Каталог заданий.
Шар
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 2 № 27059
Площадь большого круга шара равна 3. Найдите площадь поверхности шара.
Аналоги к заданию № 27059: 5049 27185 72765 72719 72721 72723 72725 72727 72729 72731 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 5.5.6 Площадь поверхности конуса, цилиндра, сферы
Решение
·
·
Курс Д. Д. Гущина
·
Сообщить об ошибке · Помощь
2
Тип 2 № 27072
Даны два шара. Радиус первого шара в 2 раза больше радиуса второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?
Аналоги к заданию № 27072: 5075 73287 520653 520694 26551 73243 73245 73247 73249 73251 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 5.5.6 Площадь поверхности конуса, цилиндра, сферы
Классификатор планиметрии: Отношение длин, площадей, объемов подобных фигур
Классификатор стереометрии: Площадь сферы
Решение
·
·
Курс Д. Д. Гущина
·
Сообщить об ошибке · Помощь
3
Тип 2 № 27097
Во сколько раз увеличится объем шара, если его радиус увеличить в три раза?
Аналоги к заданию № 27097: 74403 74405 74407 74409 74411 74413 74415 Все
Кодификатор ФИПИ/Решу ЕГЭ: 5.5.6 Площадь поверхности конуса, цилиндра, сферы
Классификатор планиметрии: Отношение длин, площадей, объемов подобных фигур, Подобие
Классификатор стереометрии: Площадь сферы
Решение
·
·
Курс Д. Д. Гущина
·
Сообщить об ошибке · Помощь
4
Тип 2 № 27125
Радиусы трех шаров равны 6, 8 и 10. Найдите радиус шара, объем которого равен сумме их объемов.
Аналоги к заданию № 27125: 75307 75309 75311 75313 Все
Кодификатор ФИПИ/Решу ЕГЭ: 5.5.6 Площадь поверхности конуса, цилиндра, сферы
Классификатор стереометрии: Объём цилиндра, конуса, шара
Решение
·
·
Курс Д. Д. Гущина
·
Сообщить об ошибке · Помощь
5
Тип 2 № 27162
Объем первого шара в 27 раз больше объема второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?
Аналоги к заданию № 27162: 76349 76355 505443 76351 76353 76357 76359 Все
Кодификатор ФИПИ/Решу ЕГЭ: 5.5.6 Площадь поверхности конуса, цилиндра, сферы
Классификатор планиметрии: Отношение длин, площадей, объемов подобных фигур, Подобие
Классификатор стереометрии: Объём цилиндра, конуса, шара, Площадь сферы
Решение
·
·
Курс Д. Д. Гущина
·
Сообщить об ошибке · Помощь
Пройти тестирование по этим заданиям
8. Геометрия в пространстве (стереометрия)
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Задачи по теме «Сфера и шар»
(blacktriangleright) Сфера – это множество точек пространства, находящихся на одинаковом расстоянии от заданной точки (O) (называемой центром сферы).
(blacktriangleright) Шар – это сфера вместе со своей внутренностью.
Основные формулы (где (R) – радиус сферы или шара):
(blacktriangleright) площадь сферы ({large{S=4pi R^2}})
(blacktriangleright) объем шара ({large{V=dfrac{4}{3}pi R^3}})
Задание
1
#1878
Уровень задания: Равен ЕГЭ
Объем шара равен (displaystyle frac{36}{sqrtpi}). Чему будет равна площадь поверхности шара, если его радиус увеличить на (displaystyle frac{6}{sqrtpi})?
(displaystyle V_{text{шара}} = frac{4}{3}pi R^3 = frac{36}{sqrtpi}) (Rightarrow) (displaystyle R = frac{3}{sqrtpi}). Радиус нового шара равен: (displaystyle R_{text{нов.}} = R + frac{6}{sqrtpi} = frac{9}{sqrtpi}). Тогда найдем площадь поверхности: (displaystyle {S_{text{пов.}} = 4pi R_{text{нов.}}^2 = 4pi left(frac{9}{sqrtpi}right)^2 = 4pifrac{81}{pi} = 324}.)
Ответ: 324
Задание
2
#1877
Уровень задания: Равен ЕГЭ
Во сколько раз объем шара больше объема сегмента, высота которого равна половине радиуса?
Необходимо объем шара разделить на объем соответствующего сегмента, высота которого равна (H = frac{1}{2}R)
[frac{V_{text{шара}}}{V_{text{сегм.}}} = frac{frac{4}{3}pi R^3}{pi left(frac{1}{2}Rright)^2left(R — frac{1}{3}left(frac{1}{2}Rright)right)} = frac{frac{4}{3}pi R^3}{frac{5}{24}pi R^3} = frac{4}{3} cdot frac{24}{5} = frac{32}{5} = 6,4.]
Ответ: 6,4
Задание
3
#2674
Уровень задания: Сложнее ЕГЭ
Имеются две сферы (S_1) и (S_2), про которые известно, что радиус первой сферы в (2) раза больше, чем радиус второй сферы. Кроме того, сфера (S_2) целиком находится внутри сферы (S_1). Пусть объём шара, ограниченного второй сферой, равен (V_2), а объём тела, заключённого между сферами, равен (V). Найдите (V : V_2).
Пусть (V_1) – объём шара, ограниченного первой сферой. Так как радиус (S_1) в два раза больше, чем радиус (S_2), то (V_1 : V_2 = .
[V = V_1 — V_2 = 8V_2 — V_2 = 7V_2,,] следовательно, (V : V_2 = 7).
Ответ: 7
Задание
4
#2306
Уровень задания: Сложнее ЕГЭ
Площадь поверхности шара равна (frac{37}{pi}). На расстоянии (frac1{2pi}) от центра шара проведена плоскость. Найдите длину полученной в сечении окружности.
Т.к. площадь поверхности сферы ищется по формуле (S=4pi R^2), то
[4pi R^2=dfrac{37}{pi} quad Rightarrow quad R^2=dfrac{37}{4pi^2}]
По условию задачи (OQ=frac1{2pi}). Рассмотрим (triangle OQT): он прямоугольный ((angle OQT=90^circ)), гипотенуза (OT=R), катет (QT) равен радиусу (r) окружности сечения.
Таким образом, по теореме Пифагора [QT^2=r^2=OT^2-OQ^2=dfrac{37}{4pi^2}-dfrac1{4pi^2}=dfrac{9}{pi^2}
quad Rightarrow quad r=dfrac3{pi}]
Таким образом, длина окружности сечения равна [C=2pi
r=2picdotfrac3{pi}=6.]
Ответ: 6
Задание
5
#2307
Уровень задания: Сложнее ЕГЭ
Площадь поверхности шара равна (64). На расстоянии (frac3{2sqrt{pi}}) от центра шара проведена плоскость. Найдите площадь полученного сечения.
Т.к. площадь поверхности сферы ищется по формуле (S=4pi R^2), то
[4pi R^2=64 quad Rightarrow quad R^2=dfrac{64}{4pi}]
По условию задачи (OQ=frac3{2sqrt{pi}}). Рассмотрим (triangle
OQT): он прямоугольный ((angle OQT=90^circ)), гипотенуза (OT=R), катет (QT) равен радиусу (r) окружности сечения.
Таким образом, по теореме Пифагора [QT^2=r^2=OT^2-OQ^2=dfrac{64}{4pi}-dfrac9{4pi}=dfrac{55}{4pi}]
Таким образом, площадь сечения равна
[S=picdot r^2=picdot dfrac{55}{4pi}=dfrac{55}4=13,75.]
Ответ: 13,75
Задание
6
#951
Уровень задания: Сложнее ЕГЭ
Центр большего основания усечённого конуса совпадает с центром сферы, а окружность его меньшего основания лежит на сфере. Отрезки (BC) и (AD) – диаметры меньшего и большего оснований этого усечённого конуса соответственно, (BCparallel AD), [S_{ABCD} = dfrac{210}{sqrt[3]{pi^2}},qquadqquad dfrac{r}{R} = dfrac{1}{sqrt{15}},] где (R) и (r) – радиусы большего и меньшего оснований усечённого конуса соответственно, (angle ADC = 45^circ). Найдите объём шара, ограниченного данной сферой.
Рассмотрим (ABCD): т.к. (BCparallel AD), то (ABCD) – трапеция. Так как (AB) и (CD) – образующие усечённого конуса, то (AB = CD) и трапеция (ABCD) – равнобедренная.
Построим (CHperp AD). Так как (angle ADC = 45^circ), то (triangle CHD) – равнобедренный и (CH = HD).
[HD = dfrac{AD — BC}{2} = R — r,qquadqquad S_{ABCD} = dfrac{BC + AD}{2}cdot CH = (R + r)(R — r) = R^2 — r^2 = dfrac{210}{sqrt[3]{pi^2}},] но (r = dfrac{R}{sqrt{15}}), тогда [R^2left(1-dfrac{1}{15}right) = dfrac{210}{sqrt[3]{pi^2}}qquadRightarrowqquad R = dfrac{15}{sqrt[3]{pi}}qquadRightarrowqquad V_{text{шара}} = dfrac{4}{3}pi R^3 = dfrac{4}{3}cdotpicdotdfrac{15^3}{pi} = 4500.]
Ответ: 4500
Задание
7
#3114
Уровень задания: Сложнее ЕГЭ
Дан шар, диаметр которого равен (9). Плоскость (alpha) пересекает диаметр (SZ) шара под углом (90^circ) и делит его точкой пересечения в отношении (1:2), считая от вершины (S). Найдите объем пирамиды с вершиной в точке (S), в основании которой лежит квадрат, вписанный в сечение шара плоскостью (alpha).
Пусть (O) – центр шара, (Q) – точка пересечения (SZ) и плоскости (alpha). Пусть (SABCD) – пирамида, объем которой нужно найти.
Рассмотрим сечение шара плоскостью (ASC).
Так как (SQ:QZ=1:2), то (SQ:SZ=1:3), следовательно, (SQ:SO=2:3), следовательно, (OQ:SO=1:3). Тогда [AQ=sqrt{AO^2-OQ^2}=sqrt{AO^2-left(dfrac13AOright)^2}=dfrac{2sqrt2}3AO
=dfrac{2sqrt2}3cdot dfrac92=3sqrt2] Следовательно, (AC=6sqrt2). Следовательно, (AB=AC:sqrt2=6).
Также [SQ=dfrac23SO=dfrac23cdot dfrac92=3] Заметим, что (SQ) – высота пирамиды, так как (SQperp alpha). Следовательно, [V=dfrac13cdot SQcdot AB^2=36.]
Ответ: 36
Задачи по стереометрии, в которых требуется произвести расчет объема сферы и измерение других неизвестных параметров, встречаются в ЕГЭ каждый год. Это означает, что знать основные формулы и уметь оперативно находить правильный ответ должны выпускники с разным уровнем подготовки. Понимая принцип решения задач ЕГЭ, в которых требуется вычислить объем или, к примеру, площадь сферы, старшеклассники смогут выполнять упражнения с любым количеством действий и при этом получить достаточно высокие баллы по итогам прохождения экзаменационного испытания.
Базовая информация
- Сферой называется поверхность, которая состоит из множества точек пространства. Все они располагаются на одинаковом расстоянии от точки О. Она является центром сферы.
- Геометрическое тело, которое ограничено сферой, называется шаром. Его осевое сечение представляет собой круг. Радиус последнего равен радиусу шара.
- Если радиус или диаметр шара увеличить в n раз, то площадь поверхности увеличится в n2 раз, а объем — в n3 раз.
Занимайтесь с образовательным порталом «Школково» для качественной подготовки к экзамену!
Проблема поиска необходимой информации встает перед старшеклассниками достаточно остро. Не всегда школьный учебник оказывается под рукой. А поиск базовых формул для вычисления площади, объема шара и других неизвестных параметров бывает достаточно трудоемким даже в онлайн-режиме.
Наш образовательный проект поможет сэкономить время и эффективно подготовиться к сдаче экзаменационного испытания. Мы предлагаем учащимся и их преподавателям выстроить процесс подготовки к ЕГЭ от простого к сложному. Такой подход позволит старшеклассникам понять, какие темы требуют более детального изучения, и улучшить имеющиеся знания.
Базовая информация, которую стоит повторить еще до выполнения задач на нахождение объема шара, представлена в разделе «Теоретическая справка». Материал, подготовленный опытными преподавателями «Школково», поможет вам восполнить пробелы в знаниях без помощи репетитора.
Чтобы задачи ЕГЭ по теме «Шар» или, например, по теме «Цилиндр», не вызывали затруднений, мы предлагаем также потренироваться в выполнении соответствующих упражнений. Множество заданий разной степени сложности вы найдете в разделе «Каталог». Каждое упражнение содержит подробный алгоритм решения. Попрактиковавшись в режиме онлайн и поняв принцип нахождения правильного ответа, школьники смогут без труда вычислить объем сферы.
При необходимости любое задание можно сохранить в разделе «Избранное». Это позволит в дальнейшем вернуться к нему.
Выполнять онлайн-задания на нахождение площади боковой сферы могут не только школьники из столицы, но и выпускники из других российских городов.
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
По теме: методические разработки, презентации и конспекты
мини-сборник для подготовки ГИА: «Уравнение с одной переменной»
сборник составлен для подготовки к ГИА по теме «Уравнения с одной переменной»…
Сборник заданий части С для подготовки к ЕГЭ по химии
Здесь собраны задания части С из материалов ЕГЭ по химии….
Сборник по подготовке к ЕГЭ авт.Щеголева Л.М. и Тимченко И.В. издан в журнале «Французский язык»
Сборник содержит различные виды заданий по подготовке к ЕГЭ….
Сборник по подготовке к ЕГЭ, ГИА по темам «Сказуемое и его основные виды», «Тире между подлежащим и сказуемым», «Односоставное предложение».
В связи с переходом образовательных учреждений РФ и в частности школ на новую форму итоговой аттестации в 9 классе возникает необходимость и в новом подходе к планировани…
Сборник по подготовке к ЕГЭ, ГИА по темам «Сказуемое и его основные виды», «Тире между подлежащим и сказуемым», «Односоставное предложение».
В связи с переходом образовательных учреждений РФ и в частности школ на новую форму итоговой аттестации в 9 классе возникает необходимость и в новом подходе к планировани…
Задания из сборника.Часть В 14 (по старому В 13)
Этот документ содержит основные задания из части.В-13.Для успешной сдачи экзамена рекомендую решить самим или с помощью учителя! Успехов!…
Устная часть ОГЭ. Задание 2. Сборник вопросов
Во втором задании устной части ученику предлагается принять участие в телефонном опросе, где у него есть 40 секунд, чтобы ответить на каждый из 6 вопросов….
План изучения темы
- Понятие сферы и отличие от шара.
- Уравнение сферы.
- Площадь поверхности сферы.
- Объём шара.
- Решение задач на тему «Сфера. Шар».
Понятие сферы и отличие от шара
Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки.
Данная точка называется центром сферы. А данное расстояние — это радиус сферы. Отрезок, соединяющий две точки на сфере и проходящий через центр сферы, называется диаметром сферы.
Тело, ограниченное сферой, называется шаром. Простыми словами — сфера полая, а шар имеет объём.
Уравнение сферы
По логике, уравнение сферы строится так же, как и уравнение окружности. Если вы помните его, то не составит труда запомнить и уравнение сферы, просто добавив ещё одну координату. Расстояние от произвольной точки М на поверхности сферы до центра С сферы находится по формуле:
По рисунку мы видим, что точка С — это центр сферы, а точка М — лежит на поверхности сферы. У каждой из них свои координаты. Так как расстояние МС равно радиусу сферы, то можно легко получить уравнение сферы:
Площадь поверхности сферы
Площадь поверхности сферы достаточно легко запоминается:
Объём шара
Объём шара вычисляется по формуле:
Решение задач на тему «Сфера. Шар»
Пример 1 (Ященко 36 вариантов, 2021 год, вариант 3)
Радиусы двух шаров равны 7 и 24. Найдите радиус шара, площадь поверхности которого равна сумме площадей поверхностей двух данных шаров.
Решение: по формуле находим площадь поверхности каждого шара.
Площадь поверхности нового шара состоит из суммы двух найденных, значит:
Ну и отсюда находим радиус нового шара:
Ответ: 25
Пример 2 (Ященко 36 вариантов, 2021 год, вариант 13)
Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 188. Найдите объём конуса.
Решение:
Раз радиус основания конуса равен радиусу шара, то основание конуса лежит на осевом сечении шара, как на рисунке выше. Зная объём шара мы легко вычислим радиус шара. Ну и далее найдем объём конуса, ведь радиусы равны.
Кубический корень мы извлекать не будем. Так как радиус шара равен высоте конуса, мы получим одну интересную вещь:
Видим, что и тут всплыл радиус в кубе. Значит, нужно всего лишь посчитать объём конуса:
Ответ: 47
Пример 3
Напишите уравнение сферы с центром в точке А(3;0;-5) и радиусом R=5.
Решение: уравнение сферы:
В нашем случае:
Подставляем и пишем уравнение сферы:
Шар
1. Площадь большого круга шара равна 3. Найдите площадь поверхности шара.
2. Во сколько раз увеличится площадь поверхности шара, если радиус шара увеличить в 2 раза?
3. Во сколько раз увеличится объем шара, если его радиус увеличить в три раза?
4. Объем одного шара в 27 раз больше объема второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?
5. Шар, объём которого равен 6π, вписан в куб. Найдите объём куба.
6. Даны два шара. Диаметр первого шара в 8 раз больше диаметра второго. Во сколько раз площадь поверхности первого шара больше площади поверхности второго?
7. Однородный шар диаметром 3 см имеет массу 162 грамма. Чему равна масса шара, изготовленного из того же материала, с диаметром 2 см? Ответ дайте в граммах.
8. В куб вписан шар радиуса 1. Найдите объем куба.
-
Около шара описан цилиндр, площадь поверхности которого равна 6. Найдите площадь поверхности шара.
-
Объем прямоугольного параллелепипеда, описанного около сферы, равен 216. Найдите радиус сферы.
Цилиндр описан около шара. Объем цилиндра равен 33. Найдите объем шара.
Цилиндр описан около шара. Объем шара равен 24. Найдите объем цилиндра.
-
Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы находится в центре основания конуса. Образующая конуса равна . Найдите радиус сферы.
-
Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы находится в центре основания конуса. Радиус сферы равен . Найдите образующую конуса.
-
Шар вписан в цилиндр. Площадь поверхности шара равна 111. Найдите площадь полной поверхности цилиндра.