной кислотой

Соединения марганца (II)

Для соединений марганца (II) характерны основные свойства. Оксид марганца (II) может быть получен разложением карбоната марганца, либо
восстановлением оксида марганца (IV) до оксида марганца (II).

При растворении (и нагревании!) марганца в воде образуется гидроксид марганца (II).

Mn + H2O = (t) Mn(OH)2 + H2

MnSO4 + KOH = (t) Mn(OH)2 + K2SO4

Соединения марганца (II) на воздухе неустойчивы, Mn(OH)2 быстро буреет, превращаясь в оксид-гидроксид марганца (IV).

Mn(OH)2 + O2 = MnO2 + H2O

Оксид и гидроксид марганца (II) проявляют основные свойства. При реакции с кислотами дает соответствующие
соли.

Mn(OH)2 + HCl = MnCl2 + H2O

Гидроксид марганца (II)

Соли марганца (II) получаются при его растворении в разбавленных кислотах. Эти соли способны вступать в реакции с другими солями, кислотами, если
выпадает осадок, выделяется газ или образуется слабый электролит.

Mn + HCl = MnCl2 + H2

MnSO4 + (NH4)2S = MnS↓ + (NH4)2SO4

При действии сильных окислителей ион Mn2+ способен переходить в ион Mn7+

MnSO4 + PbO2 + HNO3 = HMnO4 + PbSO4 + Pb(NO3)2 + H2O

Соединения марганца (IV) проявляют амфотерный характер. Оксид марганца (IV) можно получить разложением нитрата марганца (II).

Mn(NO3)2 = (t) MnO2 + NO2

Кислород в продуктах реакции не указываем, так как он участвует в окислении MnO до MnO2.

Нитрат марганца (II)

В реакциях с щелочами марганец переходит в СО +6, в кислой среде — принимает СО +2.

MnO2 + Na2CO3 + NaNO3 = Na2MnO4 + NaNO2 + CO2 (гидролиз карбоната натрия идет по аниону, среда — щелочная)

MnO2 + HCl = MnCl2 + Cl2 + H2O

Оксид марганца (IV)

Соединения марганца (VI) — MnO3, H2MnO4 — неустойчивы, в свободном виде не получены. Обладают кислотными свойствами.
Наиболее устойчивые соли — манганаты, окрашивающие раствор в зеленый цвет.

Манганаты получают в ходе разложения перманганатов, а также реакциями в щелочной среде.

KMnO4 = (t) K2MnO4 + MnO2 + O2↑ (способ получения кислорода)

Li2SO3 + KMnO4 + LiOH = Li2SO4 + K2MnO4 + H2O

MnO2 + NaOH + NaNO3 = Na2MnO4 + NaNO2 + H2O

MnSO4 + KClO3 + KOH = K2MnO4 + KCl + K2SO4 + H2O

Манганаты образуются в щелочной среде

В водной среде манганаты разлагаются на с.о. +7 и +4. Манганаты окисляют хлором.

K2MnO4 + H2O = KMnO4 + MnO2 + KOH

K2MnO4 + Cl2 = KMnO4 + KCl

Соединения марганца (VII) — неустойчивый Mn2O7, и относительно устойчивая в разбавленных растворах HMnO4 — проявляют
кислотные свойства. Соли марганцовой кислоты — перманганаты.

В различных средах — кислотной, нейтральной и щелочной — марганец принимает различные степени окисления. Внимательно изучите таблицу ниже.

Марганец в различных средах

Оксид марганца (VII) получают в реакции перманганата с сильными кислотами.

KMnO4 + H2SO4 = Mn2O7 + K2SO4 + H2O

При растворении оксида марганца (VII) (кислотного оксида) в щелочи образуются соли марганцовой кислоты — перманганаты.

Mn2O7 + KOH = KMnO4 + H2O

Марганцовая кислота получается в реакциях сильных окислителей с солями марганца (II).

Mn(NO3)2 + PbO2 + HNO3 = HMnO4 + Pb(NO3)2 + H2O

В растворах с концентрацией марганцовой кислоты более 20% происходит ее разложение.

HMnO4 = MnO + O2 + H2O

При нагревании перманганата калия (в быту — марганцовка) разлагается с образованием бурого MnO2, выделением кислорода.

KMnO4 = (t) K2MnO4 + MnO2 + O2

Перманганат калия - марганцовка

При стоянии в растворе постепенно разлагается водой.

KMnO4 + H2O = MnO2 + KOH + O2

В кислой среде марганец принимает наиболее устойчивую (для кислой среды) — Mn2+, в щелочной — Mn6+.

KMnO4 + H2O2 + H2SO4 = MnSO4 + O2↑ + K2SO4 + H2O

KMnO4 + KOH = K2MnO4 + O2 + H2O

Цинк

Название цинка, вероятно, связано формой его кристаллитов: в переводе с немецкого Zinke — зубец. С древнейших времен известен сплав
меди с цинком — латунь.

Цинк

Для цинка характерна постоянная степень окисления +2.

Степень окисления цинка и его свойства

Наиболее известные минералы, в которых содержится цинк:

  • ZnS — цинковая обманка, сфалерит
  • ZnO — цинкит
  • ZnCO3 — симсонит, цинковый шпат
  • 2ZnO*SiO2*H2O — гемиморфит

Природные соединения цинка

Получение

Пирометаллургический метод получения цинка заключается в обжиге цинковой обманки, и последующем восстановлении оксида цинка
различными восстановителями: чаще всего C, также возможно CO и H2.

ZnS + O2 = (t) ZnO + SO2

ZnO + C = (t) Zn + CO

ZnO + H2 = (t) Zn + H2O

ZnO + CO = (t) Zn + CO2

Сульфид цинка

Гидрометаллургический метод получения основывается на электролизе сульфата цинка.

ZnSO4 + H2O = (электролиз) Zn + H2SO4 + O2

Химические свойства

  • Реакции с неметаллами (и аммиаком :)
  • На воздухе цинк покрывается оксидной пленкой. При нагревании цинк реагирует с галогенами, фосфором, серой, селеном.

    Zn + O2 = ZnO

    Zn + Br2 = (t) ZnBr2

    Zn + P = (t) Zn3P2

    Zn + S = (t) ZnS

    Оксид цинка

    Для цинка не характерны реакции с водородом, бором, кремнием, азотом, углеродом. Нитрид цинка можно получить в ходе реакции цинка с аммиаком.

    Zn + NH3 = (t) Zn3N2 + H2

  • Реакции с кислотами
  • Zn + HCl = ZnCl2 + H2

    Zn + H2SO4(разб.) = ZnSO4 + H2

    Zn + H2SO4(конц.) = ZnSO4 + H2S↑ + H2O

    Хлорид цинка

  • Реакции с щелочами
  • Цинк способен проявлять амфотерные (двойственные) свойства: реагирует как с кислотами, так и с основаниями.
    При добавлении цинка в раствор щелочи выделяется водород.

    Zn + H2O + NaOH = Na2[Zn(OH)4] + H2↑ (тетрагидроксоцинкат натрия)

Соединения цинка (II)

Эти соединения обладают амфотерными свойствами. Оксид цинка (II) можно получить в ходе реакции горения цинка или
при разложении нитрата цинка.

Zn + O2 = (t) ZnO

Zn(NO3)2 = (t) ZnO + NO2↑ + O2

Оксид цинка (II) проявляет амфотерные свойства, реагирует как с кислотами, так и с щелочами.

ZnO + HCl = ZnCl2 + H2O

ZnO + H2SO4 = ZnSO4 + H2O

ZnO + H2O + 2NaOH = Na2[Zn(OH)4] (тетрагидроксоцинкат натрия)

Комплексные соли образуются в растворе, при прокаливании они не образуются.

ZnO + 2NaOH = (t) H2O + Na2ZnO2 (цинкат натрия)

Оксид цинка (II) может быть восстановлен до чистого цинка различными восстановителями.

ZnO + C = (t) Zn + CO

ZnO + H2 = (t) Zn + H2O

ZnO + CO = (t) Zn + CO2

Гидроксид цинка (II) получается в ходе реакций между растворимыми солями цинка и щелочами.

Гидроксид цинка

ZnSO4 + NaOH = Na2SO4 + Zn(OH)2

Гидроксид цинка (II) обладает амфотерными свойствами, реагирует как с кислотами, так и с основаниями.

Zn(OH)2 + HCl = ZnCl2 + H2O

Zn(OH)2 + HNO3 = Zn(NO3)2 + H2O

Zn(OH)2 + NaOH = Na2[Zn(OH)4]

При прокаливании комплексные соли распадаются, вода испаряется.

Na2[Zn(OH)4] = (t) Na2ZnO2 + H2O

Zn(OH)2 + NaOH = (t) Na2ZnO2 + H2O

Серебро

Драгоценный металл, известный человеку с древнейших времен. Встречаемся в самородном виде. Будучи благородным металлом,
серебро обладает низкой реакционной способностью.

Серебро

Химические свойства

  • Реакции с неметаллами
  • Серебро не окисляется кислородом даже при высокой температуре. Галогены легко окисляют серебро до соответствующих галогенидов.
    При нагревании с серой получается сульфид серебра.

    Ag + Cl2 = AgCl

    Ag + S = (t) Ag2S

  • Реакции с кислотами
  • Серебро не растворяется в соляной и разбавленной серной кислотах, однако способно реагировать с концентрированными кислотами.

    Ag + HNO3(конц.) = AgNO3 + NO2↑ + H2O

    Потемнение серебряных изделий обусловлено реакцией серебра с сероводородом в присутствии кислорода.

    Ag + H2S + O2 = Ag2S + H2O

    Потемнение серебра на воздухе

  • С солями
  • Ag + FeCl3 = AgCl + FeCl2

  • С органическими веществами
  • В дальнейшем, при изучении органической химии, вы не раз столкнетесь с соединением серебра — аммиачным раствором оксида серебра.

    Будет полезно, если вы уже сейчас познакомитесь с его формулой на примере реакции окисления уксусного альдегида до уксусной кислоты.

    CH3CHO + [Ag(NH3)2]OH = CH3COOH + Ag + NH3 + H2O

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Медь. Серебро

Разбор сложных заданий в тг-канале:

Медь ($Cu$) — элемент побочной подгруппы первой группы. Электронная формула: ($…3d^{10}4s^1$). Десятый d-электрон атома меди подвижный, т. к. переместился с $4s$-подуровня. Медь в соединениях проявляет степени окисления $+1(Cu_2O)$ и $+2(CuO)$.

Медь — мягкий, блестящий металл, имеющий красную окраску, ковкий и обладает хорошими литейными качествами, хороший тепло- и электропроводник. Температура плавления $1083°С$.

Как и другие металлы побочной подгруппы I группы Периодической системы, медь стоит в ряду активности правее водорода и не вытесняет его из кислот, но реагирует с кислотами-окислителями:

$Cu+2H_2SO_{4(конц.)}=CuSO_4+SO_2↑+2H_2O$;

$Cu+4HNO_{3(конц.)}=Cu(NO_3)_2+2NO_2↑+2H_2O$.

Под действием щелочей на растворы солей меди выпадает осадок слабого основания голубого цвета — гидроксида меди (II), который при нагревании разлагается на основный оксид $CuO$ черного цвета и воду:

$Cu^{2+}+2OH^{–}=Cu(OH)_2↓; Cu(OH)_2 {→}↖{t°} CuO+H_2O$

Полный курс подготовки к ЕГЭ по химии-2023. Здесь приведена теория по каждому заданию в соответствии с спецификацией и кодификатором ЕГЭ по химии. Учебные материалы и теория, необходимые для подготовки к ЕГЭ по химии.

Вы можете поддержать работу сайта, разработку новых материалов и тестов. Донаты принимаются через форму:

Обратите внимание! Форма выше — это не оплата курса по химии, это форма для сбора донатов на работу сайта)

Кодификатор ЕГЭ по химии-2022

1   ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИИ
 
 










 1.1.  Современные представления о строении атома
 1.1.1. Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы.   Электронная конфигурация атомов и ионов. Основное и возбужденное состояния атомов 

Тренировочные тесты в формате ЕГЭ по теме «Строение атома» (задание 1 ЕГЭ по химии) ( с ответами)

1.2 Периодический закон и Периодическая система химических элементов Д.И. Менделеева
1.2.1. Закономерности изменения свойств элементов и их соединений по периодам и группам

Тренировочные тесты в формате ЕГЭ по теме «Периодический закон» (задание 2 ЕГЭ по химии) ( с ответами)

1.2.2. Общая характеристика металлов IА–IIIА групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов.
1.2.3.  Характеристика переходных элементов (меди, цинка, хрома, железа) по их положению в Периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов
1.2.4. Общая характеристика неметаллов IVА–VIIА групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов
1.3.  Химическая связь и строение вещества
1.3.1 Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

Тренировочные тесты в формате ЕГЭ по теме «Химические связи» (задание 4 ЕГЭ по химии) ( с ответами)

1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов

Тренировочные тесты в формате ЕГЭ по теме «Степень окисления и валентность» (задание 3 ЕГЭ по химии) ( с ответами)

1.3.3. Вещества молекулярного и немолекулярного строения. Тип кристаллической решетки. Зависимость свойств веществ от их состава и строения
1.4.  Химическая реакция
1.4.1.  Классификация химических реакций в неорганической и органической химии

Тренировочные тесты в формате ЕГЭ по теме «Классификация реакций» ( с ответами)

1.4.2. Тепловой эффект химической реакции. Термохимические уравнения
1.4.3. Скорость реакции, ее зависимость от различных факторов

Тренировочные тесты в формате ЕГЭ по теме «Скорость реакции» ( с ответами) 

1.4.4. Обратимые и необратимые химические реакции. Химическое равновесие. Смещение химического равновесия под действием различных факторов

Тренировочные тесты в формате ЕГЭ по теме «Химическое равновесие реакции» ( с ответами)

1.4.5.
Электролитическая диссоциация электролитов в водных растворах. Сильные и слабые электролиты
1.4.6.  Реакции ионного обмена 
1.4.7.
Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная

Тренировочные тесты в формате ЕГЭ по теме «Гидролиз»  (с ответами) 

1.4.8.
Реакции окислительно-восстановительные. Коррозия металлов и способы защиты от нее

Тренировочные тесты в формате ЕГЭ по теме «Окислительно-восстановительные реакции» (задание 19 ЕГЭ по химии) ( с ответами)

1.4.9.
Электролиз расплавов и растворов (солей, щелочей, кислот)

Тренировочные тесты в формате ЕГЭ по теме «Электролиз» (задание 20 ЕГЭ по химии) ( с ответами)

1.4.10.
Ионный (правило В.В. Марковникова) и радикальный механизмы реакций в органической химии
2 НЕОРГАНИЧЕСКАЯ ХИМИЯ
2.1. Классификация неорганических веществ. Номенклатура неорганических веществ (тривиальная и международная)

Тренировочные тесты в формате ЕГЭ по теме «Классификация неорганических веществ» (задание 5 ЕГЭ по химии) ( с ответами)

2.2. Характерные химические свойства простых веществ – металлов: щелочных, щелочноземельных, магния, алюминия; переходных металлов (меди, цинка, хрома, железа)
2.3. Характерные химические свойства простых веществ – неметаллов: водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния
2.4. Характерные химические свойства оксидов: основных, амфотерных, кислотных
2.5. Характерные химические свойства оснований и амфотерных гидроксидов
2.6. Характерные химические свойства кислот
2.7. Характерные химические свойства солей: средних, кислых, основных; комплексных (на примере соединений алюминия и цинка)
2.8.  Взаимосвязь различных классов неорганических веществ
3.  ОРГАНИЧЕСКАЯ ХИМИЯ
3.1. Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах

Тренировочные тесты в формате ЕГЭ по теме «Теория строения орг. соединений»  ( с ответами)

3.2. Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа
3.3. Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная)

Тренировочные тесты в формате ЕГЭ по теме «Классификация орг. соединений»  ( с ответами)

3.4. Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и гомологов бензола, стирола)
3.5. Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола.
3.6. Характерные химические свойства альдегидов, карбоновых кислот, сложных эфиров
3.7. Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот. Важнейшие способы получения аминов и аминокислот

Тренировочные тесты в формате ЕГЭ по теме «Свойства азотсодержащих соединений»  ( с ответами)

3.8. Биологически важные вещества: жиры, белки, углеводы (моносахариды, дисахариды, полисахариды)
3.9.  Взаимосвязь органических соединений
4.  МЕТОДЫ ПОЗНАНИЯ В ХИМИИ. ХИМИЯ И ЖИЗНЬ
4.1.  Экспериментальные основы химии
4.1.1. Правила работы в лаборатории. Лабораторная посуда и оборудование. Правила безопасности при работе с едкими, горючими и токсичными веществами, средствами бытовой химии
4.1.2. Научные методы исследования химических веществ и превращений. Методы разделения смесей и очистки веществ
4.1.3. Определение характера среды водных растворов веществ. Индикаторы
4.1.4. Качественные реакции на неорганические вещества и ионы
4.1.5. Качественные реакции органических соединений
4.1.6. Основные способы получения (в лаборатории) конкретных веществ, относящихся к изученным классам неорганических соединений
4.1.7. Основные способы получения углеводородов (в лаборатории): алканов, алкенов, алкинов, циклоалканов, алкадиенов, аренов
4.1.8. Основные способы получения органических кислородсодержащие соединений (в лаборатории): спиртов, альдегидов и кетонов, карбоновых кислот
4.2.1. Понятие о металлургии: общие способы получения металлов
4.2.2. Общие научные принципы химического производства (на примере промышленного получения аммиака, серной кислоты, метанола). Химическое загрязнение окружающей среды и его последствия
4.2.3. Природные источники углеводородов, их переработка
4.2.4. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки
4.3. Расчеты по химическим формулам и уравнениям реакций
4.3.1. Расчеты с использованием понятия «массовая доля вещества в растворе»
4.3.2. Расчеты объемных отношений газов при химических реакциях
4.3.3. Расчеты массы вещества или объема газов по известному количеству вещества, массе или объему одного из участвующих в реакции веществ
4.3.4. Расчеты теплового эффекта реакции
4.3.5. Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси)
4.3.6. Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества
4.3.7.  Установление молекулярной и структурной формулы вещества
4.3.8. Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного
4.3.9. Расчеты массовой доли (массы) химического соединения в смеси

1.1.1. Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы.   Электронная конфигурация атомов и ионов. Основное и возбужденное состояния атомов

Тренировочные тесты в формате ЕГЭ по теме «Строение атома» (задание 1 ЕГЭ по химии) ( с ответами)

1.2. Периодический закон и Периодическая система химических элементов Д.И. Менделеева

Тренировочные тесты в формате ЕГЭ по теме «Периодический закон» (задание 2 ЕГЭ по химии) ( с ответами)

1.2.1. Закономерности изменения свойств элементов и их соединений по периодам и группам

1.2.2. Общая характеристика металлов IА–IIIА групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов.

1.2.3. Характеристика переходных элементов (меди, цинка, хрома, железа) по их положению в Периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов

1.2.4. Общая характеристика неметаллов IVА–VIIА групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов

1.3. Химическая связь и строение вещества

1.3.1. Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

Тренировочные тесты в формате ЕГЭ по теме «Химические связи» (задание 4 ЕГЭ по химии) ( с ответами)

1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов

Тренировочные тесты в формате ЕГЭ по теме «Степень окисления и валентность» (задание 3 ЕГЭ по химии) ( с ответами)

1.3.3. Вещества молекулярного и немолекулярного строения. Тип кристаллической решетки. Зависимость свойств веществ от их состава и строения

1.4. Химическая реакция

1.4.1. Классификация химических реакций в неорганической и органической химии

1.4.2. Тепловой эффект химической реакции. Термохимические уравнения

1.4.3Скорость реакции, ее зависимость от различных факторов

Тренировочные тесты в формате ЕГЭ по теме «Скорость реакции» (задание 20 ЕГЭ по химии) ( с ответами)

1.4.4. Обратимые и необратимые химические реакции. Химическое равновесие. Смещение химического равновесия под действием различных факторов

Тренировочные тесты в формате ЕГЭ по теме «Химическое равновесие реакции» (задание 24 ЕГЭ по химии) ( с ответами)

1.4.5. Электролитическая диссоциация электролитов в водных растворах. Сильные и слабые электролиты

1.4.6. Реакции ионного обмена

1.4.7. Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная

Тренировочные тесты в формате ЕГЭ по теме «Гидролиз» (задание 23 ЕГЭ по химии) ( с ответами)

1.4.8. Реакции окислительно-восстановительные. Коррозия металлов и способы защиты от нее

Тренировочные тесты в формате ЕГЭ по теме «Окислительно-восстановительные реакции» (задание 21 ЕГЭ по химии) ( с ответами)

1.4.9. Электролиз расплавов и растворов (солей, щелочей, кислот)

Тренировочные тесты в формате ЕГЭ по теме «Электролиз» (задание 22 ЕГЭ по химии) ( с ответами)

1.4.10. Ионный (правило В.В. Марковникова) и радикальный механизмы реакций в органической химии

2. НЕОРГАНИЧЕСКАЯ ХИМИЯ

2.1. Классификация неорганических веществ. Номенклатура неорганических веществ (тривиальная и международная)

Тренировочные тесты в формате ЕГЭ по теме «Классификация неорганических веществ» (задание 5 ЕГЭ по химии) ( с ответами)

2.2. Характерные химические свойства простых веществ – металлов: щелочных, щелочноземельных, магния, алюминия; переходных металлов (меди, цинка, хрома, железа)

2.3. Характерные химические свойства простых веществ – неметаллов: водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния

2.4. Характерные химические свойства оксидов: основных, амфотерных, кислотных

2.5. Характерные химические свойства оснований и амфотерных гидроксидов

2.6. Характерные химические свойства кислот

2.7. Характерные химические свойства солей: средних, кислых, основных; комплексных (на примере соединений алюминия и цинка)

2.8. Взаимосвязь различных классов неорганических веществ

3. ОРГАНИЧЕСКАЯ ХИМИЯ

3.1. Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах

3.2. Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа

3.3. Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная)

3.4. Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и гомологов бензола, стирола)

3.5. Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола.

3.6. Характерные химические свойства альдегидов, карбоновых кислот, сложных эфиров

3.7. Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот. Важнейшие способы получения аминов и аминокислот

3.8. Биологически важные вещества: жиры, белки, углеводы (моносахариды, дисахариды, полисахариды)

3.9. Взаимосвязь органических соединений

4. МЕТОДЫ ПОЗНАНИЯ В ХИМИИ. ХИМИЯ И ЖИЗНЬ

4.1. Экспериментальные основы химии

4.1.1. Правила работы в лаборатории. Лабораторная посуда и оборудование. Правила безопасности при работе с едкими, горючими и токсичными веществами, средствами бытовой химии

4.1.2. Научные методы исследования химических веществ и превращений. Методы разделения смесей и очистки веществ

4.1.3. Определение характера среды водных растворов веществ. Индикаторы

4.1.4. Качественные реакции на неорганические вещества и ионы

4.1.5. Качественные реакции органических соединений

4.1.6. Основные способы получения (в лаборатории) конкретных веществ, относящихся к изученным классам неорганических соединений

4.1.7. Основные способы получения углеводородов (в лаборатории): алканов, алкенов, алкинов, циклоалканов, алкадиенов, аренов

4.1.8. Основные способы получения органических кислородсодержащие соединений (в лаборатории): спиртов, альдегидов и кетонов, карбоновых кислот

4.2.1. Понятие о металлургии: общие способы получения металлов

4.2.2. Общие научные принципы химического производства (на примере промышленного получения аммиака, серной кислоты, метанола). Химическое загрязнение окружающей среды и его последствия

4.2.3. Природные источники углеводородов, их переработка

4.2.4. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки

4.3. Расчеты по химическим формулам и уравнениям реакций

4.3.1. Расчеты с использованием понятия «массовая доля вещества в растворе»

4.3.2. Расчеты объемных отношений газов при химических реакциях

4.3.3. Расчеты массы вещества или объема газов по известному количеству вещества, массе или объему одного из участвующих в реакции веществ

4.3.4. Расчеты теплового эффекта реакции

4.3.5. Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси)

4.3.6. Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества

4.3.7. Установление молекулярной и структурной формулы вещества

4.3.8. Расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного

4.3.9. Расчеты массовой доли (массы) химического соединения в смеси

Курс подготовки к ЕГЭ или ОГЭ (ГИА) по химии:

Общая химия

Часть 1. Строение вещества

1. Строение атома. Электронные формулы атомов

2. Периодический закон

3. Строение молекул. Типы химических связей. Основные характеристики ковалентной связи. Межмолекулярные связи

4. Строение вещества (кристаллические решетки). Основные физические свойства различных кристаллов

5. Степень окисления и валентность химических элементов.

Часть 2. Основы неорганической химии

1. Классификация неорганических веществ

2. Номенклатура неорганических веществ

3. Способы получения оксидов

4. Химические свойства основных оксидов

5. Химические свойства кислотных оксидов

6. Химические свойства амфотерных оксидов

7. Химические свойства и способы получения кислот

8. Химические свойства и способы получения солей

9. Химические свойства и способы получения оснований

10. Взаимосвязь основных классов неорганических веществ

11. Бинарные соединения — гидриды.

12. Реакции разложения в неорганической химии

Часть 3. Физико-химия растворов:

1. Понятие о растворах,  растворимость

2. Теория электролитической диссоциации

3. Реакции ионного обмена

4. Гидролиз.

Часть 4. Окислительно-восстановительные реакции

1. Окислительно-восстановительные реакции.

2. Электролиз солей.  Электролиз солей карбоновых кислот. Коррозия. 

Часть 5. Особенности работы в лаборатории

Часть 6. Химические реакции. Закономерности их протекания

1. Классификация химических реакций.

2. Кинетика  (скорость) химических реакций и ее зависимость от разных факторов.

3. Термодинамика химических реакций: химическое равновесие и его смещение.

Органическая химия

1. Теория строения органических веществ. Классификация органических веществ. Гомологи и изомеры. Виды изомерии.

2. Алканы: химические и физические свойства, строение, получение, изомерия. 

3. Алкены: химические и физические свойства, строение, получение, изомерия. 

4. Алкины: химические и физические свойства, строение, получение, изомерия. 

5. Алкадиены: химические и физические свойства, строение, получение, изомерия. 

6. Арены: химические и физические свойства, строение, получение, изомерия. 

7. Циклоалканы: химические и физические свойства, строение, получение, изомерия. 

8. Спирты: химические и физические свойства, строение, изомерия и способы получения. Фенолы: химические свойства, способы получения, строение и изомерия.

9. Альдегиды и кетоны: химические и физические свойства, строение и изомерия, получение.

10. Карбоновые кислоты: химические и физические свойства, строение, номенклатура и изомерия, способы получения.

11. Сложные эфиры: химические и физические свойства, строение, получение, изомерия.

12. Жиры: химические и физические свойства, строение, получение.

13. Углеводы: химические и физические свойства, строение, получение.

14. Амины: химические и физические свойства, строение, получение, изомерия.

15. Аминокислоты: химические и физические свойства, строение, получение, изомерия.

16. Белки: химические и физические свойства, строение и получение.

17. Взаимосвязь разных классов органических веществ.

18. Качественные реакции в органической химии.

Характерные реакции в органической химии:

Реакция Дюма   Электролиз солей карбоновых кислот      Пиролиз метана       Реакция Вагнера

Химия элементов

Часть 1. Химия щелочных металлов и их соединений.  Пероксиды щелочных металлов. Гидроксиды щелочных металлов.

Часть 2. Химия щелочноземельных металлов. Оксиды щелочноземельных металлов. Гидроксиды щелочноземельных металлов.

Часть 3. Химия алюминия и его соединений. Оксид алюминия. Гидроксид алюминия. Соли алюминия.

Часть 4.  Химия углерода. Оксид углерода (II)  и оксид углерода (IV). Угольная кислота и ее соли (карбонаты и гидрокарбонаты).

Часть 5. Химия кремния. Оксид кремния (IV). Кремниевая кислота. Силан. Силикаты.

Часть 6. Химия азота и его соединений. Оксиды азота. Аммиак. Нитриды. Азотная кислота и азотистая кислота. Нитраты.

Часть 7. Химия фосфора и его соединений. Фосфин. Фосфиды металлов. Оксиды фосфора III и V. Фосфорные кислоты и их соли (фосфаты, гидрофосфаты и дигидрофосфаты, пирофосфаты и метафосфаты). Фосфористая кислота.

Часть 8. Химия кислорода и его соединений.

Часть 9. Химия серы и ее соединений. Сероводород и сульфиды. Оксиды серы – сернистый газ и серный ангидрид. Серная кислота и ее свойства. Сернистая кислота. Особенности химии сульфатов и сульфитов.

Часть 10. Химия галогенов и их соединений.

Часть 11. Химия d-элементов: железа, хрома, цинка,  меди.

Часть 12. Химия водорода и его соединений.

Задачи: базовый блок

1. Атомно -молекулярное учение

2. Способы выражения концентрации в растворах: массовая доля, растворимость, молярная концентрация.

3. Расчеты по уравнению реакции

4. Задачи на избыток-недостаток

5. Задачи на примеси

6. Задачи на выход

Задачи повышенной сложности

1. Задачи на электролиз

2. Задачи на кристаллогидраты

3. Задачи на пластинки

4. Задачи на порции

5. Неполное разложение

6. Задачи на альтернативные реакции (кислые/средние соли, амфотерность)

7. Задачи на атомистику

8. Задачи на смеси и сплавы

9. Задачи на растворимость

Диагностические и тренировочные работы

Все реальные варианты КИМ ЕГЭ по химии

Тренировочная работа по химии в формате ЕГЭ 26 октября 2017 года

Тренировочная работа по химии для 11 классов 30 ноября 2017 года

Досрочный ЕГЭ по химии 25.03.2019

Видеоопыты

Видеоопыты по общей и неорганической химии

Видеоопыты по органической химии

Спецификация ЕГЭ по химии-2022

Медь находится в четвертом периоде, группе IБ. Ее электронная формула 29Cu 1s22s22p63s23p63d104s1, наиболее устойчивые степени окисления +2 и +1. Медь в промышленности получают пирометаллургическим методом, что можно описать следующим уравнением:

Полученную медь называют черновой (содержание меди 95–98%). Затем медь подвергают электролитическому рафинированию для получения меди высокой чистоты. Металл малой активности, в ряду напряжений металлов медь расположена после водорода. Ее химические свойства:

Йодид меди (II) не существует. Попытки получить его реакциями обмена приводят к иодиду меди (I) и йоду, например:

В электрохимическом ряду напряжений металлов медь расположена после водорода, поэтому с разбавленной соляной кислотой она не реагирует. Однако с концентрированной соляной кислотой она взаимодействует с образованием дихлоркупрата (I) водорода:

Кроме того, медь способна взаимодействовать с соляной кислотой в присутствии кислорода воздуха:

Медь образует оксиды состава Cu2O, CuO. Первый проявляет основные, а второй амфотерные с преобладанием основных свойства. Оба оксида легко восстанавливаются до меди под действием различных восстановителей:

Гидроксид меди (II) Cu(OH)2 разлагается при нагревании, проявляет амфотерные свойства с преобладанием основных:

Серебро находится в пятом периоде, группе IБ. Его электронная формула 1s22s22p63s23p63d104s24p64d105s1. В промышленности серебро получают комплексной переработкой полиметаллических руд. Химические реакции, характерные для серебра:

Оксид серебра Ag2O — термически нестабильный, типичный основный оксид. Его химические свойства:

Цинк находится в четвертом периоде, группе IIБ. Его электронная формула 30Zn 1s22s22p63s23p63d104s2. В промышленности цинк получают либо электролизом водного раствора его сульфата, либо пирометаллургическим методом: сернистые руды подвергают обжигу с последующим восстановлением оксида цинка коксом:

Цинк относится к металлам средней активности, в своих соединениях проявляет единственную степень окисления +2. Характерные для цинка химические реакции:

Особенностью цинка являются его реакции с серной и азотной кислотами различной концентрации. При этом в зависимости от концентрации кислот образуются различные продукты реакции:

Оксид и гидроксид цинка являются амфотерными. Их характерные реакции:

Хром расположен в четвертом периоде, группе VIБ. Его электронная формула 24Cr 1s22s22p63s23p63d54s1. Металл средней активности. В своих соединениях хром проявляет степени окисления +2, +3 и +6. В промышленности чистый хром получают восстановлением оксида хрома методом алюминотермии:

Его характерные химические реакции:

Хром образует ряд оксидов: CrO — основный оксид, Cr2O3 — амфотерный оксид, CrO3 — кислотный оксид, следовательно, рост степени окисления сопровождается усилением кислотных свойств. Все оксиды хрома вступают в окислительно-восстановительные реакции.

Ниже приведены характерные для этих соединений химические реакции:

Гидроксид хрома (III) проявляет амфотерные свойства, вступает в окислительно-восстановительные реакции:

Марганец расположен в четвертом периоде, группе VIIБ, Периодической системы Д.И. Менделеева. Его электронная формула 1s22s22p63s23p63d54s2. Характерные степени окисления марганца +2, +4, +6 и +7. В чистом виде марганец получают термическим восстановлением оксидов или галогенидов водородом, натрием, магнием, алюминием, углеродом или кремнием (метод кремнийтермии):

Особо чистый марганец получают электролизом водного раствора сульфата марганца (II).

Химические свойства марганца:

Марганец образует пять оксидов: MnO, Mn2O3, MnO2, MnO3, Mn2O7. MnO проявляет основные свойства. Mn2O3 при взаимодействии с разбавленными растворами кислот диспропорционирует, а при нагревании с концентрированными растворами кислот выделяет кислород:

MnO2 не взаимодействует ни со щелочами, ни с разбавленными растворами кислот. С концентрированными кислотами при нагревании реагирует так же, как и Mn2O3:

Mn2O7 — единственный среди оксидов марганца, который является жидкостью при нормальных условиях. Кислотный оксид. Разлагается уже при температуре 55 °С, при ударе может взорваться.

Железо находится в четвертом периоде, группе VIIIБ. Его электронная формула 26Fe 1s22s22p63s23p63d64s2. Металл средней активности, в своих соединениях проявляет степени окисления +2 и +3. Известны ряд соединений железа со степенью окисления +6. Они являются сильными окислителями. Химически чистое железо получают разложением его пентакарбонила:

Основная масса железа используется не в чистом виде, а в виде сплавов с углеродом (сталь, чугун) и другими элементами. Эти сплавы получают в доменных печах. Упрощенно этот процесс можно описать уравнением:

Характерные для железа химические реакции:

FeO проявляет основные, а Fe2O3 — амфотерные с преобладанием основных свойства. Оба оксида вступают в окислительно-восстановительные реакции:

Для двойного оксида железа (II) — железа (III) Fe3O4 (магнетит) характерны в первую очередь окислительно-восстановительные реакции, а также реакции обмена, которые идут также, как и у входящих индивидуально в его состав оксидов:

Гидроксид железа (II) практически проявляет только основные свойства, при нагревании разлагается, вступает в окислительно-восстановительные реакции:

Гидроксид железа (III) проявляет амфотерные с преобладанием основных свойства, при нагревании разлагается, вступает в окислительно-восстановительные реакции:

Йодид железа (III) не существует. Попытки получить его обменными реакциями приводят к йодиду железа (II) и йоду:

серебро

Серебро – довольно тяжёлый (ρ = 10,5 г/см

3

), блестящий (коэффициент отражения света близок к 100%), серебристо-белый металл, ковкий и пластичный (1 г серебра можно вытянуть тончайшую проволочку длиной почти 2 км!), лучший среди металлов проводник тепла (поэтому серебряная ложка в стакане горячего чая быстро нагревается) и электричества. Температура плавления 962°С.


Применение

Серебро известно с древнейших времён. Это связано с тем, что в своё время серебро, равно как и золото, встречалось в самородном виде – его не приходилось выплавлять из руд.

В старину из него изготовляли монеты, вазы, ювелирные изделия, тончайшими серебряными нитями украшали одеяния. Сейчас применение серебра не ограничивается ювелирным делом – оно идёт на производство зеркал с высокой отражающей способностью (недорогие зеркала покрывают алюминием), электрических контактов, аккумуляторов, используется в стоматологии, применяется в фильтрах противогазов, как дезинфицирующее вещество для обеззараживания воды. Некоторое время назад для лечения простуды использовали растворы коллоидного серебра – протаргол и колларгол.

Йодид серебра (AgI) применяется для управления климатом («разгон облаков»). Кристаллическая решетка йодида серебра очень схожа по строению с решеткой льда, поэтому введение небольшого количества иодида вызывает образование очагов конденсации в облаках, тем самым вызывая выпадение осадков.

Серебро зарегистрировано в качестве пищевой добавки Е-174.

Из серебра делают электроды для мощных цинк-серебряных аккумуляторов. Так, в аккумуляторах затонувшей американской подводной лодки «Трешер» было три тонны серебра. Высокую теплопроводность и химическую инертность серебра используют в электротехнике: из серебра и его сплавов делают электрические контакты, серебром покрывают провода в ответственных приборах. Из серебряно-палладиевого сплава (75% Ag) делают зубные протезы.

Огромные количества серебра раньше шли на изготовление монет. Сейчас из серебра делают в основном юбилейные и памятные монеты. Много серебра расходуется для изготовления ювелирных изделий и столовых приборов. На таких изделиях, как правило, ставят пробу, указывающую массу чистого серебра в граммах в 1000 г сплава (современная проба), либо число золотников в одном фунте сплава (дореволюционная проба). В 1 фунте содержится 96 золотников, поэтому, например, старой пробе 84 соответствует современная [(84/96)·1000] = 875. Советские рубли и полтинники имели пробу 900. Современные серебряные изделия могут иметь пробу 960, 925, 916, 875, 800 и 750.

Соединения серебра часто неустойчивы к нагреванию и действию света. Открытие светочувствительности солей серебра привело к появлению фотографии и быстрому увеличению спроса на серебро. Еще в середине 20 во всем мире ежегодно добывалось около 10 000 тонн серебра, а расходовалось значительно больше (дефицит покрывался за счет старых запасов). Вытеснение черно-белых фотографий и кинофильмов цветными позволило значительно снизить потребление серебра.

«Серебро не окисляется на воздухе, – писал Д.И.Менделеев в своем учебнике «Основы химии», – а потому причисляется к разряду так называемых благородных металлов». Но хотя серебро с кислородом непосредственно не реагирует, оно может растворять значительные количества этого газа. Даже твердое серебро при температуре 450° С способно поглотить пятикратный объем кислорода. Значительно больше кислорода (до 20 объемов на 1 объем серебра) растворяется в жидком металле.

Это свойство серебра приводит к красивому (и опасному) явлению – разбрызгиванию серебра, которое известно с древних времен. Если расплавленное серебро поглотило значительные количества кислорода, то затвердевание металла сопровождается высвобождением большого количества газа. Давлением выделяющегося кислорода корка на поверхности застывающего серебра разрывается, часто с большой силой. В результате происходит внезапное взрывное разбрызгивание металла.

При 170° С серебро на воздухе покрывается тонкой пленкой оксида Ag

2

О, а под действием озона образуются высшие оксиды (например Ag

2

O

3

). Но особенно «боится» серебро йода (йодной настойки) и сероводорода. Со временем серебряные изделия часто тускнеют и даже могут почернеть. Причина – действие сероводорода. Его источником могут быть не только тухлые яйца, но и резина, некоторые полимеры и даже продукты. В присутствии влаги серебро легко реагирует с сероводородом с образованием на поверхности тончайшей пленки сульфида Ag

2

S, из-за неровностей поверхности и игры света такая пленка иногда кажется радужной. Постепенно пленка утолщается, темнеет, становится коричневой, а потом черной.

Одной из важных сфер использования серебра являлась медицина. Древние египтяне, например, прикладывали серебряную пластину к ранам, добиваясь их быстрого заживления. Персидский царь Кир в военных походах перевозил воду только в серебряных сосудах. Знаменитый средневековый врач Парацельс лечил некоторые болезни AgNO

3

– нитратом серебра (ляписом). Этим средством в медицине пользуются и поныне.

Сравнительно недавно исследования клеток организма на содержание серебра привели к заключению, что оно повышено в клетках мозга.

Хорошо известно бактерицидное действие малых концентраций серебра на питьевую воду. При содержании 0,05 мг/л воду можно пить без вреда для здоровья. Вкус ее при этом не изменяется. (Для питья космонавтов допускается концентрация Ag

+

до 0,1 – 0,2 мг/л.).

Для дезинфекции воды в бассейнах было предложено насыщать ее бромидом серебра. Насыщенный раствор AgBr содержит 0,08 мг/л, что безвредно для здоровья человека, но губительно для микроорганизмов и водорослей.

Однако, как это часто бывает, то, что полезно в малых дозах, губительно в больших. Не составляет исключения и Ag.

Серебро при избыточном поступлении в организм вызывает снижение иммунитета, изменения в тканях головного и спинного мозга, приводит к заболеваниям печени, почек, щитовидной железы. Описаны случаи тяжёлого нарушения психики у людей при отравлении препаратами серебра. К счастью, в нашем теле через 1-2 недели остаётся всего 0,02 – 0,1 % введённого серебра, остальное выводится из организма.

При многолетней работе с серебром и его солями, когда они поступают в организм

длительно

, но

малыми дозами

, может развиться необычное заболевание – аргирия. Поступающее в организм серебро способно медленно отлагаться в виде металла в соединительной ткани и стенках капилляров разных органов, в том числе в почках, костном мозге, селезенке. Накапливаясь в коже и слизистых оболочках, серебро придает им серо-зеленую или голубоватую окраску, особенно сильную на открытых участках тела, подвергающихся действию света. Изредка окраска может быть настолько интенсивной, что кожа напоминает кожу негров.

Развивается аргирия очень медленно, первые ее признаки появляются через 2–4 года непрерывной работы с серебром, а сильное потемнение кожи наблюдается лишь спустя десятки лет. Раньше всего темнеют губы, виски и конъюнктива глаз, затем веки. Сильно могут быть окрашены слизистые оболочки рта и десны, а также лунки ногтей. Иногда аргирия проявляется в виде мелких сине-черных пятен. Раз появившись, аргирия не исчезает, и вернуть коже ее прежний цвет не удается. Если не считать чисто косметических неудобств, больной аргирией может не испытывать никаких болезненных ощущений или расстройств самочувствия (если не поражены роговица и хрусталик глаза); в этом отношении аргирию можно назвать болезнью лишь условно. Есть у этой болезни и своя «ложка меда» – при аргирии не бывает инфекционных заболеваний: человек настолько «пропитан» серебром, что оно убивает все болезнетворные бактерии, попадающие в организм.


Серебро в природе

Этот красивый металл известен людям с древнейших времен. Изделиям из серебра, найденным в Передней Азии, более 6 тысяч лет. Из сплава золота и серебра (электрума) были изготовлены первые в мире монеты. И в течение нескольких тысячелетий серебро было одним из основных монетных металлов.

Особенно богаты серебром были расположенные в Центральной Европе Рудные горы, Гарц, горы Богемии и Саксонии. Из серебра, добывавшегося близ города Иоахимсталя (ныне Яхимов в Чехии), были отчеканены миллионы монет. Они вначале так и назывались – «иоахимсталеры»; затем название укоротилось до «талера» (в России по первой части слова – «ефимка»). Эти монеты были в ходу по всей Европе, став самой распространенной серебряной монетой в истории. От талера произошло и название доллара.

После открытия Америки множество самородков серебра было найдено на территории современных Перу, Чили, Мексики, Боливии. Так, в Чили обнаружен самородок в виде пластины массой 1420 кг. Многие элементы имеют «географические» названия, Аргентина же – единственная страна, названная по уже известному элементу. Последние из самых крупных самородков серебра найдены уже в XX веке в Канаде (провинция Онтарио). Один из них, названный «серебряный тротуар», имел длину 30 м и уходил вглубь земли на 18 м. Когда из него было выплавлено чистое серебро, его оказалось 20 тонн!

Самородное серебро находят редко; основная часть серебра в природе сосредоточена в минералах, основной – аргентит Ag

2

S. Еще больше серебра рассеяно среди различных горных пород.

При описании любого элемента принято указывать его первооткрывателя и обстоятельства открытия. Такими данными об элементе № 47 человечество не располагает. Серебром люди стали пользоваться еще тогда, когда не было ученых.

Латинское название серебра Аргентумпроисходит от греческого «аргос»– белый, блестящий. Русское слово «серебро», как считают учёные, происходит от слова «серп» (серп луны). Блеск серебра напоминал лунное сияние и алхимикам, использовавшим в качестве символа элемента знак луны.


Серебро и стекло

. Эти два вещества встречаются не только в производстве зеркал. Серебро нужно для изготовления сигнальных стекол и светофильтров. Небольшая добавка (0,15 – 0,20 %) нитрата серебра (или азотнокислого серебра) придает стеклу интенсивную золотисто-желтую окраску. А оранжевое стекло получают, вводя в стекломассу золото и серебро одновременно.

Серебро лучше многих других металлов противостоит действию щелочей. Именно поэтому стенки трубопроводов, автоклавов, реакторов и других аппаратов химической промышленности покрывают серебром как защитным металлом.

И по звонкости серебро заметно выделяется среди других металлов. Недаром во многих сказках фигурируют серебряные колокольчики. Колокольных дел мастера издавна добавляли серебро в бронзу «для малинового звона». В наше время струны некоторых музыкальных инструментов делают из сплава, в котором 90% серебра.


Если серебро почернело …

как почистить серебро

При длительном хранении серебряные изделия тускнеют – покрываются тончайшим слоем сульфида серебра Ag

2

S. Чтобы вернуть изделию прежний блеск, необходимо снять сульфидную плёнку. Это можно сделать несколькими способами.

1)          Смешать воду, нашатырный спирт и зубной порошок в виде кашицы. Это средство нанести на мягкую ткань и чистить изделия до удаления потемнения.

2)          Прокипятить серебряное изделие (около 20 минут) в воде с добавлением пищевой соды и кусочков алюминиевой фольги или проволоки (или в алюминиевой посуде).

3)          Обычный зубной порошок или зубная паста до сих пор не уступают ни одному из новейших средств. Потерев изделие бывшей щеткой для зубов, вы вернете ему первоначальный блеск.

Не важно, какое средство вы выберете для чистки изделий, обязательно промойте их тщательно после процедуры и вытрите насухо суконной тряпочкой.

Найди свое:
сиалис купить в украине
или виагру решать только вам. Мы же в свою очередь рады предложить выгодные цены на препараты.

1. Оксиды серебра и ртути являются термически неустойчивыми

2Ag2O → 4Ag + O2 (t)

2HgO → 2Hg + O2 (t)

Оксид меди (II) устойчив, но при очень высоких температурах разлагается на оксид меди (I) и кислород

4CuO → 2Cu2O + O2 (t = 1100ºC)

2. Обжиг сульфидов

При обжиге сульфидов серебра и ртути образуются не оксиды металлов, а сами металлы (так как оксиды термически неустойчивы)

Ag2S + O2 → 2Ag + SO2 (t)

Hg2S + O2 → Hg + SO2 (t)

При обжиге сульфидов других металлов, как правило, образуются два оксида

2CuS + 3O2 → 2CuO + 2SO2 (t)

2ZnS + 3O2 → 2ZnO + 2SO2 (t)

3. Термическое разложение нитратов

По тойже причине термической неустойчивости оксидов серебра и ртути их нитраты разлагаются при нагревании с образованием металла, а не оксида

2AgNO3  → 2Ag + 2NO2 + O2

Hg(NO3)2 →  Hg + 2NO2 + O2

Но:

2Cu(NO3)2 →  2CuO + 4NO2 + O2.

4. Термическое разложение сульфатов

Реакции протекают аналогично термическойму разложению нитратов, только с выделением сернистого газа SO2

2CuSO4 → 2CuO + 2SO2 + O2

Ag2SO4 → 2Ag + SO2 + O2

5. Сульфиды CuS, Ag2S и HgS не растворяются в воде и кислотах-неокислителях

CuS + HCl → реакция не идет.

FeS + 2HCl → H2S + FeCl2

ZnS + H2SO4(разб.) → H2S + ZnSO4

Реакции рассматриваемых сульфидов возможны только с кислотами-окислителями, в результате чего возможны следующие реакции

Cu(NO3)2 + H2S → CuS + 2HNO3

2AgNO3 + H2S → Ag2S + 2HNO3

Следующая реакция не протекает, так как образующиеся сульфид и кислота взаимодействуют между собой

ZnSO4 + H2S → реакция не идет (ZnS + H2SO4 → ZnSO4 + H2S)

Примеры реакций с концентрированной азотной кислотой

CuS + 10HNO3(конц.) → Cu(NO3)2 + H2SO4 + 8NO2 + 4H2O

Ag2S + 10HNO3(конц.) → 2AgNO3 + H2SO4 + 8NO2 + 4H2O.

1

H

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

232,04

f-элемент

Серый мягкий металл

91

Pa

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Понравилась статья? Поделить с друзьями:
  • Серебро егэ по химии
  • Серебро гто сколько баллов к егэ
  • Серебристая дорога ты зовешь меня куда решу егэ
  • Сердце человека рисунок с подписями егэ
  • Сердце строение анатомия егэ