Схема фотосинтеза егэ 2022 биология

Типы питания

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища)
— организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος
— иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и
автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Типы питания живых организмов

Фотосинтез

Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в
энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.

Фотосинтез

Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в
зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую
или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится
ион Mg.

Строение хлорофилла и гемоглобина

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества,
как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли
от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось
органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь
из вещества неорганического»

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой)
и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют
более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты,
белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Строение хлоропласта

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон,
переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов,
тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

H2O —> H+ + OH

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

4OH —> 2H2O + O2

Образовавшиеся при фотолизе воды протоны (H+) скапливаются с внутренней стороны мембраны тилакоидов, а
электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы.
В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Световая фаза фотосинтеза - светозависимая фаза

Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который
используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная
форма — НАДФ+ превращается в восстановленную — НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 — в результате фотолиза воды
  • АТФ — универсальный источник энергии
  • НАДФ∗H2 — форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2
в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой
фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от
освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6.
В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы
требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Темновая фаза фотосинтеза - светонезависимая фаза

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована
в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие
чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать
первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле
стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Озоновый слой

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение

Дождевые леса Амазонии

Хемосинтез (греч. chemeia – химия + synthesis — синтез)

Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические
вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений
(железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится
к аэробам, для жизни им необходим кислород.

Хемосинтез у нитрифицирующих бактерий

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей.
Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены
растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:

  • Серобактерии — окисляют H2S —> S 0 —> (S+4O3)2- —> (S+6O4)2-
  • Железобактерии — окисляют Fe+2 —>Fe+3
  • Водородные бактерии — окисляют H2 —> H+12O
  • Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают
почву нитратами, которые очень важны для нормального роста и развития растений.

Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых
растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.

Клубеньковые бактерии

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Чем растения отличаются от других царств живой природы? Несмотря на то, что отличий масса, скорее всего, в первую очередь вы подумаете о фотосинтезе. Так что именно о фотосинтезе на ЕГЭ и ОГЭ мы сейчас и поговорим.

фотосинтез егэ

Фотосинтез на ЕГЭ и ОГЭ по биологии 2022 — это просто

Что такое фотосинтез?

Почему растения фотосинтезируют? Стандартный ответ: «Потому что они зеленые». 

На самом деле, растения получили способность к фотосинтезу благодаря наличию симбиотических органоидов — хлоропластов,  в которых и происходят темновая и световая фазы, а в хлоропластах содержится пигмент хлорофилл, именно он окрашивает растения в зеленый цвет. 

Фотосинтез — одна из реакций обмена веществ. Как любая реакция метаболизма, он идет поэтапно (световая и темновая фазы) и с участием ферментов. Фотосинтез относится к реакциям пластического обмена. Особенность пластического обмена в том, что органические вещества синтезируются, а энергия на это тратится. 

Фотосинтез — это синтез органических веществ из неорганических веществ с использованием энергии солнечного света.

Далее разберем подробно обе фазы и процессы, происходящие в них.

Как идет процесс фотосинтеза?

Световая фаза фотосинтеза для ЕГЭ и ОГЭ

Световая фаза проходит в хлоропластах на тилакоидах. Там хранится пигмент хлорофилл, с которого все начинается — именно из-за него растения имеют зеленую окраску. Квант света попадает на тилакоид и возбуждает молекулу хлорофилла. В этот момент инициируется процесс фотосинтеза. При этом выделяется энергия АТФ. 

Самые внимательные из вас могут заметить некоторую несостыковку. Почему выделяется? Это же реакция пластического обмена, а не энергетического, значит, энергия должна тратиться. Да, действительно при фотосинтезе выделяется АТФ, но она не накапливается и не тратится на другие реакции, как при энергетическом обмене, а вся уходит на фотосинтез. Поэтому это реакция анаболизма, хоть и с выделением АТФ. 

Параллельно идет фотолиз воды. 

Название процесса говорит само за себя: «фото» — свет, «лизис» — расщепление. Буквально переводится как расщепление воды на свету. Легко запомнить, что проходит фотолиз в световую фазу. 

На что же может распасться молекула воды? На свободный кислород и водород. У каждого из этих элементов свой путь. 

Кислород — это сильный окислитель, буквально смерть для любой неспециализированной клетки, поэтому растения быстро от него избавляются, выделяя в атмосферу как побочный продукт. А уже из атмосферы аэробные организмы (в том числе, растения) поглощают его и используют для дыхания. Так что нам повезло! Не было бы процесса фотосинтеза, не было бы кислорода и что было бы с жизнью на нашей планете представить сложно. 

Но помимо кислорода, выделяется еще водород, если бы он был человеком, мы бы сказали, что он растерян и нуждается в помощи. На помощь к нему приходит молекула-переносчик НАДФ (полное ее название —никотинамиддинуклеотидфосфат, но мы ласково зовем ее НАДФ). Она использует водород для восстановления до НАДФ*Н2. Задача этой молекулы переносить водород из тилакоидов в строму, поэтому мы называем ее молекула-переносчик. На этом световая фаза заканчивается.

Резюмируем

  • Квант света возбуждает молекулу хлорофилла
  • Инициируется процесс фотосинтеза
  • Выделяется АТФ
  • Фотолиз воды
  • Кислород выходит в окружающую среду как побочный продукт фотосинтеза
  • Водород соединяется с молекулой переносчиком НАДФ*

Темновая фаза фотосинтеза для ЕГЭ и ОГЭ

В некоторых источниках эту фазу еще называют светонезависимой фазой. Действительно, название «темновая стадия» часто вызывает затруднения. Кажется, что световая проходит на свету, а темновая тогда в темноте, но это не так. Для темновой фазы действительно не нужен свет, соответственно, у нее есть варианты — может  проходить и на свету, и в темноте. Она идет  практически параллельно со световой и в ней используются продукты, образовавшиеся в световой фазе. 

Для того чтобы фазы друг другу не мешали, они проходят в разных частях хлоропласта. Световая, как мы уже выяснили, идет на тилакоидах, а темновая в строме — это внутренняя полужидкая среда хлоропласта.

фотосинтез огэ

Фотосинтез на ОГЭ и ЕГЭ. Источник: открытый банк заданий ФИПИ

В строму приходят АТФ, молекула-переносчик приносит водород. Но из водорода и энергии ничего органического создать не получится, нужны еще элементы. Растения нашли гениальный выход, они используют вещество, которого достаточно в атмосфере, следовательно, за него нет конкуренции. Это вещество — углекислый газ. 

Дальше начинается очень сложный циклический процесс, который называется цикл Кальвина. Мы не будем слишком подробно его рассматривать, это не пригодится для государственных экзаменов, но именно в нем активно работают ферменты, и на него тратится энергия АТФ, полученная в световой фазе. В результате цикла Кальвина образуется шестиуглеродный сахар-глюкоза. Далее эта глюкоза может быть переработана в крахмал и откладываться растением как запасной углевод. 

Резюмируем

  • Фиксация СО2
  • Цикл Кальвина
  • Синтез глюкозы
  • Образование крахмала

Значение фотосинтеза

На Земле, пожалуй, практически не существует процессов, которые повлияли на эволюцию планеты так же сильно, как фотосинтез. Давайте разберем основные значения фотосинтеза:

  • Сформировалась атмосфера с высоким содержанием кислорода, пригодная для дыхания. Аэробные организмы, включая человека, проводят энергетический обмен с использованием кислорода и получают энергию для жизнедеятельности.
  • Возникновение озонового слоя. Вследствие фотосинтеза в атмосфере накопился кислород, что привело к появлению озонового экрана. Жизнь, которая до этого вынуждена была развиваться под водой, боясь ультрафиолета, смогла выйти на сушу и освоить ее.
  • Синтез органических веществ. Растения — автотрофные организмы, сами производят органические вещества, которые затем используют гетеротрофы. Вещества, которые образуют растения в процессе фотосинтеза, являются первичным источником веществ и энергии практически для всех живых организмов.

Примеры заданий на фотосинтез в ЕГЭ и ОГЭ по биологии

 Вопросы по фотосинтезу встречаются как в ЕГЭ, так и в ОГЭ. Причем, если для 9 класса достаточно знать что это такое и основные этапы, то для ЕГЭ необходимо понимание последовательности процессов. Кстати, актуальна эта тема для решения новых заданий по экспериментам (2 и 22 линии в ЕГЭ 2022).  

Задание на фотосинтез в ОГЭ по биологии

фотосинтез огэ

Задание на фотосинтез в ОГЭ по биологии. Источник: открытый банк ФИПИ

Решение. Типичный вопрос для первой части ОГЭ из открытого банка ФИПИ. Какие из этих процессов происходят во время фотосинтеза? Возбуждение молекул хлорофилла квантом света, расщепление (фотолиз) воды и образование глюкозы. 

Во время фотосинтеза, наоборот, выделяется кислород, как побочный продукт, и поглощается углекислый газ. А синтез белка вообще проходит на рибосомах.

Ответ. 123

Задание на фотосинтез в ЕГЭ по биологии

фотосинтез егэ

Задание на фотосинтез в ЕГЭ по биологии. Источник: демоверсии ФИПИ

Решение. Это задание из открытого варианта 2021 года (в 2021 эти варианты заменяли варианты досрочного ЕГЭ). Необходимо соотнести процессы и фазы. В световой фазе происходит возбуждение молекулы хлорофилла, фотолиз воды и образование энергии. В темновую фазу фиксируется углекислый газ и восстановление углерода водородом для синтеза глюкозы.

Ответ. 12212

Конечно, процесс фотосинтеза значительно сложнее, чем мы с вами разобрали. Да и на ОГЭ и ЕГЭ проверяют знание многих других тем. Чтобы сдать экзамен на высокий балл, надо знать анатомию, зоологию, генетику, микробиологию и даже психологию. При этом недостаточно только хорошо разбираться в основных темах. Надо уметь избегать ловушек экзаменаторов, вчитываться в формулировки заданий и оформлять ответы в четком соответствии с критериями. Поэтому необходимо готовиться к ОГЭ и ЕГЭ по биологии системно.

Экзамен по биологии — не шутка. Если вы хотите сдать его на 90+, записывайтесь на мои курсы подготовки к ОГЭ или ЕГЭ. Мы разберемся со всеми темами, которые спрашивают в 9 или 11 классе, научимся решать задания быстро и правильно, а также разберем основные лайфхаки, которые помогут вам не стрессовать. Я также проведу с вами пробный экзамен в формате реального ОГЭ или ЕГЭ, чтобы вы были готовы к любым неожиданностям. После мы разберем все ошибки и поймем, как избежать их в будущем. Приходите на мои занятия, и я помогу вам сдать ОГЭ или ЕГЭ на самый высокий балл!

Типы питания

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища)
— организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος
— иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и
автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Типы питания живых организмов

Фотосинтез

Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в
энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.

Фотосинтез

Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в
зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую
или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится
ион Mg.

Строение хлорофилла и гемоглобина

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества,
как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли
от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось
органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь
из вещества неорганического»

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой)
и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют
более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты,
белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Строение хлоропласта

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон,
переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов,
тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

H2O —> H+ + OH

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

4OH —> 2H2O + O2

Образовавшиеся при фотолизе воды протоны (H+) скапливаются с внутренней стороны мембраны тилакоидов, а
электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы.
В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Световая фаза фотосинтеза - светозависимая фаза

Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который
используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная
форма — НАФД+ превращается в восстановленную — НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 — в результате фотолиза воды
  • АТФ — универсальный источник энергии
  • НАДФ∗H2 — форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2
в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой
фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от
освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6.
В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы
требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Темновая фаза фотосинтеза - светонезависимая фаза

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована
в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие
чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать
первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле
стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Озоновый слой

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение

Дождевые леса Амазонии

Хемосинтез (греч. chemeia – химия + synthesis — синтез)

Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические
вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений
(железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится
к аэробам, для жизни им необходим кислород.

Хемосинтез у нитрифицирующих бактерий

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей.
Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены
растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:

  • Серобактерии — окисляют H2S —> S 0 —> (S+4O3)2- —> (S+6O4)2-
  • Железобактерии — окисляют Fe+2 —>Fe+3
  • Водородные бактерии — окисляют H2 —> H+12O
  • Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают
почву нитратами, которые очень важны для нормального роста и развития растений.

Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых
растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.

Клубеньковые бактерии

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.


С этим файлом связано 6 файл(ов). Среди них: проверочная ткани 6 класс.docx, проверочная Антарктида.docx, Проверочная 11 кл. биология, развитие жизни.docx, проверочная черви 7 кл.docx, контрольная по теме кожа выделение 8 класс.doc, проверочная членистоногие (2).doc.
Показать все связанные файлы


Подборка по базе: Земноводные задание.docx, подготовка к егэ по биологии 3 задание.pptx, практик задание 2022.docx, практическое задание №2.docx, издержки текст задание 1.docx, 3 задание.docx, Аудит задание 1.docx, Иностранный задание 2.docx, Задания по теме 4.1 Текстовый редактор. Структуризация данных За, практическое задание 1 по литературе.docx


2. Задание 8 № 

16728

Установите последовательность расположения структур в эукариотной клетке растения (начиная снаружи).

1) плазматическая мембрана

2) клеточная стенка

3) ядро

4) цитоплазма

5) хромосомы

3. Задание 8 № 

21697

Установите правильную последовательность реакций энергетического обмена веществ. Запишите в таблицу соответствующую последовательность цифр.

1) Окисление пировиноградной кислоты.

2) Попадание ПВК в митохондрии.

3) Образование двух молекул пировиноградной кислоты.

4) Расщепление крахмала до глюкозы.

5) Синтез 36 молекул АТФ.

4. Задание 8 № 

22100

Установите правильную последовательность процессов, протекающих при фотосинтезе.

1) восстановление НАДФ+ до НАДФ · 2Н

2) поглощение квантов света молекулами хлорофилла

3) фиксация СО2

4) переход электронов в возбуждённое состояние

5) синтез глюкозы

6. Задание 8 № 

24255

Установите последовательность процессов, протекающих при фотосинтезе. Запишите в таблицу соответствующую последовательность цифр.

1) перекачивание протонов водорода через мембрану тилакоида

2) восстановление углерода водородом

3) возбуждение молекул хлорофилла

4) восстановление НАДФ · Н+Н+

5) фиксация углекислого газа

6) синтез глюкозы

9. Задание 8 № 

46223

Установите последовательность этапов трансляции. Запишите в таблицу соответствующую последовательность цифр.

1) перемещение рибосомы на один триплет

2) формирование комплекса: рибосома, иРНК, тРНК с аминокислотой

3) присоединение второй тРНК с аминокислотой

4) иРНК соединяется с двумя субъединицами рибосомы

5) возникновение пептидной связи между аминокислотами

10. Задание 8 № 

46224

Установите последовательность этапов клеточного цикла, начиная с периода, в котором реплицируется ДНК. Запишите в таблицу соответствующую последовательность цифр.

1) Анафаза

2) Профаза

3) Телофаза

4) Метафаза

5) Интерфаза

11. Задание 8 № 

46225

Установите последовательность этапов митоза. Запишите в таблицу соответствующую последовательность цифр.

1) укорачивание нитей веретена деления

2) прикрепление микротрубочек к центромерам

3) хромосомы выстраиваются на экваторе

4) конденсация хромосом

5) цитокинез

12. Задание 8 № 

46226

Установите последовательность этапов митоза. Запишите в таблицу соответствующую последовательность цифр.

1) разрушение ядерной оболочки

2) движение хромосом к полюсам клетки

3) расщепление центромер

4) формирование метафазной пластинки

5) разрушение веретена деления

13. Задание 8 № 

46227

Установите последовательность этапов мейоза. Запишите в таблицу соответствующую последовательность цифр.

1) выстраивание бивалентов на экваторе клетки

2) растаскивание гомологичных хромосом к дочерним полюсам

3) коньюгация гомологичных хромосом

4) выстраивание одиночных хромосом на экваторе клетки

5) растаскивание хромосом, состоящих из одной хроматиды, к дочерним полюсам

14. Задание 8 № 

46228

Установите последовательность этапов мейоза. Запишите в таблицу соответствующую последовательность цифр.

1) образование клеток с хромосомным набором 1n2c

2) расхождение хроматид к полюсам

3) биваленты формируют метафазную пластинку

4) хромосомы из двух хроматид расходятся к полюсам

5) образование клеток с хромосомным набором 1n1c

6) кроссинговер

1. Задание 6 № 

45789

Установите соответствие между признаками и фазами мейоза, обозначенными цифрами на схеме первого деления мейоза: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ПРИЗНАКИ ФАЗЫ МЕЙОЗА
А) Исчезновение ядерной оболочки

Б) Разрушение веретена деления

В) Компактизация хромосом

Г) Набор хромосом и число молекул ДНК в клетке 1n2c

Д) Формирование экваториальной пластинки

Е) Разделение бивалентов

1) 1

2) 2

3) 3

4) 4

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Рассмотрите рисунки и выполните задания 5 и 6.

Первое деление мейоза

Второе деление мейоза

2. Задание 6 № 

45791

Установите соответствие между признаками и фазами мейоза, обозначенными цифрами на схеме первого деления мейоза: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ПРИЗНАКИ ФАЗЫ МЕЙОЗА
А) Нити веретена деления соединяются с центромерами

Б) Конденсация хромосом

В) Расхождение центриолей к полюсам клетки

Г) Разделение и расхождение гомологичных хромосом

Д) Исчезновение ядрышек

Е) Образование ядерных оболочек

1) 1

2) 2

3) 3

4) 4

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

3. Задание 6 № 

45793

Установите соответствие между признаками и фазами мейоза, обозначенными цифрами на схеме второго деления мейоза: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ПРИЗНАКИ ФАЗЫ МЕЙОЗА
А) Хромосомы располагаются в экваториальной плоскости

Б) Начинает формироваться веретено деления

В) Происходит цитокинез и кариокинез

Г) Укорачиваются нити веретена деления

Д) Набор хромосом и число молекул ДНК в клетке 1n1c

Е) Расхождение хроматид

1) (5)

2) (6)

3) (7)

4) (8)

Запишите в ответ цифры 1-4 из столбца ФАЗЫ МЕЙОЗА, соответствующие номерам на схеме. Расположив их в порядке, соответствующем буквам:

4. Задание 6 № 

45795

Установите соответствие между признаками и фазами мейоза, обозначенными цифрами на схеме первого деления мейоза: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ПРИЗНАКИ ФАЗЫ МЕЙОЗА
А) Деление цитоплазмы

Б) Формирование экваториальной пластинки

В) Расхождение центриолей к полюсам клетки

Г) Деспирализация хромосом

Д) Образование хромосом, состоящих из одной молекулы ДНК

Е) Нити веретена деления соединяются с центромерами

1) (5)

2) (6)

3) (7)

4) (8)

Запишите в ответ цифры 1-4 из столбца ФАЗЫ МЕЙОЗА, соответствующие номерам на схеме. Расположив их в порядке, соответствующем буквам:

5. Задание 6 № 

45797

Установите соответствие между характеристиками и органоидами клетки, обозначенными цифрами на схеме: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКИ ОРГАНОИДЫ
А) Построены из белка тубулина

Б) Содержат гидролитические ферменты

В) Имеют в своём составе ДНК

Г) Участвуют в синтезе белка

Д) Формируют веретено деления

Е) Состоят из РНК и белка

1) (2)

2) (4)

3) (9)

4) (10)

 

Запишите в ответ цифры 1-4 из столбца ОРГАНОИДЫ, соответствующие номерам на схеме. Расположив их в порядке, соответствующем буквам:
11. Задание 6 № 

45809

Установите соответствие между характеристиками и органоидами клетки, обозначенными цифрами на схеме: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКИ ОРГАНОИДЫ
А) Обеспечивает клетку органическими веществами

Б) Участвует в разрушении органических веществ до CO2 и H2O

В) Стопка дискообразных одномембранных мешочков

Г) Содержит граны

Д) Обеспечивает тургор клетки

Е) Содержит кристы

1) (1)

2) (3)

3) (4)

4) (8)

 

Запишите в ответ цифры 1-4 из столбца ОРГАНОИДЫ, соответствующие номерам на схеме. Расположив их в порядке, соответствующем буквам:

Рассмотрите рисунок и выполните задания 5 и 6.

Канал видеоролика: 3 минуты

Фотосинтез – разбираем тесты ЕГЭ по биологии 2022

Смотреть видео:

#биофак #биологияегэ #скфу #рниму #белгу #тгу #челгу #ниувшэ #егэ_биология

Свежая информация для ЕГЭ и ОГЭ по Биологии (листай):

С этим видео ученики смотрят следующие ролики:

Пищеварительная система человека – разбираем тесты ЕГЭ по биологии 2022

Пищеварительная система человека – разбираем тесты ЕГЭ по биологии 2022

3 минуты

Генеалогический метод / анализ родословных – разбираем тесты ЕГЭ по биологии 2022

Генеалогический метод / анализ родословных – разбираем тесты ЕГЭ по биологии 2022

3 минуты

Энергетический обмен, клеточное дыхание, гликолиз – разбираем тесты ЕГЭ по биологии 2022

Энергетический обмен, клеточное дыхание, гликолиз – разбираем тесты ЕГЭ по биологии 2022

3 минуты

Митоз – деление клетки. Разбираем тесты ЕГЭ по биологии 2022

Митоз – деление клетки. Разбираем тесты ЕГЭ по биологии 2022

3 минуты

Облегчи жизнь другим ученикам — поделись! (плюс тебе в карму):

08.01.2022

Автор статьи — Л.В. Окольнова.

фотосинтез

Определение довольно простое, уравнение тоже суммарное. оно не описывает сам процесс — сложный и многоступенчатый.

В этой статье мы не будем разбирать все стадии, мы разберем только две основные фазы фотосинтеза — световую и темновую, а также основные процессы, которые происходят в это время в организме растения.

Световая фаза фотосинтеза.

Днем растения работают как солнечные батарейки — аккумулируют энергию света солнца:
● на мембранах тилакойдов хлоропластов молекулы хлорофилла поглощают (аккумулируют) свет,

строение-хлоропластов

● происходит синтез АТФ,

атф

● образуется НАДФ — кофермент.

Кофермент (коэнзим) — это биологический катализатор, но ферментом его назвать нельзя, т.к. у него не белковая природа, который ускоряет и направляет протекание окислительно-восстановительных процессов. Он понадобится на следующей — темновой фазе процесса .

●происходит расщепление (фотолиз) воды: 2H20 = 4H+ + 4e- + O2­.

растение выделяет кислород
.

Темновая фаза фотосинтеза.

Это уже фаза синтеза. Энергия, полученная в ходе световой фазы, идет на восстановление CO2 до молекулы глюкозы.

Этот процесс происходит уже в строме.

Общая схема фотосинтеза:

общая

Находки черных копателей

2021-05-29

Источник: https://youtube.com/watch?v=DOvslZF3kqM

Ваше мнение о видео


Сначала новые

Сначала старые

Сначала лучшие

Впишите НИК/Имя что бы писать комментарии

Войти

Загружено по ссылке

Интересное видео

Сегодня обсуждают



  1. Доброе время суток. Ни как не могу решится укоротить полуось. У вас так все легко и быстро получается. Из 4 имеющихся у меня полуосей 3 имеют кривизну. Ну и как скажите сделать пропил болгаркой? По любому шлиц уйдет в сторону.


    Раскопки со Второй мировой войны всегда манили меня, это что-то уникальное и невероятное. Я сам лично присутствовал на раскопке одного немецкого захоронения. Во время раскопок было обнаружено достаточно много немецких солдат, вооружение и разных б…


    Ребята, захватывающая у вас жизнь и упорства море. Меня бы накрыло отчаянье если б в первой яме ничегошеньки стоящего не было.
    Я конечно приверженец легальной археологи, с научными открытиями и т.д. Но, будем смотреть правде в глаза, если б не ч…


Фотосинтез

Автор статьи — Л.В. Окольнова.

фотосинтез

Определение довольно простое, уравнение тоже суммарное. оно не описывает сам процесс — сложный и многоступенчатый.

В этой статье мы не будем разбирать все стадии, мы разберем только две основные фазы фотосинтеза — световую и темновую, а также основные процессы, которые происходят в это время в организме растения.

Световая фаза фотосинтеза.

Днем растения работают как солнечные батарейки — аккумулируют энергию света солнца:
● на мембранах тилакойдов хлоропластов молекулы хлорофилла поглощают (аккумулируют) свет,

строение-хлоропластов

● происходит синтез АТФ,

атф

● образуется НАДФ — кофермент.

Кофермент (коэнзим) — это биологический катализатор, но ферментом его назвать нельзя, т.к. у него не белковая природа, который ускоряет и направляет протекание окислительно-восстановительных процессов. Он понадобится на следующей — темновой фазе процесса .

●происходит расщепление (фотолиз) воды: 2H20 = 4H+ + 4e- + O2­.

растение выделяет кислород
.

Темновая фаза фотосинтеза.

Это уже фаза синтеза. Энергия, полученная в ходе световой фазы, идет на восстановление CO2 до молекулы глюкозы.

Этот процесс происходит уже в строме.

Общая схема фотосинтеза:

общая

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Фотосинтез» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.03.2023

Каталог заданий.
Фотосинтез


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Задания Д3 № 1302

Нитрифицирующие бактерии относят к

1) хемотрофам

2) фототрофам

3) сапротрофам

4) гетеротрофам

Раздел кодификатора ФИПИ: 3.1 Одноклеточные и многоклеточные; автотрофы, гетеротрофы, аэробы, анаэробы

Пояснение

·

·

Сообщить об ошибке · Помощь


2

Задания Д3 № 1307

Энергия солнечного света преобразуется в химическую энергию в клетках

1) фототрофов

2) хемотрофов

3) гетеротрофов

4) сапротрофов

Раздел кодификатора ФИПИ: 3.1 Одноклеточные и многоклеточные; автотрофы, гетеротрофы, аэробы, анаэробы

Пояснение

·

·

Сообщить об ошибке · Помощь


3

Задания Д3 № 1309

Хемосинтезирующими бактериями являются

1) железобактерии

2) бактерии брожения

3) молочнокислые бактерии

4) сине-зеленые (цианобактерии)

Раздел кодификатора ФИПИ: 3.1 Одноклеточные и многоклеточные; автотрофы, гетеротрофы, аэробы, анаэробы

Пояснение

·

·

Сообщить об ошибке · Помощь


4

Задания Д3 № 1310

Совокупность реакций синтеза органических веществ из неорганических с использованием энергии света называют

1) хемосинтезом

2) фотосинтезом

3) брожением

4) гликолизом

Раздел кодификатора ФИПИ: 2.5 Обмен веществ и превращения энергии

Пояснение

·

·

Сообщить об ошибке · Помощь


5

Задания Д3 № 1311

Организмы, которые создают органические вещества из неорганических с использованием энергии, освобождаемой при окислении неорганических веществ, называют

1) гетеротрофами

2) хемотрофами

3) эукариотами

4) прокариотами

Раздел кодификатора ФИПИ: 3.1 Одноклеточные и многоклеточные; автотрофы, гетеротрофы, аэробы, анаэробы

Пояснение

·

·

Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

Фо­то­син­тез про­ис­хо­дит в две фазы, а имен­но в све­то­вую фазу и тем­но­вую фазу.

Во время све­то­вой фазы про­ис­хо­дит об­ра­зо­ва­ние энер­гии, ко­то­рая затем рас­хо­ду­ет­ся на тем­но­вые ре­ак­ции. Про­цесс све­то­вой фазы фо­то­син­те­за вклю­ча­ет в себя нецик­ли­че­ское фо­то­фос­фо­ри­ли­ро­ва­ние и фо­то­лиз воды. В ка­че­стве по­боч­но­го про­дук­та ре­ак­ции в ре­зуль­та­те фо­то­ли­за воды вы­де­ля­ет­ся кис­ло­род. Ре­ак­ция про­ис­хо­дит на мем­бра­нах ти­ла­ко­и­дов.

Квант крас­но­го света, по­гло­щен­ный хло­ро­фил­лом П680 (фо­то­си­сте­ма ІІ), пе­ре­во­дит элек­трон в воз­буж­ден­ное со­сто­я­ние (рис. 6). Воз­буж­ден­ный све­том элек­трон при­об­ре­та­ет боль­шой запас энер­гии, вслед­ствие чего пе­ре­ме­ща­ет­ся на более вы­со­кий энер­ге­ти­че­ский уро­вень. Такой элек­трон за­хва­ты­ва­ет­ся ак­цеп­то­ром элек­тро­нов Х, пе­ре­ме­ща­ясь с одной сту­пе­ни на дру­гую, то есть от од­но­го ак­цеп­то­ра к дру­го­му, он те­ря­ет энер­гию, ко­то­рая ис­поль­зу­ет­ся для син­те­за АТФ.

Рис. 6. Схема про­цес­сов све­то­вой фазы фо­то­син­те­за

Место вы­шед­ших элек­тро­нов мо­ле­ку­лы хло­ро­фил­ла П680, за­ни­ма­ют элек­тро­ны воды, так как вода под дей­стви­ем света под­вер­га­ет­ся фо­то­ли­зу, где в ка­че­стве по­боч­но­го про­дук­та об­ра­зу­ет­ся кис­ло­род. Фо­то­лиз про­ис­хо­дит в по­ло­сти ти­ла­ко­и­да (рис. 7).

Рис. 7. Фо­то­лиз воды

В фо­то­си­сте­ме І воз­буж­ден­ные элек­тро­ны под дей­стви­ем фо­то­на света также пе­ре­хо­дят на более вы­со­кий уро­вень и за­хва­ты­ва­ют­ся ак­цеп­то­ром Y. В конце кон­цов, элек­тро­ны до­хо­дят от Y до пе­ре­нос­чи­ка – НАДФ, и, вза­и­мо­дей­ствуя с иона­ми во­до­ро­да, вы­де­лен­ны­ми при фо­то­ли­зе воды, об­ра­зу­ют вос­ста­нов­лен­ный НАДФН. НАДФ рас­шиф­ро­вы­ва­ет­ся как – ни­ко­ти­на­ми­да­де­нин­ди­нук­лео­ти­дфос­фат.

Рис. 8. Вза­и­мо­дей­ствие фо­то­си­сте­мы I и фо­то­си­сте­мы II

Место вы­шед­ших элек­тро­нов в мо­ле­ку­ле П700 за­ни­ма­ют элек­тро­ны, по­лу­чен­ные от фо­то­си­сте­мы II П680 (рис. 8). Таким об­ра­зом, на свету элек­тро­ны пе­ре­ме­ща­ют­ся от воды к фо­то­си­сте­мам II и I, и затем к НАДФ. Такой од­но­на­прав­лен­ный поток элек­тро­нов носит на­зва­ние нецик­ли­че­ско­го по­то­ка элек­тро­нов, а об­ра­зо­ва­ние АТФ, ко­то­рое при этом про­ис­хо­дит, носит на­зва­ние нецик­ли­че­ско­го фо­то­фос­фо­ри­ли­ро­ва­ния. Таким об­ра­зом, в све­то­вой фазе об­ра­зу­ют­ся АТФ и вос­ста­нов­лен­ный НАДФ, бо­га­тые энер­ги­ей, и в ка­че­стве по­боч­но­го про­дук­та ре­ак­ции вы­де­ля­ет­ся кис­ло­род.

Тем­но­вая фаза фо­то­син­те­за. Если све­то­вая фаза про­те­ка­ет толь­ко на свету, то тем­но­вая фаза не за­ви­сит от света. Тем­но­вая фаза про­те­ка­ет в стро­ме хло­ро­пла­стов, куда пе­ре­но­сят­ся бо­га­тые энер­ги­ей со­еди­не­ния, а имен­но АТФ и вос­ста­нов­лен­ный НАДФ, кроме этого, туда же по­сту­па­ет уг­ле­кис­лый газ в ка­че­стве ис­точ­ни­ка уг­ле­во­дов, ко­то­рый бе­рет­ся из воз­ду­ха и по­сту­па­ет в рас­те­ния через устьи­ца. В ре­ак­ци­ях тем­но­вой фазы уг­ле­кис­лый газ вос­ста­нав­ли­ва­ет­ся до глю­ко­зы с по­мо­щью энер­гии, за­па­сен­ной мо­ле­ку­ла­ми АТФ и НАДФ.

Пре­вра­ще­ние уг­ле­кис­ло­го газа в глю­ко­зу в ходе тем­но­вой фазы фо­то­син­те­за по­лу­чи­ло на­зва­ние цикла Каль­ви­на – по имени его пер­во­от­кры­ва­те­ля.

Пер­вая ста­дия фо­то­син­те­за – све­то­вая – про­ис­хо­дит на мем­бра­нах хло­ро­пла­ста в ти­ла­ко­и­дах.

Вто­рая ста­дия фо­то­син­те­за – тем­но­вая – про­те­ка­ет внут­ри хло­ро­пла­ста, в стро­ме.

Сум­мар­ное урав­не­ние фо­то­син­те­за вы­гля­дит сле­ду­ю­щим об­ра­зом. При вза­и­мо­дей­ствии 6 мо­ле­кул уг­ле­кис­ло­го газа и 6 мо­ле­кул воды об­ра­зу­ет­ся одна мо­ле­ку­ла глю­ко­зы и вы­де­ля­ет­ся шесть мо­ле­кул кис­ло­ро­да. Этот про­цесс про­те­ка­ет на свету в хло­ро­пла­стах у выс­ших рас­те­ний.

Таким об­ра­зом, фо­то­син­тез – про­цесс пре­вра­ще­ния ве­ще­ства и энер­гии.

Понравилась статья? Поделить с друзьями:
  • Сфера действия права шире чем норм морали егэ
  • Схема написания сочинения егэ по русскому языку 2022
  • Схема фотосинтеза для егэ
  • Сфагнум картинка егэ
  • Схема написания сочинения егэ по русскому пример