Схема Горнера
Схема Горнера – способ деления многочлена
$$P_n(x)=sumlimits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+ldots+a_{n-1}x+a_n$$
на бином $x-a$. Работать придётся с таблицей, первая строка которой содержит коэффициенты заданного многочлена (они выделены для наглядности синим цветом). Первым элементом второй строки будет число $a$, взятое из бинома $x-a$:
$$
P_n(x)=normblue{a_{0}}x^{n}+normblue{a_{1}}x^{n-1}+normblue{a_{2}}x^{n-2}+ldots+normblue{a_{n-1}}x+normblue{a_n}\
$$
$$
begin{array} {c|c|c|c|c|c|c|c}
& normblue{a_0} & normblue{a_1} & normblue{a_2} & normblue{a_3} & ldots & normblue{a_{n-1}} & normblue{a_n} \
hline a & & & & & & &
end{array}
$$
Вторая строка таблицы заполняется постепенно. Второй элемент этой строки (обозначим его $b_0$) равен $a_0$, т.е., по сути, мы просто переносим вниз число $a_0$:
$$
begin{array} {c|c|c|c|c|c|c|c}
& a_0 & a_1 & a_2 & a_3 & ldots & a_{n-1} & a_n \
hline a & b_0=a_0 & & & & & &
end{array}
$$
Следующий элемент второй строки, который мы обозначим как $b_1$, получается по такой формуле: $b_1=acdot{b_0}+a_1$:
$$
begin{array} {c|c|c|c|c|c|c|c}
& a_0 & a_1 & a_2 & a_3 & ldots & a_{n-1} & a_n \
hline a & b_0 & b_1=acdot{b_0}+a_1 & & & & &
end{array}
$$
Далее находим элемент $b_2$ по формуле $b_2=acdot{b_1}+a_2$:
$$
begin{array} {c|c|c|c|c|c|c|c}
& a_0 & a_1 & a_2 & a_3 & ldots & a_{n-1} & a_n \
hline a & b_0 & b_1 & b_2=acdot{b_1}+a_2 & & & &
end{array}
$$
Аналогично вычисляем и элемент $b_3=acdot{b_2}+a_3$:
$$
begin{array} {c|c|c|c|c|c|c|c}
& a_0 & a_1 & a_2 & a_3 & ldots & a_{n-1} & a_n \
hline a & b_0 & b_1 & b_2 & b_3=acdot{b_2}+a_3 & & &
end{array}
$$
Далее находим $b_4$, $b_5$ и так далее. В целом, общая формула для вычисления $b_i$, где $ige{1}$, будет такой:
$$
b_i = acdot{b_{i-1}}+a_i
$$
В конечном итоге, мы вычислим последний элемент $b_n = acdot{b_{n-1}}+a_n$, и на этом работа будет закончена. Заполненная таблица будет иметь такой вид:
$$
begin{array} {c|c|c|c|c|c|c|c}
& a_0 & a_1 & a_2 & a_3 & ldots & a_{n-1} & a_n \
hline a & b_0 & b_1 & b_2 & b_3 & ldots & b_{n-1} & b_n
end{array}
$$
После деления исходного многочлена n-ой степени $P_n(x)$ на бином $x-a$, получим многочлен, степень которого на единицу меньше исходного, т.е. равна $n-1$. Последнее число второй строки, т.е. $b_n$, есть остаток от деления $P_n(x)$ на $x-a$:
$$
a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+ldots+a_{n-1}x+a_n
=(x-a)cdotleft(b_{0}x^{n-1}+b_{1}x^{n-2}+ldots+b_{n-1}right)+b_n
$$
Если вспомнить теорему Безу, то можно сформулировать и так: число $b_n$ равно значению многочлена $P_n(x)$ при $x=a$, т.е. $b_n = P_n (a)$.
Если $b_n=0$, то исходный многочлен делится на бином $x-a$ нацело, т.е. число $a$ является корнем этого многочлена. Непосредственное применение схемы Горнера проще всего показать на примерах.
Пример №1
Разделить $5x^4+5x^3+x^2-11$ на $x-1$, используя схему Горнера.
Решение
Для сокращения записи обозначим заданный многочлен как $P(x)$, т.е. $P(x)=5x^4+5x^3+x^2-11$. Для начала составим таблицу из двух строк. В первой строке запишем коэффициенты многочлена $P(x)$, расположенные по убыванию степеней переменной $x$. Заметьте, что данный многочлен не содержит $x$ в первой степени, т.е. коэффициент перед $x$ в первой степени равен 0:
$$
normblue{5}cdot{x^4}+normblue{5}cdot{x^3}+normblue{1}cdot{x^2}+normblue{0}cdot{x}+normblue{(-11)}\
$$
Так как мы делим на $x-normred{1}$, то в первой ячейке второй строки запишем число $normred{1}$. Таблица, с которой мы будем работать, имеет такой вид:
$$
begin{array} {c|c|c|c|c|c}
& normblue{5} & normblue{5} & normblue{1} & normblue{0} & normblue{-11} \
hline normred{1} & & & & &
end{array}
$$
Начнём заполнять пустые ячейки во второй строке. Во вторую ячейку второй строки запишем число $5$, просто перенеся его вниз из второй ячейки первой строки:
$$
begin{array} {c|c|c|c|c|c}
& normgreen{5} & 5 & 1 & 0 & -11 \
hline 1 & normgreen{5} & & & &
end{array}
$$
Следующую ячейку заполним по такому принципу: $normred{1}cdotnormgreen{5}+normpurple{5}=normblue{10}$:
$$
begin{array} {c|c|c|c|c|c}
& 5 & normpurple{5} & 1 & 0 & -11 \
hline normred{1} & normgreen{5} & normblue{10} & & &
end{array}
$$
Аналогично заполним и четвертую ячейку второй строки: $normred{1}cdotnormgreen{10}+normpurple{1}=normblue{11}$:
$$
begin{array} {c|c|c|c|c|c}
& 5 & 5 & normpurple{1} & 0 & -11 \
hline normred{1} & 5 & normgreen{10} & normblue{11} & &
end{array}
$$
Для пятой ячейки получим: $normred{1}cdotnormgreen{11}+normpurple{0}=normblue{11}$:
$$
begin{array} {c|c|c|c|c|c}
& 5 & 5 & 1 & normpurple{0} & -11 \
hline normred{1} & 5 & 10 & normgreen{11} & normblue{11} &
end{array}
$$
И, наконец, для последней, шестой ячейки, имеем: $normred{1}cdotnormgreen{11}+normpurple{(-11)}=normblue{0}$:
$$
begin{array} {c|c|c|c|c|c}
& 5 & 5 & 1 & 0 & normpurple{-11} \
hline normred{1} & 5 & 10 & 11 & normgreen{11} &normblue{0}
end{array}
$$
Числа, расположенные во второй строке (между единицей и нулём), есть коэффициенты многочлена, полученного после деления $P(x)$ на $x-1$. Последнее число во второй строке (ноль) равно остатку от деления многочлена $P(x)$ на $x-1$. Остаток равен нулю, т.е. многочлен $P(x)$ делится на $x-1$ нацело. Для наглядности я запишу полученный результат, выделив коэффициенты разными цветами:
$$
begin{array} {c|c|c|c|c|c}
& 5 & 5 & 1 & 0 & -11 \
hline normred{1} & normblue{5} & normblue{10} & normblue{11} & normblue{11} &normgreen{0}
end{array}
$$
$$
P(x)
=(x-normred{1})cdotleft(normblue{5}cdot{x^4}+normblue{10}cdot{x^3}+normblue{11}cdot{x^2}+normblue{11}cdot{x}right)+normgreen{0}
=(x-1)left(5x^3+10x^2+11x+11right)
$$
Естественно, что так как степень исходного многочлена $P(x)$ равнялась четырём, то степень многочлена $5x^3+10x^2+11x+11$ на единицу меньше, т.е. равна трём.
Полученный нами результат можно ещё охарактеризовать так: значение многочлена $P(x)$ при $x=1$ равно нулю. Так как значение многочлена $P(x)$ при $x=1$ равно нулю, то единица является корнем многочлена $P(x)$.
Ответ: $5x^4+5x^3+x^2-11 = (x-1)left(5x^3+10x^2+11x+11right)$.
Пример №2
Разделить многочлен $x^4+3x^3+4x^2-5x-47$ на $x+3$ по схеме Горнера.
Решение
Для сокращения записи обозначим заданный многочлен как $P(x)$, т.е. $P(x)=x^4+3x^3+4x^2-5x-47$. Сразу оговорим, что выражение $x+3$ нужно представить в форме $x-(-3)$. В схеме Горнера будет учавствовать именно $-3$. Выполняем преобразования, аналогичные сделанным в примере №1:
$$
begin{array} {c|c|c|c|c|c}
& 1 & 3 & 4 & -5 & -47 \
hline -3 & 1 & 0 & 4 & -17 & 4
end{array}
$$
Так как степень исходного многочлена $P(x)$ равна четырём, то в результате деления получим многочлен третьей степени.
$$P(x)=(x+3)left(x^3+0cdot x^2 +4x-17right)+4=(x+3)left(x^3+4x-17right)+4$$
Полученный результат означает, что многочлен $P(x)$ делится на бином $x+3$ не нацело. Остаток от деления $P(x)$ на $x+3$ равен $4$. Этот же результат означает, что значение многочлена $P(x)$ при $x=-3$ равно $4$, т.е. $P(-3)=4$. Кстати, это несложно перепроверить непосредственной подстановкой $x=-3$ в заданный многочлен:
$$
x^4+3x^3+4x^2-5x-47=(-3)^4+3 cdot (-3)^3-5 cdot (-3)-47=4.
$$
Т.е. схему Горнера можно также использовать, если необходимо найти значение многочлена при заданном значении переменной.
Ответ: $x^4+3x^3+4x^2-5x-47=(x+3)left(x^3+4x-17right)+4$.
Если наша цель – найти все корни многочлена, то схему Горнера можно применять несколько раз подряд, – до тех пор, пока мы не исчерпаем все корни, как рассмотрено в примере №3.
Пример №3
Найти все целочисленные корни многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$, используя схему Горнера.
Решение
Для сокращения записи обозначим заданный многочлен как $P(x)$, т.е.
$$P(x)=x^6+2x^5-21x^4-20x^3+71x^2+114x+45$$
Коэффициенты рассматриваемого многочлена есть целые числа, а коэффициент перед старшей степенью переменной (т.е. перед $x^6$) равен единице. В этом случае целочисленные корни многочлена нужно искать среди делителей свободного члена, т.е. среди делителей числа 45. Для заданного многочлена такими корнями могут быть числа $45; ; 15; ; 9; ; 5; ; 3; ; 1$ и $-45; ; -15; ; -9; ; -5; ; -3; ; -1$. Проверим, к примеру, число $1$:
Табл. №1
$$
begin{array} {c|c|c|c|c|c|c|c}
& 1 & 2 & -21 & -20 & 71 & 114 & 45 \
hline 1 & 1 & 3 & -18 & -38 & 33 & 147 & 192
end{array}
$$
Как видите, значение многочлена $P(x)$ при $x=1$ равно $192$ (последнее число в второй строке), а не $0$, посему единица не является корнем данного многочлена. Так как проверка для единицы окончилась неудачей, проверим значение $x=-1$. Новую таблицу составлять не будем, а продолжим использование табл. №1, дописав в нее новую (третью) строку. Вторую строку, в которой проверялось значение $1$, выделим красным цветом и в дальнейших рассуждениях использовать её не будем.
Можно, конечно, просто переписать таблицу заново, но при заполнении вручную это займет немало времени. Тем более, что чисел, проверка которых окончится неудачей, может быть несколько, и каждый раз записывать новую таблицу затруднительно. При вычислении «на бумаге» красные строки можно просто вычёркивать.
Табл. №2
$$
begin{array} {c|c|c|c|c|c|c|c}
& 1 & 2 & -21 & -20 & 71 & 114 & 45 \
hline normred{1} & normred{1} & normred{3} & normred{-18} & normred{-38} & normred{33} & normred{147} & normred{192}\
hline -1 & 1 & 1 & -22 & 2 & 69 & 45 & 0
end{array}
$$
Итак, значение многочлена $P(x)$ при $x=-1$ равно нулю, т.е. $P(-1)=0$. Это значит, что число $-1$ есть корень многочлена $P(x)$. После деления многочлена $P(x)$ на бином $x-(-1)=x+1$ получим многочлен $x^5+x^4-22x^3+2x^2+69x+45$, коэффициенты которого взяты из третьей строки табл. №2. Результат вычислений можно также представить в такой форме:
$$
begin{equation}
P(x)=(x+1)left(x^5+x^4-22x^3+2x^2+69x+45right)
end{equation}
$$
Продолжим поиск целочисленных корней. Теперь уже нужно искать корни многочлена $x^5+x^4-22x^3+2x^2+69x+45$. Опять-таки, целочисленные корни этого многочлена ищут среди делителей его свободного члена, – числа $45$. Попробуем ещё раз проверить число $-1$. Новую таблицу составлять не будем, а продолжим использование предыдущей табл. №2, т.е. допишем в нее еще одну строку:
$$
begin{array} {c|c|c|c|c|c|c|c}
& 1 & 2 & -21 & -20 & 71 & 114 & 45 \
hline normred{1} & normred{1} & normred{3} & normred{-18} & normred{-38} & normred{33} & normred{147} & normred{192}\
hline -1 & 1 & 1 & -22 & 2 & 69 & 45 & 0 \
hline -1 & 1 & 0 & -22 & 24 & 45 & 0 &
end{array}
$$
Итак, число $-1$ является корнем многочлена $x^5+x^4-22x^3+2x^2+69x+45$. Этот результат можно записать так:
$$
begin{equation}
x^5+x^4-22x^3+2x^2+69x+45=(x+1)left(x^4-22x^2+24x+45right)
end{equation}
$$
Учитывая равенство (2), равенство (1) можно переписать в такой форме:
$$
begin{equation}
P(x)=(x+1)left(x^5+x^4-22x^2+2x^2+69x+45right)=\
=(x+1)(x+1)left(x^4-22x^2+24x+45right)
=(x+1)^2left(x^4-22x^2+24x+45right)
end{equation}
$$
Теперь уже нужно искать корни многочлена $x^4-22x^2+24x+45$, – естественно, среди делителей его свободного члена (числа $45$). Проверим еще раз число $-1$:
$$
begin{array} {c|c|c|c|c|c|c|c}
& 1 & 2 & -21 & -20 & 71 & 114 & 45 \
hline normred{1} & normred{1} & normred{3} & normred{-18} & normred{-38} & normred{33} & normred{147} & normred{192}\
hline -1 & 1 & 1 & -22 & 2 & 69 & 45 & 0 \
hline -1 & 1 & 0 & -22 & 24 & 45 & 0 & \
hline -1 & 1 & -1 & -21 & 45 & 0 & &
end{array}
$$
Число $-1$ является корнем многочлена $x^4-22x^2+24x+45$. Этот результат можно записать так:
$$
begin{equation}
x^4-22x^2+24x+45=(x+1)left(x^3-x^2-21x+45right)
end{equation}
$$
С учетом равенства (4), равенство (3) перепишем в такой форме:
$$
begin{equation}
P(x)=(x+1)^2left(x^4-22x^3+24x+45right)=\
=(x+1)^2(x+1)left(x^3-x^2-21x+45right)
=(x+1)^3left(x^3-x^2-21x+45right)
end{equation}
$$
Теперь ищем корни многочлена $x^3-x^2-21x+45$. Проверим еще раз число $-1$:
$$
begin{array} {c|c|c|c|c|c|c|c}
& 1 & 2 & -21 & -20 & 71 & 114 & 45 \
hline normred{1} & normred{1} & normred{3} & normred{-18} & normred{-38} & normred{33} & normred{147} & normred{192}\
hline -1 & 1 & 1 & -22 & 2 & 69 & 45 & 0 \
hline -1 & 1 & 0 & -22 & 24 & 45 & 0 & \
hline -1 & 1 & -1 & -21 & 45 & 0 & & \
hline -1 & 1 & -2 & -19 & 64 & & &
end{array}
$$
Проверка окончилась неудачей. Выделим шестую строку красным цветом и попробуем проверить иное число, например, число $3$:
$$
begin{array} {c|c|c|c|c|c|c|c}
& 1 & 2 & -21 & -20 & 71 & 114 & 45 \
hline normred{1} & normred{1} & normred{3} & normred{-18} & normred{-38} & normred{33} & normred{147} & normred{192}\
hline -1 & 1 & 1 & -22 & 2 & 69 & 45 & 0 \
hline -1 & 1 & 0 & -22 & 24 & 45 & 0 & \
hline -1 & 1 & -1 & -21 & 45 & 0 & & \
hline normred{-1} & normred{1} & normred{-2} & normred{-19} & normred{64} & & & \
hline 3 & 1 & 2 & -15 & 0 & & &
end{array}
$$
В остатке ноль, посему число $3$ – корень рассматриваемого многочлена. Итак,
$$x^3-x^2-21x+45=(x-3)left(x^2+2x-15right)$$
Теперь равенство (5) можно переписать так:
$$
begin{equation}
P(x)=(x+1)^3left(x^3-x^2-21x+45right)
=(x+1)^3(x-3)left(x^2+2x-15right)
end{equation}
$$
Проверим ещё раз число $3$:
$$
begin{array} {c|c|c|c|c|c|c|c}
& 1 & 2 & -21 & -20 & 71 & 114 & 45 \
hline normred{1} & normred{1} & normred{3} & normred{-18} & normred{-38} & normred{33} & normred{147} & normred{192}\
hline -1 & 1 & 1 & -22 & 2 & 69 & 45 & 0 \
hline -1 & 1 & 0 & -22 & 24 & 45 & 0 & \
hline -1 & 1 & -1 & -21 & 45 & 0 & & \
hline normred{-1} & normred{1} & normred{-2} & normred{-19} & normred{64} & & & \
hline 3 & 1 & 2 & -15 & 0 & & & \
hline 3 & 1 & 5 & 0 & & & &
end{array}
$$
Полученный результат можно записать так (это продолжение равенства (6)):
$$
begin{equation}
P(x)=(x+1)^3(x-3)left(x^2+2x-15right)
=(x+1)^3(x-3)(x-3)(x+5)
=(x+1)^3(x-3)^2(x+5)
end{equation}
$$
Из последней скобки видно, что число $-5$ также является корнем данного многочлена. Можно, конечно, формально продолжить схему Горнера, проверив значение $x=-5$, но необходимости в этом нет. Итак,
$$ P(x)=(x+1)^3(x-3)left(x^2+2x-15right)=(x+1)^3(x-3)^2(x+5)$$
Числа $-1$, $3$, $-5$ – корни данного многочлена. Причем, так как скобка $(x+1)$ в третьей степени, то $-1$ – корень третьего порядка; так как скобка $(x-3)$ во второй степени, то $3$ – корень второго порядка; так как скобка $(x+5)$ в первой степени, то $x=-5$ – корень первого порядка (простой корень).
Вообще, обычно оформление таких примеров состоит из таблицы, в которой перебираются возможные варианты корней, и ответа:
$$
begin{array} {c|c|c|c|c|c|c|c}
& 1 & 2 & -21 & -20 & 71 & 114 & 45 \
hline normred{1} & normred{1} & normred{3} & normred{-18} & normred{-38} & normred{33} & normred{147} & normred{192}\
hline -1 & 1 & 1 & -22 & 2 & 69 & 45 & 0 \
hline -1 & 1 & 0 & -22 & 24 & 45 & 0 & \
hline -1 & 1 & -1 & -21 & 45 & 0 & & \
hline normred{-1} & normred{1} & normred{-2} & normred{-19} & normred{64} & & & \
hline 3 & 1 & 2 & -15 & 0 & & & \
hline 3 & 1 & 5 & 0 & & & &
end{array}
$$
Из таблицы следует вывод, полученный нами ранее с подробным решением:
$$ P(x)=(x+1)^3(x-3)left(x^2+2x-15right)=(x+1)^3(x-3)^2(x+5)$$
Ответ: $-1$, $3$, $-5$.
Пример №4
Убедиться, что числа $2$ и $-5$ являются корнями многочлена $3x^6+9x^5-28x^4+6x^3-30x^2-30x+100$. Разделить заданный многочлен на биномы $x-2$ и $x+5$.
Решение
Как и ранее, для сокращения записи обозначим заданный многочлен как $P(x)$, т.е.
$$P(x)=3x^6+9x^5-28x^4+6x^3-30x^2-30x+100$$
Степень многочлена $P(x)$ равна $6$. После деления на два заданных бинома степень заданного многочлена уменьшится на $2$, т.е. станет равна $4$.
$$
begin{array} {c|c|c|c|c|c|c|c}
& 3 & 9 & -28 & 6 & -30 & -30 & 100 \
hline normblue{2} & 3 & 15 & 2 & 10 & -10 & -50 & 0 \
hline normpurple{-5} & normgreen{3} & normgreen{0} & normgreen{2} & normgreen{0} & normgreen{-10} & 0 &
end{array}
$$
$$
P(x)=(x-normblue{2})cdot(x-(normpurple{-5}))cdotleft(normgreen{3}cdot{x^4}+normgreen{0}cdot{x^3}+normgreen{2}cdot{x^2} + normgreen{0}cdot{x} + (normgreen{-10})right)
=(x-2)(x+5)left(3x^4+2x^2-10right)
$$
Конечно, данный метод подбора малоэффективен в общем случае, когда корни не являются целыми числами, но для целочисленных корней метод довольно-таки неплох.
Каталог заданий.
8. Решите уравнение
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 5 № 285
Решите уравнение
Аналоги к заданию № 285: 286 Все
Решение
·
·
Сообщить об ошибке · Помощь
2
Тип 5 № 286
Решите уравнение
Аналоги к заданию № 285: 286 Все
Решение
·
·
Сообщить об ошибке · Помощь
3
Тип 5 № 287
Решите уравнение
Аналоги к заданию № 287: 288 Все
Решение
·
·
Сообщить об ошибке · Помощь
4
Тип 5 № 288
Решите уравнение
Аналоги к заданию № 287: 288 Все
Решение
·
·
Сообщить об ошибке · Помощь
5
Тип 5 № 289
Решите уравнение
Аналоги к заданию № 289: 290 Все
Решение
·
·
Сообщить об ошибке · Помощь
Пройти тестирование по этим заданиям
О проекте · Редакция · Правовая информация · О рекламе
© Гущин Д. Д., 2011—2023
Схема Горнера
11 июля 2022
Схема Горнера — это алгоритм для быстрого (счёт идёт на секунды) вычисления значения многочлена
[Pleft( x right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]
в точке $x=a$. Также схема Горнера позволяет быстро (быстрее, чем столбиком) делить многочлен $Pleft( x right)$ на линейные двучлены вида $x-a$, искать остатки от деления и многое другое.
Содержание
- Описание Схемы Горнера
- Вычисление значения многочлена
- Деление многочлена с остатком
- Перебор корней уравнения
- Разложение на множители
- Разложение по степеням
- Как всё это работает
1. Описание схемы Горнера
Итак, рассмотрим многочлен
[Pleft( x right)= color{blue}{{a}_{n}}{{x}^{n}}+color{blue}{{a}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{a}_{1}}x+color{blue}{{a}_{0}}]
Для наглядности коэффициенты выделены синим цветом. Распишем схему Горнера для многочлена $Pleft( x right)$ в точке $x=color{red}{a}$. Для этого заполним таблицу
[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {} & {} & {} & {} & {} & {} \ end{array}]
В первой строке мы видим коэффициенты многочлена $Pleft( x right)$ в порядке убывания степеней. Таких коэффициентов всегда на один больше, чем степень многочлена: для квадратного многочлена всего 3 коэффициента, для кубического — уже 4, и т.д.
Во второй строке таблицы мы вписываем лишь число $color{red}{a}$ в самой левой клетке. Остальные клетки заполняются последовательно по следующему алгоритму.
В первую свободную клетку мы переносим элемент из верхней строки без изменений. Назовём этот элемент ${{b}_{n-1}}$ — дальше вы поймёте, зачем нужна такая нумерация:
[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}}={{a}_{n}} & {} & {} & {} & {} & {} \ end{array}]
Вторая клетка — элемент ${{b}_{n-2}}$ — считается по формуле ${{b}_{n-2}}={{b}_{n-1}}cdot color{red}{a}+color{blue}{{a}_{n-1}}$. Другими словами, берём элемент слева, умножаем на число $a$ и добавляем элемент сверху:
[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}}={{b}_{n-1}}cdot color{red}{a}+color{blue}{{a}_{n-1}} & {} & {} & {} & {} \ end{array}]
Далее находим элемент ${{b}_{n-3}}$ по аналогичной формуле: ${{b}_{n-3}}={{b}_{n-2}}cdot color{red}{a}+color{blue}{{a}_{n-2}}$. Заносим результат в третью клетку:
[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}a & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}}={{b}_{n-2}}cdot color{red}{a}+color{blue}{{a}_{n-2}} & {} & {} & {} \ end{array}]
Аналогично находим элементы ${{b}_{n-4}}$, ${{b}_{n-5}}$ и далее. Берём элемент слева, умножаем на исходное число $color{red}{a}$, добавляем элемент сверху, результат записываем в клетку:
[{{b}_{k-1}}={{b}_{k}}cdotcolor{red}{a}+color{blue}{{a}_{k}}]
В какой-то момент мы доберёмся до элемента ${{b}_{0}}$, который находится в клетке под коэффициентом $color{blue}{{a}_{1}}$:
[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}}={{b}_{1}}cdot color{red}{a}+color{blue}{{a}_{1}} & {} \ end{array}]
Элемент в последней клетке считается по той же схеме: ${{b}_{0}}cdot color{red}{a}+color{blue}{{a}_{0}}$. Обозначим его буквой $r$:
[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}} & r={{b}_{0}}cdot color{red}{a}+color{blue}{{a}_{0}} \ end{array}]
Итак, мы заполнили все клетки и получили таблицу:
[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}} & r \ end{array}]
Схема заполнения этой таблицы как раз и называется схемой Горнера. Найденные элементы ${{b}_{n-1}}$, …, ${{b}_{0}}$ и $r$ позволяют переписать исходный многочлен $Pleft( x right)$ в виде
[Pleft( x right)=left( {{b}_{n-1}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}} right)left( x-color{red}{a} right)+r]
Такая запись оказывается грозным оружием для решения задач с многочленами, если знать её свойства. И сегодня мы изучим все эти свойства, но сначала немного практики.
Пример 1. Простой многочлен
Заполните таблицу по схеме Горнера для многочлена
[Pleft( x right)=2{{x}^{4}}-7{{x}^{3}}+{{x}^{2}}+2x-3]
в точке $x=3$.
Решение. Для начала аккуратно запишем коэффициенты исходного многочлена. Для наглядности они вновь помечены синим:
[Pleft( x right)= color{blue}{2}cdot {{x}^{4}}+left( color{blue}{-7} right)cdot {{x}^{3}}+color{blue}{1}cdot {{x}^{2}}+color{blue}{2} cdot x+left( color{blue}{-3} right)]
Составим таблицу. Поскольку степень многочлена $deg Pleft( x right)=4$, в таблице будет пять основных столбцов и один дополнительный столбец слева, в котором мы запишем число $x=color{red}{3}$:
[begin{array}{c|c|c|c|c|c} {} & color{blue}{2} & color{blue}{-7} & color{blue}{1} & color{blue}{2} & color{blue}{-3} \ hlinecolor{red}{3} & {} & {} & {} & {} & {} \ end{array}]
Заполняем пустые клетки во второй строке. В первую клетку переносим без изменений элемент сверху:
[begin{array}{c|c|c|c|c|c} {} & color{blue}{2} & color{blue}{-7} & color{blue}{1} & color{blue}{2} & color{blue}{-3} \ hlinecolor{red}{3} & 2 & {} & {} & {} & {} \ end{array}]
Элемент во второй клетке считается по формуле $2cdot color{red}{3}+left( color{blue}{-7} right)=-1$:
[begin{array}{c|c|c|c|c|c} {} & color{blue}{2} & color{blue}{-7} & color{blue}{1} & color{blue}{2} & color{blue}{-3} \ hlinecolor{red}{3} & 2 & -1 & {} & {} & {} \ end{array}]
Третью и четвёртую клетку заполняем аналогично: сначала $-1cdot color{red}{3}+color{blue}{1}=-2$, затем $-2cdot color{red}{3}+color{blue}{2}=-4$:
[begin{array}{c|c|r|r|r|c} {} & color{blue}{2} & color{blue}{-7} & color{blue}{1} & color{blue}{2} & color{blue}{-3} \ hlinecolor{red}{3} & 2 & -1 & -2 & -4 & {} \ end{array}]
Наконец, последняя клетка: $-4cdot color{red}{3}+left( color{blue}{-3} right)=-15$:
[begin{array}{c|c|r|r|r|r} {} & color{blue}{2} & color{blue}{-7} & color{blue}{1} & color{blue}{2} & color{blue}{-3} \ hlinecolor{red}{3} & 2 & -1 & -2 & -4 & -15 \ end{array}]
Готово! Мы заполнили таблицу по схеме Горнера.
Пример 2. Пропущенные коэффициенты
Заполните таблицу по схеме Горнера для многочлена
[Pleft( x right)={{x}^{4}}+3{{x}^{3}}-4]
в точке $x=1$.
Решение. Обратите внимание: в записи многочлена отсутствуют одночлены ${{x}^{2}}$ и $x$. Другими словами, коэффициенты в этих двух одночленах равны нулю:
[Pleft( x right)= color{blue}{1}cdot {{x}^{4}}+color{blue}{3}cdot {{x}^{3}}+color{blue}{0}cdot {{x}^{2}}+color{blue}{0} cdot x+left( color{blue}{-4} right)]
Для наглядности мы вновь отметили коэффициенты синим цветом — всего их снова пять, т.е. на один больше степени многочлена. И все они переносятся в таблицу. Пропуск нулевых коэффициентов будет грубой ошибкой:
[begin{array}{c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{3} & color{blue}{0} & color{blue}{0} & color{blue}{-4} \ hlinecolor{red}{1} & {} & {} & {} & {} & {} \ end{array}]
Заполняем таблицу по схеме Горнера. Первый элемент переносим сверху:
[begin{array}{c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{3} & color{blue}{0} & color{blue}{0} & color{blue}{-4} \ hlinecolor{red}{1} & 1 & {} & {} & {} & {} \ end{array}]
Второй, третий и четвёртый элемент считаем по формуле: $1cdot color{red}{1}+color{blue}{3}=4$; $4cdot color{red}{1}+color{blue}{0}=4$; $4cdot color{red}{1}+color{blue}{0}=4$:
[begin{array}{c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{3} & color{blue}{0} & color{blue}{0} & color{blue}{-4} \ hlinecolor{red}{1} & 1 & 4 & 4 & 4 & {} \ end{array}]
Наконец, последний элемент таблицы: $4cdot color{red}{1}+left( color{blue}{-4} right)=0$:
[begin{array}{c|c|c|c|c|r} {} & color{blue}{1} & color{blue}{3} & color{blue}{0} & color{blue}{0} & color{blue}{-4} \ hlinecolor{red}{1} & 1 & 4 & 4 & 4 & 0 \ end{array}]
Готово! Таблица заполнена, последний элемент оказался равен нулю. И это не случайно. Скоро узнаем почему.:)
2. Вычисление значения многочлена
Чтобы понять, зачем нужна схема Горнера, давайте вкратце повторим всю цепочку рассуждений. Берём произвольный многочлен
[Pleft( x right)= color{blue}{{a}_{n}}{{x}^{n}}+color{blue}{{a}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{a}_{1}}x+color{blue}{{a}_{0}}]
и произвольную точку $x=color{red}{a}$. Составляем таблицу:
[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}} & r \ end{array}]
Найденные коэффициенты ${{b}_{n-1}}$, …, ${{b}_{0}}$, $r$ позволяют переписать многочлен $Pleft( x right)$ в новом виде:
[Pleft( x right)=left( {{b}_{n-1}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}} right)left( x-color{red}{a} right)+r]
Но чем так примечательна эта запись? В ближайших четырёх пунктах мы детально разберём все её свойства. И начнём с самого простого. Подставим в эту новую запись число $x=color{red}{a}$, т.е. вычислим $Pleft( color{red}{a} right)$:
[Pleft( color{red}{a} right)=left( {{b}_{n-1}}{color{red}{a}^{n-1}}+ldots +{{b}_{1}}color{red}{a}+{{b}_{0}} right)left( color{red}{a}-color{red}{a} right)+r=r]
Итак, последнее число $r$ в таблице — это значение многочлена $Pleft( x right)$ в точке $x=color{red}{a}$:
[Pleft( color{red}{a} right)=r]
А это значит, что благодаря схеме Горнера можно считать значения многочленов быстро (нет операции возведения в степень) и надёжно (в сложении мы ошибаемся реже, чем в умножении).
Так, из Примера 1 следует, что значение многочлена
[Pleft( x right)=2{{x}^{4}}-7{{x}^{3}}+{{x}^{2}}+2x-3]
в точке $x=3$ равно
[Pleft( 3 right)=r=-15]
Сравните это с прямой подстановкой $x=3$ в многочлен:
[begin{align} Pleft( 3 right) &=2cdot {{3}^{4}}-7cdot {{3}^{3}}+{{3}^{2}}+2cdot 3-3= \ &=2cdot 81-7cdot 27+left( 9+6-3 right)= \ &=162-189+12= \ &=-15 end{align}]
Результат один и тот же, но объём вычислений вырос на порядок.
Пример 3. «Некрасивые» значения
С помощью схемы Горнера найдите значение многочлена
[Pleft( x right)=8{{x}^{4}}-12{{x}^{3}}-24{{x}^{2}}+11x+7]
в точке $x=2,5$.
Решение. Выделим коэффициенты многочлена
[Pleft( x right)= color{blue}{8}cdot {{x}^{4}}+left( color{blue}{-12} right)cdot {{x}^{3}}+left( color{blue}{-24} right)cdot {{x}^{2}}+color{blue}{11} cdot x+color{blue}{7}]
и заполним таблицу для $x=color{red}{2,5}$:
[begin{array}{c|c|c|c|c|c} {} & color{blue}{8} & color{blue}{-12} & color{blue}{-24} & color{blue}{11} & color{blue}{7} \ hlinecolor{red}{2,5} & 8 & 8 & -4 & 1 & 9,5 \ end{array}]
Итого значение многочлена $Pleft( color{red}{2,5} right)=9,5$. Точно такое же значение можно получить прямой подстановкой, но вычисления будут настолько громоздкими, что мы не будем приводить их.
3. Деление многочлена с остатком
Напомню, что разделить многочлен $color{blue}{Pleft( x right)}$ на многочлен $color{red}{Aleft( x right)}$ с остатком — значит найти многочлены $Qleft( x right)$ и $Rleft( x right)$ такие, что
[color{blue}{Pleft( x right)}=Qleft( x right)cdot color{red}{Aleft( x right)}+Rleft( x right)]
причём степень многочлена $Rleft( x right)$ строго меньше степени делителя $color{red}{Aleft( x right)}$:
[deg Rleft( x right) lt deg color{red}{Aleft( x right)}]
Многочлен $Qleft( x right)$ называют неполным частным, $Rleft( x right)$ — остатком от деления. Можно показать, что $Qleft( x right)$ и $Rleft( x right)$ определены однозначно для исходных многочленов $color{blue}{Pleft( x right)}$ и $color{red}{Aleft( x right)}$.
3.1. Случай линейного делителя
Пусть $Aleft( x right)=x- color{red}{a}$ — линейный двучлен. Очевидно, его степень $deg Aleft( x right)=1$.
Рассмотрим произвольный многочлен
[Pleft( x right)= color{blue}{{a}_{n}}{{x}^{n}}+color{blue}{{a}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{a}_{1}}x+color{blue}{{a}_{0}}]
и составим таблицу для $x=color{red}{a}$ по схеме Горнера:
[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}} & r \ end{array}]
Получим новую запись многочлена $Pleft( x right)$:
[Pleft( x right)=left( {{b}_{n-1}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}} right)left( x-color{red}{a} right)+r]
где $r$ — обычное число, т.е. $deg r=0 lt deg Aleft( x right)$. Но тогда многочлен
[Qleft( x right)={{b}_{n-1}}{{x}^{n-1}}+{{b}_{n-2}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}}]
является неполным частным при делении $Pleft( x right)$ на двучлен $x-color{red}{a}$, а число $r$ — остаток этого деления:
[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)+r]
Итак, схема Горнера позволяет быстро находить неполное частное и остаток от деления произвольного многочлена $Pleft( x right)$ на двучлен $x-color{red}{a}$.
Пример 4. Деление с остатком
Найдите частное и остаток при делении многочлена
[{{x}^{4}}-2{{x}^{3}}+4{{x}^{2}}-6x+10]
На многочлен $x-1$.
Решение. Выделим синим цветом коэффициенты исходного многочлена:
[color{blue}{1}cdot {{x}^{4}}+left( color{blue}{-2} right)cdot {{x}^{3}}+color{blue}{4}cdot {{x}^{2}}+left( color{blue}{-6} right)cdot x+color{blue}{10}]
Заполним таблицу по схеме Горнера для $x=color{red}{1}$:
[begin{array}{c|c|r|c|r|c} {} & color{blue}{1} & color{blue}{-2} & color{blue}{4} & color{blue}{-6} & color{blue}{10} \ hlinecolor{red}{1} & 1 & -1 & 3 & -3 & 7 \ end{array}]
Первые четыре числа — это коэффициенты многочлена-частного. Отметим их зелёным цветом:
[begin{array}{c|c|r|c|r|c} {} & color{blue}{1} & color{blue}{-2} & color{blue}{4} & color{blue}{-6} & color{blue}{10} \ hlinecolor{red}{1} & color{#green}{1} & color{#green}{-1} & color{#green}{3} & color{#green}{-3} & 7 \ end{array}]
Остаток от деления равен $r=7$. Составим многочлен-частное:
[Qleft( x right)= color{#green}{1}cdot {{x}^{3}}+left( color{#green}{-1} right)cdot {{x}^{2}}+color{#green}{3}cdot x+left( color{#green}{-3} right)]
Очевидно, при делении на линейный двучлен степень частного должна быть на единицу меньше степени исходного многочлена. Так и получилось:
[deg Qleft( x right)=4-1=3]
Пример 5. Проверка делимости
Убедитесь, что многочлен
[{{x}^{5}}-6{{x}^{4}}+16{{x}^{2}}-33{{x}^{2}}+44x-28]
делится на двучлен ${{left( x-2 right)}^{2}}$.
Решение. Многочлен делится без остатка на ${{left( x-2 right)}^{2}}$, если сначала он делится на двучлен $x-2$, а затем частное вновь делится на $x-2$. Следовательно, решение состоит из двух шагов.
Первый шаг: выделим коэффициенты исходного многочлена
[color{blue}{1}cdot {{x}^{5}}+left( color{blue}{-6} right)cdot {{x}^{4}}+color{blue}{16}cdot {{x}^{2}}+left( color{blue}{-33} right)cdot {{x}^{2}}+color{blue}{52} cdot x+left( color{blue}{-36} right)]
[begin{align}color{blue}{1}cdot {{x}^{5}} &+left( color{blue}{-6} right)cdot {{x}^{4}}+color{blue}{16}cdot {{x}^{2}}+ \ &+left( color{blue}{-33} right)cdot {{x}^{2}}+color{blue}{52} cdot x+left( color{blue}{-36} right) \ end{align}]
Составим таблицу для $x=color{red}{2}$. В ней будет 6 основных столбцов:
[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{-6} & color{blue}{16} & color{blue}{-33} & color{blue}{52} & color{blue}{-36} \ hlinecolor{red}{2} & {} & {} & {} & {} & {} & {} \ end{array}]
Заполним все пустые клетки по схеме Горнера:
[begin{array}{c|c|c|c|r|c|c} {} & color{blue}{1} & color{blue}{-6} & color{blue}{16} & color{blue}{-33} & color{blue}{52} & color{blue}{-36} \ hlinecolor{red}{2} & color{green}{1} & color{green}{-4} & color{green}{8} & color{green}{-17} & color{green}{18} & 0 \ end{array}]
Получили остаток $r=0$, поэтому исходный многочлен действительно делится на $x-color{red}{2}$, а частное равно
[Qleft( x right)= color{green}{1}cdot {{x}^{4}}+left( color{green}{-4} right)cdot {{x}^{3}}+color{green}{8}cdot {{x}^{2}}+left( color{green}{-17} right) cdot x+color{green}{18}]
Следовательно, исходный многочлен можно представить так:
[begin{align} & {{x}^{5}}-6{{x}^{4}}+16{{x}^{2}}-33{{x}^{2}}+44x-28= \ = & left( {{x}^{4}}-4{{x}^{3}}+8{{x}^{2}}-17x+18 right)cdot left( x-color{red}{2} right) \ end{align}]
Второй шаг: выделяем коэффициенты и заполняем ту же самую таблицу, но уже для многочлена $Qleft( x right)$.
[Qleft( x right)= color{blue}{1}cdot {{x}^{4}}+left( color{blue}{-4} right)cdot {{x}^{3}}+color{blue}{8}cdot {{x}^{2}}+left( color{blue}{-17} right) cdot x+color{blue}{18}]
Но все коэффициенты в нужном количестве уже присутствуют в таблице, которую мы получили на предыдущем шаге. А потому достаточно приписать к этой таблице ещё одну строку и вновь заполнить её для $x=color{red}{2}$:
[begin{array}{c|c|c|c|r|c|c} {} & 1 & -6 & 16 & -33 & 52 & -36 \ hlinecolor{red}{2} & color{blue}{1} & color{blue}{-4} & color{blue}{8} & color{blue}{-17} & color{blue}{18} & 0 \ hlinecolor{red}{2} & color{green}{1} & color{green}{-2} & color{green}{4} & color{green}{-9} & 0 & {} \ end{array}]
Остаток от деления равен нулю, поэтому многочлен $Qleft( x right)$ делится на $x-color{red}{2}$, и его можно переписать так:
[Qleft( x right)=left( color{green}{1}cdot {{x}^{3}}+left( color{green}{-2} right){{x}^{2}}+color{green}{4} cdot x+left( color{green}{-9} right) right)cdot left( x-color{red}{2} right)]
Возвращаясь к исходному многочлену, получим
[begin{align} & {{x}^{5}}-6{{x}^{4}}+16{{x}^{2}}-33{{x}^{2}}+44x-28= \ = & left( {{x}^{3}}-2{{x}^{2}}+4x-9 right)cdot {{left( x-color{red}{2} right)}^{2}} \ end{align}]
Такая запись, как и приведённая выше таблица, доказывает, что исходный многочлен делится на ${{left( x-color{red}{2} right)}^{2}}$.
Обратите внимание: на каждом следующем шаге количество коэффициентов уменьшается на единицу:
- В первой строке мы выписали все 6 коэффициентов исходного многочлена.
- Во второй строке осталось лишь 5 коэффициентов, а последнее число — остаток.
- Третья срока — 4 коэффициента и вновь остаток.
Всё это пригодится нам в следующем пункте.
4. Перебор корней уравнения
До сих пор мы применяли схему Горнера для некоторой точки $x=color{red}{a}$, которая была прямо указана в условии задачи. Но что если найти такую точку — как раз и есть условие задачи?
Рассмотрим уравнение
[color{blue}{{a}_{n}}{{x}^{n}}+color{blue}{{a}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{a}_{1}}x+color{blue}{{a}_{0}}=0]
Число $x=color{red}{a}$ будет корнем этого уравнения, если $Pleft( color{red}{a} right)=0$. Это значит, что последний элемент в схеме Горнера должен быть равен нулю:
[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hlinecolor{red}{a} & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}} & color{green}{0} \ end{array}]
Следовательно, мы можем быстро проверить, является ли число $x=color{red}{a}$ корнем уравнения. Достаточно просто подставить его в таблицу и найти последний элемент.
Кроме того, мы знаем, что последний элемент — это остаток $r$. При $r=color{green}{0}$ исходное уравнение примет вид
[left( {{b}_{n-1}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}} right)left( x-color{red}{a} right)=0]
Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю. Откуда либо $x-color{red}{a}=0$ (этот случай мы уже разобрали), либо
[color{blue}{{b}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{b}_{1}}x+color{blue}{{b}_{0}}=0]
Получили новое уравнение — меньшей степени, чем исходное. Коэффициенты этого уравнения уже занесены в таблицу, и к нему вновь применима схема Горнера для перебора кандидатов в корни.
Более того: этот перебор можно ускорить. Но об этом чуть позже. Сначала рассмотрим пару простых примеров.
Пример 6. Уравнение третьей степени
Решите уравнение:
[{{x}^{3}}+9{{x}^{2}}+23x+15=0]
Решение. Заметим, что все коэффициенты многочлена положительны, поэтому уравнение не имеет положительных корней. Иначе, если $x gt 0$, левая часть равенства представляет собой сумму положительных чисел, которая никогда не равна нулю.
Рассмотрим отрицательные числа. Начнём с $x=color{red}{-1}$:
[begin{array}{c|c|c|c|c} {} & color{blue}{1} & color{blue}{9} & color{blue}{23} & color{blue}{15} \ hlinecolor{red}{-1} & 1 & 8 & 15 & color{green}{0} \ end{array}]
Получили $r=color{green}{0}$. Следовательно, $x=color{red}{-1}$ — корень, и всё уравнение можно переписать так:
[left( {{x}^{2}}+8x+15 right)left( x+1 right)=0]
Далее уравнение разделяется на линейное $x+1=0$, которое мы уже решили, и квадратное
[{{x}^{2}}+x+15=0]
Такое уравнение можно решить через дискриминант или по теореме Виета. Получим корни $x=-3$ и $x=-5$.
Окончательный ответ: $x=-1$, $x=-3$, $x=-5$.
Впрочем, с тем же успехом мы могли продолжить решение по схеме Горнера:
[begin{array}{r|c|c|c|c} {} & color{blue}{1} & color{blue}{9} & color{blue}{23} & color{blue}{15} \ hlinecolor{red}{-1} & 1 & 8 & 15 & color{green}{0} \ hlinecolor{red}{-3} & 1 & 5 & color{green}{0} & {} \ hlinecolor{red}{-5} & 1 & color{green}{0} & {} & {} \ end{array}]
При этом уравнение примет вид
[left( x+3 right)left( x+5 right)left( x+1 right)=0]
По сути, мы получили разложение на множители. И чуть ниже об этом будет отдельный пункт.
Пример 7. Ещё одно уравнение
Решите уравнение:
[2{{x}^{3}}-{{x}^{2}}-5x-2=0]
Решение. В этот раз мы видим, что корни вполне могут быть положительными. Начнём с $x=color{red}{1}$:
[begin{array}{c|c|r|r|r} {} & color{blue}{2} & color{blue}{-1} & color{blue}{-5} & color{blue}{-2} \ hlinecolor{red}{1} & 2 & 1 & -4 & color{red}{-6} \ end{array}]
Получили $r=color{red}{-6}ne 0$. Следовательно, $x=color{red}{1}$ не является корнем. Проверим $x=color{red}{2}$:
[begin{array}{c|c|r|r|r} {} & color{blue}{2} & color{blue}{-1} & color{blue}{-5} & color{blue}{-2} \ hlinecolor{red}{1} & 2 & 1 & -4 & color{red}{-6} \ hlinecolor{red}{2} & 2 & 3 & 1 & color{green}{0} \ end{array}]
Обратите внимание: при заполнении третьей строки таблицы мы игнорируем вторую строку, где нас постигла неудача. И если бы мы могли стирать строки, то схема Горнера выглядела бы так:
[begin{array}{c|c|r|r|r} {} & color{blue}{2} & color{blue}{-1} & color{blue}{-5} & color{blue}{-2} \ hlinecolor{red}{2} & 2 & 3 & 1 & color{green}{0} \ end{array}]
В любом случае мы получили $r=color{green}{0}$, поэтому $x=color{red}{2}$ — корень, и уравнение примет вид
[left( 2{{x}^{2}}+3x+1 right)left( x-2 right)=0]
Далее можно решить квадратное уравнение через дискриминант, а можно продолжить заполнять таблицу. Например, для $x=color{red}{-1}$:
[begin{array}{r|c|r|r|r} {} & 2 & -1 & -5 & -2 \ hline1 & 2 & 1 & -4 & -6 \ hline2 & color{blue}{2} & color{blue}{3} & color{blue}{1} & color{green}{0} \ hline-1 & 2 & 1 & color{green}{0} & {} \ end{array}]
Вновь получили ноль в последней клетке, поэтому $x=color{red}{-1}$ — тоже корень, а уравнение примет вид
[left( 2x+1 right)left( x+1 right)left( x-2 right)=0]
Теперь ответ очевиден: $x=2$, $x=-1$, $x=-0,5$.
Помните: «неудачные» строки — это нормально. Их бывает много. Главное при переборе корней — игнорировать такие строки и заполнять таблицу так, будто этих строк не существует.
4.1. Теорема Безу
Теорема Безу и следствия из неё позволяет значительно сузить круг потенциальных корней.
Теорема Безу. Остаток от деления многочлена
[Pleft( x right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]
на двучлен $x-a$ равен $Pleft( a right)$.
Несложно заметить, что схема Горнера и следующая из неё запись многочлена
[Pleft( x right)=left( {{b}_{n-1}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}} right)left( x-color{red}{a} right)+r]
является прямым доказательством этой теоремы. Действительно, если подставить в эту запись значение $x=color{red}{a}$, мы получим
[Pleft( color{red}{a} right)=left( {{b}_{n-1}}color{red}{{a}^{n-1}}+ldots +{{b}_{1}}color{red}{a}+{{b}_{0}} right)left( color{red}{a}-color{red}{a} right)+r=r]
У теоремы Безу огромное количество полезных приложений — см. урок «Теорема Безу». Сейчас же нас интересует не сама теорема, а следствие из неё, связанное с корнями многочлена.
Пусть $x=color{red}{a}$ — корень многочлена $Pleft( x right)$. Распишем многочлен по схеме Горнера для $x=color{red}{a}$:
[Pleft( x right)=left( {{b}_{n-1}}{{x}^{n-1}}+ldots +{{b}_{1}}x+{{b}_{0}} right)left( x-color{red}{a} right)]
Поскольку $x=color{red}{a}$ — корень, остаток $r=0$, и мы получили разложение многочлена $Pleft( x right)$ на множители. А теперь выполним обратную операцию — раскроем скобки и приведём подобные слагаемые:
[Pleft( x right)={{b}_{n-1}}{{x}^{n}}+ldots -color{red}{a}cdot {{b}_{0}}]
Получается, что корень $x=color{red}{a}$ является делителем свободного члена $Pleft( x right)$. Более того, можно показать, что в многочлене
[Pleft( x right)= color{blue}{{a}_{n}}{{x}^{n}}+color{blue}{{a}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{a}_{1}}x+color{blue}{{a}_{0}}]
с целыми коэффициентами $color{blue}{{a}_{n}}$, …, $color{blue}{{a}_{0}}$ все рациональные корни имеют вид
[x=frac{m}{n}]
где $min mathbb{Z}$ — делитель свободного члена $color{blue}{{a}_{0}}$, а $nin mathbb{N}$ — делитель старшего коэффициента $color{blue}{{a}_{n}}$.
И хоть при первом взгляде на все эти рассуждения они могут показаться сложными, на практике теорема Безу значительно упрощает поиск корней. Взгляните на примеры.:)
Пример 8. Сплошной перебор
Решите уравнение:
[{{x}^{5}}+8{{x}^{4}}+24{{x}^{3}}+35{{x}^{2}}+28x+12=0]
Решение. Слева от знака равенства стоит многочлен пятой степени. Старший коэффициент многочлена ${{a}_{5}}=color{blue}{1}$, свободный член ${{a}_{0}}=color{blue}{12}$. Если такой многочлен имеет рациональные корни вида
[x=frac{m}{n}]
то $n=1$ — это единственный натуральный делитель для ${{a}_{5}}=color{blue}{1}$. А вот число $m$ будем искать среди делителей числа ${{a}_{0}}=color{blue}{12}$:
[m=pm 1, pm 2, pm 3, pm 4, pm 6, pm 12.]
Итого 12 вариантов. Далее заметим, что все коэффициенты исходного многочлена положительны, поэтому достаточно проверить лишь отрицательные корни. Начнём с $x=color{red}{-1}$, затем $x=color{red}{-2}$, $x=color{red}{-3}$ и т.д.:
[begin{array}{r|c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{8} & color{blue}{24} & color{blue}{35} & color{blue}{28} & color{blue}{12} \ hline color{red}{-1} & 1 & 7 & 17 & 18 & 10 & color{red}{2} \ hline color{red}{-2} & 1 & 6 & 12 & 11 & 6 & color{green}{0} \ hline color{red}{-3} & 1 & 3 & 3 & 2 & color{green}{0} & {} \ end{array}]
Как видим, вариант $x=color{red}{-1}$ не подошёл, поэму строку с проверкой этого числа можно вычеркнуть. Зато $x=color{red}{-2}$ и $x=color{red}{-3}$ — корни. Более того: можно повторно проверить $x=color{red}{-2}$. Получим интересный результат:
[begin{array}{r|c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{8} & color{blue}{24} & color{blue}{35} & color{blue}{28} & color{blue}{12} \ hline color{red}{-2} & 1 & 6 & 12 & 11 & 6 & color{green}{0} \ hline color{red}{-3} & 1 & 3 & 3 & 2 & color{green}{0} & {} \ hline color{red}{-2} & 1 & 1 & 1 & color{green}{0} & {} & {} \ end{array}]
Другими словами, исходное уравнение можно переписать так:
[left( {{x}^{2}}+x+1 right){{left( x+2 right)}^{2}}left( x+1 right)=0]
Число $x=color{red}{-2}$ оказалось корнем второй кратности, а квадратное уравнение
[{{x}^{2}}+x+1=0]
не имеет корней. Поэтому окончательный ответ: $x=-2$, $x=-3$.
Пример 9. Дробные корни
Решите уравнение:
[3{{x}^{4}}+5{{x}^{3}}-{{x}^{2}}-5x-2=0]
Решение. По теореме Безу получаем, что рациональные корни вида
[x=frac{m}{n}]
должны быть составлены из чисел $min left{ pm 1, pm 2 right}$ и $nin left{ 1,3 right}$. Всего существует восемь таких комбинаций:
[xin left{ pm 1; pm 2; pm frac{1}{3}; pm frac{2}{3} right}]
Рассмотрим самые простые корни: $x=color{red}{1}$ и $x=color{red}{-1}$. Причём на каждом шаге будем проверять возможную кратность:
[begin{array}{r|c|c|c|c|c} {} & color{blue}{3} & color{blue}{5} & color{blue}{-1} & color{blue}{-5} & color{blue}{-2} \ hline color{red}{1} & 3 & 8 & 7 & 2 & color{green}{0} \ hline color{red}{1} & 3 & 11 & 18 & color{red}{20} & {} \ hline color{red}{-1} & 3 & 5 & 2 & color{green}{0} & {} \ hline color{red}{-1} & 3 & 2 & color{green}{0} & {} & {} \ end{array}]
Получили корень $x=color{red}{1}$ (первой кратности) и $x=color{red}{-1}$ (как минимум второй кратности), а само уравнение можно переписать так:
[left( 3x+2 right){{left( x+1 right)}^{2}}left( x-1 right)=0]
Теперь очевидно, что всего уравнение имеет три корня: $x=1$, $x=-1$ и $x=-{2}/{3};$.
4.2. Учёт кратности корней
Как видим, схема Горнера позволяет не просто перебирать корни, но и определять их кратность. Это особенно важно при решении неравенств и задач с параметрами.
Чтобы определить кратность корня $x=color{red}{a}$, достаточно подставлять его в таблицу до тех пор, пока не появится остаток, отличный от нуля. Либо пока исходный многочлен не будет полностью разложен на множители.
Пример 10. Корень четвёртой кратности
Решите уравнение и определите кратность корней:
[{{x}^{5}}-10{{x}^{3}}-20{{x}^{2}}-15x-4=0]
Решение. Слева стоит многочлен с целыми коэффициентами. Выпишем потенциальные корни по теореме Безу:
[xin left{ pm 1; pm 2; pm 4 right}]
Начнём с самых простых чисел: $x=color{red}{1}$ и $x=color{red}{-1}$. Проверим их по схеме Горнера:
[begin{array}{r|c|r|r|r|r|r} {} & color{blue}{1} & color{blue}{0} & color{blue}{-10} & color{blue}{-20} & color{blue}{-15} & color{blue}{-4} \ hlinecolor{red}{1} & 1 & 1 & -9 & -29 & -44 & color{red}{-48} \ hlinecolor{red}{-1} & 1 & -1 & -9 & -11 & -4 & color{green}{0} \ hlinecolor{red}{-1} & 1 & -2 & -7 & -4 & color{green}{0} & {} \ hlinecolor{red}{-1} & 1 & -3 & -4 & color{green}{0} & {} & {} \ hlinecolor{red}{-1} & 1 & -4 & color{green}{0} & {} & {} & {} \ end{array}]
Перепишем исходное уравнение:
[{{left( x+1 right)}^{4}}left( x-1 right)left( x-4 right)=0]
Итого уравнение имеет три различных корня: $x=-1$ (четвёртой кратности), $x=1$ (первой кратности) и $x=4$ (тоже первой кратности).
Ключевая мысль: с помощью схемы Горнера можно решать даже уравнения высших степеней. Поэтому если при решении текстовой задачи (и особенно задачи с параметром) возникло уравнение 3-й степени и выше, это вовсе не означает, что вы где-то ошиблись. Вполне возможно, что составители задачи хотят проверить, умеете ли вы решать уравнения высших степеней.
5. Разложение на множители
Схему Горнера часто применяют для разложения многочлена на множители. Мы знаем, что для всякого $x=color{red}{a}$ такого, что последний элемент таблицы $r=color{green}{0}$, можно переписать исходный многочлен $Pleft( x right)$ в виде
[Pleft( x right)=left( x-color{red}{a} right)cdot Qleft( x right)]
Коэффициенты многочлена $Qleft( x right)$ будут также даны в таблице, и к нему тоже применима схема Горнера.
Пример 11. Простой многочлен
Разложите на множители многочлен
[{{x}^{4}}+2{{x}^{3}}+4{{x}^{2}}+3x-10]
Решение. Рассмотрим многочлен
[Pleft( x right)= color{blue}{1}cdot {{x}^{4}}+color{blue}{2}cdot {{x}^{3}}+color{blue}{4}cdot {{x}^{2}}+color{blue}{3}cdot x+left( color{blue}{-10} right)]
Будем выделять из него двучлены вида $left( x-color{red}{a} right)$, где $x=color{red}{a}$ — корни многочлена $Pleft( x right)$. Рассмотрим в качестве таких корней делители свободного члена ${{a}_{0}}=color{blue}{-10}$. Начнём с $x=color{red}{1}$ и $x=color{red}{-1}$:
[begin{array}{r|c|c|c|c|c} {} & color{blue}{1} & color{blue}{2} & color{blue}{4} & color{blue}{3} & color{blue}{-10} \ hlinecolor{red}{1} & 1 & 3 & 7 & 10 & color{green}{0} \ hlinecolor{red}{-1} & 1 & 2 & 5 & color{red}{5} & {} \ hlinecolor{red}{-2} & 1 & 1 & 5 & color{green}{0} & {} \ end{array}]
Итого одна неудачная попытка и две удачных. Получили разложение многочлена
[Pleft( x right)=left( x-1 right)left( x+2 right)left( {{x}^{2}}+x+5 right)]
Квадратный трёхчлен в третьей скобке всегда положителен:
[{{x}^{2}}+x+5 gt 0]
Его нельзя разложить на множители, поэтому указанное разложение $Pleft( x right)$ — окончательное.
Пример 12. Сложный многочлен
Разложите на множители многочлен
[{{x}^{5}}-6{{x}^{4}}+2{{x}^{3}}+36{{x}^{2}}-27x-54]
Решение. Рассмотрим многочлен
[Pleft( x right)= color{blue}{1}cdot {{x}^{5}}+left( color{blue}{-6} right)cdot {{x}^{4}}+color{blue}{2}cdot {{x}^{3}}+color{blue}{36}cdot {{x}^{2}}+left( color{blue}{-27} right)cdot x+left( color{blue}{-54} right)]
[begin{align}Pleft( x right)= color{blue}{1}cdot {{x}^{5}} &+left( color{blue}{-6} right)cdot {{x}^{4}}+color{blue}{2}cdot {{x}^{3}}+ \ &+color{blue}{36}cdot {{x}^{2}}+left( color{blue}{-27} right) cdot x+left( color{blue}{-54} right) \ end{align}]
Проверим делители свободного члена ${{a}_{0}}=color{blue}{-54}$. Таких делителей очень много, поэтому начнём с самых простых: $x=color{red}{1}$ и $x=color{red}{-1}$:
[begin{array}{r|c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{-6} & color{blue}{2} & color{blue}{36} & color{blue}{-27} & color{blue}{-54} \ hlinecolor{red}{1} & 1 & -5 & -3 & 33 & 6 & color{red}{-48} \ hlinecolor{red}{-1} & 1 & -7 & 9 & 27 & -54 & color{green}{0} \ hlinecolor{red}{-1} & 1 & -8 & 17 & 10 & color{red}{-64} & {} \ hlinecolor{red}{2} & 1 & -5 & -1 & 25 & color{red}{-4} & {} \ hlinecolor{red}{-2} & 1 & -9 & 27 & -27 & color{green}{0} & {} \ hlinecolor{red}{3} & 1 & -6 & 9 & color{green}{0} & {} & {} \ hlinecolor{red}{3} & 1 & -3 & color{green}{0} & {} & {} & {} \ hlinecolor{red}{3} & 1 & color{green}{0} & {} & {} & {} & {} \ end{array}]
Получили три неудачных попытки и пять удачных. В целом многочлен привет вид
[Pleft( x right)=left( x+1 right)left( x+2 right){{left( x-3 right)}^{3}}]
Это и есть искомое разложение на множители.
Обратите внимание: после проверки корня $x=color{red}{-2}$ в таблице возникла формула сокращённого умножения — куб разности:
[{{x}^{3}}-9{{x}^{2}}+27x-27={{left( x-3 right)}^{3}}]
С этим замечанием дальше можно было вообще не заполнять таблицу, поскольку многочлен сразу примет вид
[Pleft( x right)=left( x+1 right)left( x+2 right){{left( x-3 right)}^{3}}]
6. Разложение по степеням
Наконец, ещё одно применение схемы Горнера — это разложение многочлена по степеням двучлена $left( x-color{red}{a} right)$. Для этого достаточно составлять таблицу с указанным $x=color{red}{a}$ до тех пор, пока не закончатся столбцы с коэффициентами.
Полученные остатки будут коэффициентами искомого разложения. Взгляните на примеры.
Пример 13. Разложение многочлена
Разложите по степеням $left( x-1 right)$ многочлен
[{{x}^{4}}-6{{x}^{3}}+16{{x}^{2}}-17x-5]
Решение. Выделим коэффициенты многочлена:
[Pleft( x right)= color{blue}{1}cdot {{x}^{4}}+left( color{blue}{-6} right)cdot {{x}^{3}}+color{blue}{16}cdot {{x}^{2}}+left( color{blue}{-17} right)cdot x+left( color{blue}{-5} right)]
[begin{align}Pleft( x right)= color{blue}{1}cdot {{x}^{4}} &+left( color{blue}{-6} right)cdot {{x}^{3}}+color{blue}{16}cdot {{x}^{2}}+ \ &+left( color{blue}{-17} right) cdot x+left( color{blue}{-5} right) \ end{align}]
Занесём эти коэффициенты в таблицу и будем заполнять её по схеме Горнера для $x=color{red}{1}$ до тех пор, пока не вычеркнем все столбцы:
[begin{array}{c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{-6} & color{blue}{16} & color{blue}{-17} & color{blue}{-5} \ hlinecolor{red}{1} & 1 & -5 & 11 & -6 & color{green}{-11} \ hlinecolor{red}{1} & 1 & -4 & 7 & color{green}{1} & {} \ hlinecolor{red}{1} & 1 & -3 & color{green}{4} & {} & {} \ hlinecolor{red}{1} & 1 & color{green}{-2} & {} & {} & {} \ hlinecolor{red}{1} & color{green}{1} & {} & {} & {} & {} \ end{array}]
Числа, выделенные зелёным — это остатки от деления в каждой новой строке. Они и будут коэффициентами разложения в порядке возрастания степеней. Внизу таблицы находится старший коэффициент, а в первой строке — свободный член:
[Pleft( x right)= color{green}{1}cdot {{left( x-1 right)}^{4}}+left( color{green}{-2} right)cdot {{left( x-1 right)}^{3}}+color{green}{4}cdot {{left( x-1 right)}^{2}}+color{green}{1}cdot left( x-1 right)+left( color{green}{-11} right)]
[begin{align}Pleft( x right) &=color{green}{1}cdot {{left( x-1 right)}^{4}}+left( color{green}{-2} right)cdot {{left( x-1 right)}^{3}}+ \ &+color{green}{4}cdot {{left( x-1 right)}^{2}}+color{green}{1}cdot left( x-1 right)+left( color{green}{-11} right) \ end{align}]
Представим эту запись более компактно:
[Pleft( x right)={{left( x-1 right)}^{4}}-2{{left( x-1 right)}^{3}}+4{{left( x-1 right)}^{2}}+left( x-1 right)-11]
[begin{align}Pleft( x right) &={{left( x-1 right)}^{4}}-2{{left( x-1 right)}^{3}}+ \ &+4{{left( x-1 right)}^{2}}+left( x-1 right)-11 \ end{align}]
Это и есть искомое разложение.
Пример 14. Финал
Разложите по степеням $left( x-2 right)$ многочлен
[{{x}^{4}}-8{{x}^{3}}+24{{x}^{2}}-50x+48]
Решение. В раз не будем переписывать многочлен с выделением коэффициентов, а сразу составим таблицу:
[begin{array}{c|c|c|c|c|c} {} & color{blue}{1} & color{blue}{-8} & color{blue}{24} & color{blue}{-50} & color{blue}{48} \ hlinecolor{red}{2} & 1 & -6 & 12 & -26 & color{green}{-4} \ hlinecolor{red}{2} & 1 & -4 & 4 & color{green}{-18} & {} \ hlinecolor{red}{2} & 1 & -2 & color{green}{0} & {} & {} \ hlinecolor{red}{2} & 1 & color{green}{0} & {} & {} & {} \ hlinecolor{red}{2} & color{green}{1} & {} & {} & {} & {} \ end{array}]
Запишем найденное разложение в порядке убывания степеней:
[color{green}{1}cdot {{left( x-2 right)}^{4}}+color{green}{0}cdot {{left( x-2 right)}^{3}}+color{green}{0}cdot {{left( x-2 right)}^{2}}+left( color{green}{-18} right)cdot left( x-2 right)+left( color{green}{-4} right)]
[begin{align}color{green}{1}cdot {{left( x-2 right)}^{4}}&+color{green}{0}cdot {{left( x-2 right)}^{3}}+color{green}{0}cdot {{left( x-2 right)}^{2}}+ \ &+left( color{green}{-18} right)cdot left( x-2 right)+left( color{green}{-4} right) \ end{align}]
То же самое разложение, но более компактно:
[{{left( x-2 right)}^{4}}-18left( x-2 right)-4]
Это окончательный ответ.
7. Как работает Схема Горнера
Очень просто. Вернёмся к исходному многочлену:
[Pleft( x right)= color{blue}{{a}_{n}}{{x}^{n}}+color{blue}{{a}_{n-1}}{{x}^{n-1}}+ldots +color{blue}{{a}_{1}}x+color{blue}{{a}_{0}}]
Вынесем за скобки множитель $x$ из всех слагаемых, кроме последнего:
[Pleft( x right)=left( color{blue}{{a}_{n}}{{x}^{n-1}}+color{blue}{{a}_{n-1}}{{x}^{n-2}}+ldots +color{blue}{{a}_{1}} right)cdot x+color{blue}{{a}_{0}}]
В скобках стоит новый многочлен. Вновь вынесем за скобки $x$. Сделаем так много раз и в какой-то момент получим запись вида
[Pleft( x right)=left( ldots left( left( color{blue}{{a}_{n}} right)cdot x+color{blue}{{a}_{n-1}} right)cdot x+ldots +color{blue}{{a}_{1}} right)cdot x+color{blue}{{a}_{0}}]
Мы видим множество скобок. Обозначим элемент в самой внутренней скобке через ${{b}_{n-1}}$:
[{{b}_{n-1}}=color{blue}{{a}_{n}}]
Элемент в предыдущей скобке обозначим ${{b}_{n-2}}$:
[{{b}_{n-2}}={{b}_{n-1}} cdot x+color{blue}{{a}_{k}}]
И так далее по уже известной формуле
[{{b}_{k-1}}={{b}_{k}} cdot x+color{blue}{{a}_{k}}]
В какой-то момент мы находим ${{b}_{0}}$ и $r$:
[begin{align} {{b}_{0}} &={{b}_{1}}cdot x+color{blue}{{a}_{1}} \ r &={{b}_{0}}cdot x+color{blue}{{a}_{0}} end{align}]
Собираем все найденные значения в таблицу:
[begin{array}{c|c|c|c|c|c|c} {} & color{blue}{{a}_{n}} & color{blue}{{a}_{n-1}} & color{blue}{{a}_{n-2}} & ldots & color{blue}{{a}_{1}} & color{blue}{{a}_{0}} \ hline x & {{b}_{n-1}} & {{b}_{n-2}} & {{b}_{n-3}} & ldots & {{b}_{0}} & r \ end{array}]
Легко показать, что $r=Pleft( x right)$. Кроме того, согласно теореме Безу, при подстановке $x=color{red}{a}$ найденное число $r=Pleft( color{red}{a} right)$ есть остаток от деления многочлена $Pleft( x right)$ на двучлен $x-color{red}{a}$:
[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)+r]
В частности, при $r=0$ деление выполнено без остатка, поэтому многочлен $Pleft( x right)$ раскладывается на множители:
[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)]
Далее по индукции или прямым вычислением можно показать, что коэффициенты $Qleft( x right)$ — это те самые числа ${{b}_{n-1}}$, …, ${{b}_{0}}$ из таблицы. Поскольку $deg Qleft( x right)=n-1$, на каждом шаге степень этого многочлена будет уменьшаться.
В какой-то момент окажется, что $Qleft( x right)= color{blue}{{a}_{n}}$ — константа, и дальнейшее заполнение таблицы по схеме Горнера невозможно. Вот и всё.:)
Смотрите также:
- Бином Ньютона
- Теорема Безу и корни многочленов
- Решение задач B12: №448—455
- Задача B3 — работа с графиками
- Пример решения задачи 15
- Задача B15: частный случай при работе с квадратичной функцией
3423 | Решите уравнение sqrt(2)/sin(x)+sqrt(2)/cos(x)=1/(sin(x))^2+1/(cos(x))^2 Решение График |
Решите уравнение sqrt2 / sinx +sqrt2 / cosx =1/sin^2 x +1/cos^2 x ! ДВИ в МГУ 2022 — 4 поток, Вариант 4 Задание 3 | |
2960 | Решите неравенство sqrt(x^3-2x^2+4x-2) >= x Решение График |
Тренировочный вариант 360 от Ларина Задание 14 (15) | |
2848 | Решите неравенство ((log_{2}(x))^2-2log_{2}(x))^2+36log_{2}(x)+45 < (18log_{2}(x))^2 Решение График |
Решите неравенство (log2 2 x -2log2 x)2 + 36log2 x +45 < 18log2 2 x ! 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 35 Задание 15 | |
2535 | а) Решите уравнение 2sin^3(x)-sin^2(x)*cos(x)-13sin(x)*cos^2(x)-. 6cos^3(x) = sin(pi/3+x)-cos(pi/6-x). б) Укажите корни этого уравнения, принадлежащие отрезку [-pi/2; pi/2]. Решение График |
Решите уравнение 2sin^3(x) -sin^2(x)*cos(x) — 13sin(x)* cos^2(x) — 6cos^3(x) = sin(pi/3 +x) -cos(pi/6 -x) ! Тренировочный вариант 326 от Ларина Задание 13 ЕГЭ | |
2014 | Решите неравенство x/((x-2)^3+(x-3)^3-1)>=0 Решение График |
Тренировочный вариант 295 от Ларина Задание 15 | |
1973 | Решите неравенство 27sqrt(x+2)+7x >= sqrt((x^2+81)*(9x+67)) Решение График |
235 вариант Ларина ОГЭ (уровень 2) Задание 21 | |
1965 | Решите уравнение x^3+x^2-16x+20=0. Если корней несколько, запишите их в ответ без пробелов и других дополнительных символов в порядке возрастания Решение График |
235 вариант Ларина ОГЭ (уровень 2) Задание 9 | |
1863 | Решите систему уравнений: {(x-y+z=6), (x^2+y^2+z^2=14), (x^3-y^3+z^3=36) :} Решение |
228 вариант Ларина ОГЭ (уровень 2 усложнённый) Задание 21 | |
1853 | Решите неравенство 4(x^2+2)^4+81(x^3+1)^2<=36(x^7+4x^5+x^4+4x^3+4x^2+4). Решение График |
227 вариант Ларина ОГЭ (уровень 2 усложнённый) Задание 21 | |
1755 | Найдите значение выражения root(3)(20+14sqrt(2))+root(3)(20-14sqrt(2)). Решение График |
Найдите значение выражения корень кубический из 20+14 корней из 2 ! ларин егэ по математике 2020 профильный уровень Вариант 280 Задание 9 | |
Разложение многочлена на множители. Часть 3. Теорема Безу и схема Горнера
Разложение многочлена на множители. Теорема Безу и схема Горнера
При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим, каким образом это сделать проще всего.
Как обычно, обратимся за помощью к теории.
Теорема Безу утверждает, что остаток от деления многочлена на двучлен равен .
Но для нас важна не сама теорема, а следствие из нее:
Если число является корнем многочлена , то многочлен делится без остатка на двучлен .
Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на , где — корень многочлена. В результате мы получаем многочлен, степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.
Эта задача распадается на две: как найти корень многочлена , и как разделить многочлен на двучлен.
Остановимся подробнее на этих моментах.
1. Как найти корень многочлена.
Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.
Здесь нам помогут такие факты:
Если сумма всех коэффициентов многочлена равна нулю, то число является корнем многочлена.
Например, в многочлене сумма коэффициентов равна нулю: . Легко проверить, что является корнем многочлена.
Если сумма коэффициентов многочлена при четных степенях равна сумме коэффициентов при нечетных степенях, то число является корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку , а — четное число.
Например, в многочлене сумма коэффициентов при четных степенях : , и сумма коэффициентов при нечетных степенях : . Легко проверить, что является корнем многочлена.
Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.
Для приведенного многочлена степени (то есть многочлена, в котором старший коэффициент — коэффициент при — равен единице) справедлива формула Виета:
, где — корни многочлена .
Если многочлен не является приведенным, то его можно сделать таковым, разделив на старший коэффициент.
Есть ещё формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.
Из этой формулы Виета следует, что если корни приведенного многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.
Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.
Рассмотрим, например, многочлен .
Для этого многочлена произведение корней равно
Делители числа : ; ;
Сумма всех коэффициентов многочлена равна , следовательно, число 1 не является корнем многочлена.
Сумма коэффициентов при четных степенях :
Сумма коэффициентов при нечетных степенях :
, следовательно, число -1 также не является корнем многочлена.
Проверим, является ли число 2 корнем многочлена: , следовательно, число 2 является корнем многочлена. Значит, по теореме Безу, многочлен делится без остатка на двучлен .
2. Как разделить многочлен на двучлен.
Многочлен можно разделить на двучлен столбиком.
Разделим многочлен на двучлен столбиком:
Есть и другой способ деления многочлена на двучлен — схема Горнера.
Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.
Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 — так же, как при составлении таблицы для схемы Горнера.
Итак, если нам нужно разделить многочлен на двучлен и в результате деления мы получаем многочлен , то коэффициенты многочлена мы можем найти по схеме Горнера:
Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число является корнем многочлена , то остаток от деления многочлена на равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.
Используя схему Горнера, мы «убиваем двух зайцев»: одновременно проверяем, является ли число корнем многочлена и делим этот многочлен на двучлен .
Пример. Решить уравнение:
1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.
Делители числа 24:
2. Проверим, является ли число 1 корнем многочлена.
Сумма коэффициентов многочлена , следовательно, число 1 является корнем многочлена.
3. Разделим исходный многочлен на двучлен с помощью схемы Горнера.
А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.
Так как член, содержащий отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при пишем 0. Слева пишем найденный корень: число 1.
Б) Заполняем первую строку таблицы.
В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:
Будем делить дальше. Нам нужно найти корни многочлена . Корни также ищем среди делителей свободного члена, то есть теперь уже числа -24.
Легко проверить, что числа 1 и -1 не являются корнями многочлена
В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена :
Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.
В последнем столбце мы получили -40 — число, не равное нулю, следовательно, многочлен делится на двучлен с остатком, и число 2 не является корнем многочлена.
Идем дальше.
В) Проверим, является ли число -2 корнем многочлена . Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:
Отлично! В остатке мы получили ноль, следовательно, многочлен разделился на двучлен без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена на двучлен в таблице изображены зеленым цветом.
В результате деления мы получили квадратный трехчлен , корни которого легко находятся по теореме Виета:
Итак, корни исходного уравнения :
{}
Ответ: {}
И.В. Фельдман, репетитор по математике.
Итак, пред вами кубическое уравнение и вы не знаете с чего начать? Тогда этот гайд для вас.
Выглядит страшно, понимаю, но пугаться не надо. Можно заметить отсутствие икса во второй степени. Хорошо это или плохо? Хуй его знает, блчть.
А с чего начать? А начать надо с начала, то есть с подбора корня. Да, один корень из трех придется подобрать в уме. В данном случае это, очевидно, х=1. А что будет, если корень не удается найти подбором? Пиздец тогда, кидайте предъявы тем, кто дал вам такое ебанутое задание.
Наша цель привести уравнение к такому виду:
Первая скобка формируется следующим образом: икс минус тот корень, что мы нашли подбором. Во второй скобке стоит некое выражение, которое мы и получим с помощью схемы Горнера.
Делаем табличку 2 на 5. Она всегда будет такой размерности при кубическом уравнении.
Заполняем первую строку. В первую клеточку не пишем ничего. В четыре остальных выписываем коэффициенты при иксах.
Во второй строке в первой клетке пишем наш корень, который мы подобрали. Все, отложи руки в стороны, чтобы ничего не напортачить и смотри на картинку. Должно получиться вот так:
А сейчас начнется магия. Во второй клеточке второй строки пишем то же число, что написано клеткой выше. Далее пользуемся формулой, которую не мог запомнить даже Эйнштейн:
(КОРЕНЬ, КОТОРЫЙ МЫ ПОЛУЧИЛИ ПОДБОРОМ)*(ЗНАЧЕНИЕ ИЗ ПРЕДЫДУЩЕЙ КЛЕТКИ В ТОЙ ЖЕ СТРОКЕ) + (ЗНАЧЕНИЕ ИЗ КЛЕТКИ ВЫШЕ)
Это хуйню нужно применить для каждой клетки второй строки, кроме первых двух. Для третьей клетки будет 1*1+0. Если ты ничего не понял, то перечитай еще раз.
В самом конце всегда должен получаться 0. Если 0 не получается, то иди пересчитывай, тупица.
Видишь циферки 1, 1, -6? Это коэффициенты квадратного уравнения. Именно это уравнение стоит в скобках вместо многоточия.
Как ты знаешь из курса математики детского садика, если произведение равно нулю, то каждая скобочка равна нулю. Первая скобочка зануляется при х=1, а во второй находится квадратное уравнение, которое решается за 5 часов в уме. Его корни х=2 и х=-3.
Таким образом ответ:
Поздравляю! Теперь ты умеешь решать кубические уравнения с помощью схемы Горнера.
Если ты ничего не понял, то ты гуманитарий.
Схема Горнера в решении уравнений с параметрами из группы «С» при подготовке к ЕГЭ
СХЕМА ГОРНЕРА В РЕШЕНИИ УРАВНЕНИЙ С ПАРАМЕТРАМИ ИЗ ГРУППЫ «С» ПРИ ПОДГОТОВКЕ К ЕГЭ
Казанцева Людмила Викторовна
учитель математики МБОУ «Уярская СОШ № 3»
Содержание текстов Единого государственного экзамена показало, что материал учебника не достаточен для успешной сдачи экзамена. Знаний, полученных на школьных уроках, хватает только для решения примеров из группы «В».
На факультативных занятиях необходимо расширить круг имеющихся знаний за счет решения заданий повышенной сложности группы «С».
Даная работа освещает часть вопросов, рассматриваемых на дополнительных занятиях.
Целесообразно ввести схему Горнера после изучения темы «Деление многочлена на многочлен». Этот материал позволяет решать уравнения высших порядков не способом группировки многочленов, а более рациональным путем, экономящим время.
План занятий
Решение уравнений высших степеней.
Занятие 1
. Объяснение теоретического материала.
. Решение примеров а), б), в), г).
Занятие 2
. Решение уравнений а), б), в), г).
. Нахождение рациональных корней многочлена
Применение схемы Горнера при решении уравнений с параметрами.
Занятие 3
1.Задания а), б), в).
Занятие 4
. Задания г), д), е), ж), з).
Решение уравнений высших степеней. Схема Горнера
Теорема: Пусть несократимая дробь является корнем уравнения
xn + a1 xn-1 + … + an-1×1 + an = 0
целыми коэффициентами. Тогда число р является делителем старшего коэффициента ао.
Следствие: Любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена.
Следствие: Если старший коэффициент уравнения с целыми коэффициентами равен 1, то все рациональные корни, если они существуют — целые.
Пример 1.2х3 — 7х2 + 5х — 1 = 0
Пусть несократимая дробь является корнем уравнения, тогда р является делителем числа 1 : ± 1
q является делителем старшего члена: ± 1; ± 2
Рациональные корни уравнения надо искать среди чисел: ± 1; ± .
f(1) = 2 — 7 + 5 — 1 = — 1 ? 0(-1) = -2 — 7 — 5 — 1 ? 0() = — + — 1 = — + — = 0
Корнем является число .
Деление многочлена Р(х) = аохп + a1 xn-1 + … + an на двучлен (х — £) удобно выполнять по схеме Горнера.
Обозначим неполное частное Р(х) на (х — £) через Q(x) = boxn-1 + b1xn-2 + …bn-1,
а остаток через bn
Р(х) = Q(x) (x — £) + bn , то имеет место тождество
аохп + a1 xn-1 + … + an = (boxn-1 + … + bn-1) (х — £) + bn
Q(x) — многочлен, степень которого на 1 ниже степени исходного многочлена. Коэффициенты многочлена Q(x) определяются по схеме Горнера.
аоa1a2…an-1an£bo = aоb1 = a1 + £·bob2 = a2 + £·b1bn-1 = an-1 + £·bn-2bn = an + £·bn-1
В первой строке этой таблицы записывают коэффициенты многочлена Р(х).
Если какая-то степень переменной отсутствует, то в соответствующей клетке таблицы пишется 0.
Старший коэффициент частного равен старшему коэффициенту делимого (ао = bo). Если £ является корнем многочлена, то в последней клетке получается 0.
Пример 2. Разложить на множители с целыми коэффициентами
Р(х) = 2х4 — 7х3 — 3х2 + 5х — 1
Ищем целые корни среди делителей свободного члена: ± 1.
Подходит — 1.
Делим Р(х) на (х + 1)
2- 7- 35- 1- 12- 96- 10
х4 — 7х3 — 3х2 + 5х — 1 = (х + 1) (2х3 — 9х2 + 6х — 1)
Ищем целые корни среди свободного члена: ± 1
Так как старший член равен 1, то корнями могут быть дробные числа: — ; .
Подходит .
многочлен уравнение корень коэффициент
2- 96- 12- 820
2х3 — 9х2 + 6х — 1 =(х — ) (2х2 — 8х + 2) = (2х — 1) (х2 — 4х + 1)
Трехчлен х2 — 4х + 1 на множители с целыми коэффициентами не раскладывается.
Задание:
. Разложите на множители с целыми коэффициентами:
а) х3 — 2х2 — 5х + 6
q: ± 1;
р: ± 1; ± 2; ± 3; ± 6
:± 1; ± 2; ± 3; ± 6
Находим рациональные корни многочлена f(1) = 1 — 2 — 5 + 6 = 0
х = 1
1- 2- 5611- 1- 60
х3 — 2х2 — 5х + 6 = (х — 1) (х2 — х — 6) = (х — 1) (х — 3) (х + 2)
Определим корни квадратного уравнения
х2 — х — 6 = 0
х = 3; х = — 2
б) 2х3 + 5х2 + х — 2
р: ± 1; ± 2
q: ± 1; ± 2
:± 1; ± 2; ±
Найдем корни многочлена третьей степени
f(1) = 2 + 5 + 1 — 2 ? 0
f(-1) = — 2 + 5 — 1 — 2 = 0
Один из корней уравнения х = — 1
251- 2- 123- 20
х3 + 5х2 + х — 2 = (х + 1) (2х2 + 3х — 2) = (х + 1) (х + 2) (2х — 1)
Разложим квадратный трехчлен 2х2 + 3х — 2 на множители
2х2 + 3х — 2 = 2 (х + 2) (х — )
D = 9 + 16 = 25
х1 = — 2; х2 =
в)х3 — 3х2 + х + 1
р: ± 1
q: ± 1
:± 1
f(1) = 1 — 3 + 1 — 1 = 0
Одним из корней многочлена третьей степени является х = 1
1- 31111- 2- 10
х3 — 3х2 + х + 1 = (х — 1) (х2 — 2х — 1)
Найдем корни уравнения х2 — 2х — 1 = 0
D = 4 + 4 = 8
х1 = 1 —
х2 = 1 +
х3 — 3х2 + х + 1 = (х — 1) (х — 1 + ) (х — 1 — )
г)х3 — 2х — 1
р: ± 1
q: ± 1
:± 1
Определим корни многочлена
f(1) = 1 — 2 — 1 = — 2
f(-1) = — 1 + 2 — 1 = 0
Первый корень х = — 1
10- 2- 1- 11- 1- 10
х3 — 2х — 1 = (х + 1) (х2 — х — 1)
х2 — х — 1 = 0
D = 1 + 4 = 5
х1,2 =
х3 — 2х — 1 = (х + 1) (х — ) (х — )
. Решить уравнение:
а)х3 — 5х + 4 = 0
Определим корни многочлена третьей степени
:± 1; ± 2; ± 4
f(1) = 1 — 5 + 4 = 0
Одним из корней является х = 1
10- 54111- 40
х3 — 5х + 4 = 0
(х — 1) (х2 + х — 4) = 0
Найдем корни квадратного уравнения х2 + х — 4 = 0
D = 1 + 16 = 17
х1 = ; х2 =
Ответ: 1; ;
б)х3 — 8х2 + 40 = 0
Определим корни многочлена третьей степени.
:± 1; ± 2; ± 4; ± 5; ± 8; ± 10; ± 20; ± 40
f(1) ? 0
f(-1) ? 0
f(-2) = — 8 — 32 + 40 = 0
Одним из корней является х = — 2
1- 8040- 21- 10200
Разложим многочлен третьей степени на множители.
х3 — 8х2 + 40 = (х + 2) (х2 — 10х + 20)
Найдем корни квадратного уравнения х2 — 10х + 20 = 0
D = 100 — 80 = 20
х1 = 5 — ; х2 = 5 +
Ответ: — 2; 5 — ; 5 +
в)х3 — 5х2 + 3х + 1 = 0
Ищем целые корни среди делителей свободного члена: ± 1
f(-1) = — 1 — 5 — 3 + 1 ? 0
f(1) = 1 — 5 + 3 + 1 = 0
Подходит х = 1
1- 53111- 4- 10
х3 — 5х2 + 3х + 1 = 0
(х — 1) (х2 — 4х — 1) = 0
Определяем корни квадратного уравнения х2 — 4х — 1 = 0
D = 20
х = 2 + ; х = 2 —
Ответ: 2 — ; 1; 2 +
г)2х4 — 5х3 + 5х2 — 2 = 0
Найдем рациональные корни многочлена
р: ± 1; ± 2
q: ± 1; ± 2
:± 1; ± 2; ±
f(1) = 2 — 5 + 5 — 2 = 0
Один из корней уравнения х = 1
2- 550- 212- 3220
х4 — 5х3 + 5х2 — 2 = 0
(х — 1) (2х3 — 3х2 + 2х + 2) = 0
Находим по такой же схеме корни уравнения третьей степени.
х3 — 3х2 + 2х + 2 = 0
р: ± 1; ± 2
q: ± 1; ± 2
:± 1; ± 2; ±
f(1) = 2 — 3 + 2 + 2 ? 0
f(-1) = — 2 — 3 — 2 + 2 ? 0
f(2) = 16 — 12 + 4 + 2 ? 0
f(-2) = — 16 — 12 — 4 + 2 ? 0
f() = — + 1 + 2 ? 0
f(-) = — — — 1 + 2 ? 0
Следующий корень уравнения х = —
2- 322-2- 440
х3 — 3х2 + 2х + 2 = 0
(х + ) (2х2 — 4х + 4) = 0
Определим корни квадратного уравнения 2х2 — 4х + 4 = 0
х2 — 2х + 2 = 0
= — 4 < 0
Следовательно, корнями исходного уравнения четвертой степени являются
1 и —
Ответ: -; 1
. Найдите рациональные корни многочлена
а)х4 — 2х3 — 8х2 + 13х — 24
р: ± 1; ± 2; ± 3; ± 4; ± 6; ± 8; ± 12; ± 24
q: ± 1
:± 1; ± 2; ± 3; ± 4; ± 6; ± 8; ± 12; ± 24
Подберем один из корней многочлена четвертой степени:
f(1) = 1 — 2 — 8 + 13 — 24 ? 0
f(-1) = 1 + 2 — 8 — 13 — 24 ? 0
f(2) = 16 — 16 — 32 + 26 — 24 ? 0
f(-2) = 16 + 16 — 72 — 24 ? 0
f(-3) = 81 + 54 — 72 — 39 — 24 = 0
Один из корней многочлена х0= — 3.
х4 — 2х3 — 8х2 + 13х — 24 = (х + 3) (х3 — 5х2 + 7х +
Найдем рациональные корни многочлена
х3 — 5х2 + 7х + 8
р: ± 1; ± 2; ± 4; ± 8
q: ± 1
f(1) = 1 — 5 + 7 + 8 ? 0
f(-1) = — 1 — 5 — 7 — 8 ? 0
f(2) = 8 — 20 + 14 + 8 ? 0
f(-2) = — 8 — 20 — 14 + 8 ? 0
f(-4) = 64 — 90 — 28 + 8 ? 0
f(4) ? 0
f(-8) ? 0
f(8) ? 0
Кроме числа x0 = — 3 других рациональных корней нет.
б)х4 — 2х3 — 13х2 — 38х — 24
р: ± 1; ± 2; ± 3; ± 4; ± 6; ± 8; ± 12; ± 24
q: ± 1
f(1) = 1 + 2 — 13 — 38 — 24 ? 0
f(-1) = 1 — 2 — 13 + 38 — 24 = 39 — 39 = 0, то есть х = — 1 корень многочлена
12- 13- 38- 24- 111- 14- 240
х4 — 2х3 — 13х2 — 38х — 24 = (х + 1) (х3 — х2 — 14х — 24)
Определим корни многочлена третьей степени х3 — х2 — 14х — 24
р: ± 1; ± 2; ± 3; ± 4; ± 6; ± 8; ± 12; ± 24
q: ± 1
f(1) = — 1 + 1 + 14 — 24 ? 0
f(-1) = 1 + 1 — 14 — 24 ? 0
f(2) = 8 + 4 — 28 — 24 ? 0
f(-2) = — 8 + 4 + 28 — 24 ? 0
Значит, второй корень многочлена х = — 2
11- 14- 24- 21- 1- 120
х4 — 2х3 — 13х2 — 38х — 24 = (х + 1) (х2 + 2) (х2 — х — 12) =
= (х + 1) (х + 2) (х + 3) (х — 4)
Ответ: — 3; — 2; — 1; 4
Применение схемы Горнера при решении уравнений с параметром
Найдите наибольшее целое значение параметра а, при котором уравнение f(х) = 0 имеет три различных корня, один из которых х0 .
а)f(х) = х3 + 8х2 + ах + b, х0 = — 3
Так один из корней х0 = — 3 , то по схеме Горнера имеем:
18аb- 315- 15 + а0
= — 3 (- 15 + а) + b
= 45 — 3а + b
b = 3а — 45
х3 + 8х2 + ах + b = (х + 3) (х2 + 5х + (а — 15))
Уравнение х2 + 5х + (а — 15) = 0 должно иметь два корня. Это выполняется только в том случае, когда D > 0
а = 1; b = 5; с = (а — 15),= b2 — 4ac = 25 — 4 (a — 15) = 25 + 60 — 4a > 0,
— 4a > 0;
a < 85;
a < 21
Наибольшее целое значение параметра а, при котором уравнение
f(х) = 0 имеет три корня, а = 21
Ответ: 21.
б)f(x) = x3 — 2×2 + ax + b, x0 = — 1
Так как один из корней х0= — 1, то по схеме Горнера имеем
1- 2ab- 11- 33 + а0— 2×2 + ax + b = (x + 1) (x2 — 3x + (3 + a))
Уравнение x2 — 3x + (3 + a) = 0 должно иметь два корня. Это выполняется только в том случае, когда D > 0
= 1; b = — 3; c = (3 + a),= b2 — 4ac = 9 — 4 (3 + a) = 9 — 12 — 4a = — 3 — 4a > 0,
3 — 4a > 0;
4a < 3;
a < —
Наибольшее значение а = — 1
Ответ: — 1
в)f(x) = x3 + 11×2 + ax + b, x0 = — 4
Так как один из корней х0 = — 4, то по схеме Горнера имеем
3 + 11×2 + ax + b = (х + 4) (х2 + 7х + (а — 28))
f(x) = 0, если х = — 4 или х2 + 7х + (а — 28) = 0
Уравнение имеет два корня, если D > 0
D = b2 — 4ac = 49 — 4 (a — 28) = 49 + 112 — 4a = 161 — 4a >0,
— 4a > 0;
4a < — 161;< 40
Уравнение имеет три корня при наибольшем целом значении а = 40
Ответ: а = 40
г)f(x) = x3 — 11×2 + ax + b, x0 = 4
Так как один из корней х0 = 4, то по схеме Горнера имеем
1- 11ab41- 7- 28 + а0— 11×2 + ax + b = (x — 4) ( x2 — 7x + (a — 28))(x) = 0, если х = 4 или x2 — 7x + (a — 28) = 0
Второе уравнение имеет два корня, если D > 0, то есть
= b2 — 4ac = 49 — 4 (a — 28) = 49 + 112 — 4a = 161 — 4a >0,
— 4a > 0;
4a < — 161;
a < 40
Уравнение имеет три корня при наибольшем целом значении а = 40
Ответ: а = 40
д) f(x) = x3 — 13×2 + ax + b, x0 = 4
Так как один из корней х0 = 4, то по схеме Горнера имеем
1- 13ab41- 9- 36 + а0
x3 — 13×2 + ax + b = (x — 4) ( x2 — 9x + (a — 36))
f(x) = 0, если х = 4 или x2 — 9x + (a — 36) = 0
Второе уравнение имеет два корня, если D > 0, то есть
= b2 — 4ac = 81 — 4 (a — 36) = 81 + 144 — 4a = 225 — 4a >0,
225 — 4a >0;
— 4a < — 225;
a < 56
Уравнение f(x) = 0 имеет три корня при наибольшем значении а = 56
Ответ: а = 56
е)f(x) = x3 + 13×2 + ax + b, x0 = — 5
Так как один из корней x0 = — 5, то по схеме Горнера имеем
113ab- 518- 40 + а0
x3 + 13×2 + ax + b = (x + 5) ( x2 + 8x + (a — 40))
f(x) = 0, если х = — 5 или x2 + 8x + (a — 40) = 0
Уравнение имеет два корня, если D > 0
D = b2 — 4ac = 64 — 4 (a — 40) = 64 + 160 — 4a = 224 — 4a >0,
224 — 4a >0;
a < 56
Уравнение f(x) имеет три корня при наибольшем значении а = 55
Ответ: а = 55
ж)f(x) = x3 + 19×2 + ax + b, x0 = — 6
Так как один из корней — 6, то по схеме Горнера имеем
119ab- 6113а — 780
x3 + 19×2 + ax + b = (x + 6) ( x2 + 13x + (a — 78)) = 0
f(x) = 0, если х = — 6 или x2 + 13x + (a — 78) = 0
Второе уравнение имеет два корня, если D > 0
= b2 — 4ac = 169 — 4 (a — 78) = 169 + 312 — 4a = 481 — 4a >0,
481 — 4a >0;
4a < — 481;
a < 120
Наибольшее целое значение а, при котором уравнение f(x) = 0 имеет три корня, 120.
Ответ: 120
з)f(x) = x3 + 22×2 + ax + b, x0 = — 7
Так как один из корней x0 = — 6, то по схеме Горнера имеем
122ab- 7115а — 1050
x3 + 22×2 + ax + b = (x + 7) ( x2 + 15x + (a — 105)) = 0
f(x) = 0, если х = — 7 или x2 + 15x + (a — 105) = 0
Второе уравнение имеет два корня, если D > 0
= b2 — 4ac = 225 — 4 (a — 105) = 225 + 420 — 4a = 645 — 4a >0,
— 4a >0;
4a < — 645;
a < 161
Уравнение имеет три корня при наибольшем целом значении а = 161.
Ответ: 161