Школково вариант егэ математика

Для успешного решения профильных вариантов ЕГЭ по математике стоит отказаться от подобного алгоритма. При подготовке к экзамену нужно делать упор не на его сдачу как самоцель, а на повышение уровня знаний учащегося. Для этого необходимо изучать теорию, отрабатывать навыки, решая разнообразные варианты профильного ЕГЭ по математике нестандартными способами с развернутыми ответами, следить за динамикой обучения. А поможет вам во всем этом образовательный проект «Школково».

Почему вам стоит выбрать наш ресурс?

Мы не предлагаем вам типовые примеры профильных задач ЕГЭ по математике, которые кочуют на просторах Интернета с одного сайта на другой. Наши специалисты самостоятельно разработали базу заданий, которая состоит из интересных и уникальных упражнений и ежедневно пополняется. Все задачи ЕГЭ по математике профильного уровня содержат ответы и подробные решения. Они позволяют выявить сильные и слабые стороны в подготовке школьника и научить его мыслить свободно и нестандартно.

Для того чтобы выполнять задачи и просматривать решения заданий ЕГЭ по математике профильного уровня, выберите упражнение в «Каталоге». Сделать это довольно просто, поскольку он имеет понятную структуру, которая включает в себя темы и подтемы. Все задания расположены по возрастанию от простых до более сложных и содержат ответы на профильный ЕГЭ по математике с решением.

Кроме того, ученику предоставляется возможность самостоятельно формировать варианты задач. С помощью «Конструктора» он может выбирать задания ЕГЭ по математике профильного уровня на любую интересующую его тему и просматривать их решения. Это позволит отработать навыки по конкретному разделу, например, геометрии или алгебре.

Также учащийся может сделать разбор заданий профильного ЕГЭ по математике в «Личном кабинете ученика». В этом разделе школьник сможет отслеживать собственную динамику и общаться с преподавателем.

Все это поможет вам эффективно подготовиться к профильному ЕГЭ по математике и с легкостью найти решения даже самых сложных задач.

Практика показывает, что задачи на нахождение площади треугольника встречаются в ЕГЭ из года в год. Именно поэтому, если учащиеся хотят получить достойные баллы по итогам прохождения аттестационного испытания, им непременно стоит повторить эту тему и снова разобраться в материале.

Как подготовиться к экзамену?

Научиться решать задачи на нахождение площади треугольника, подобные тем, которые встречаются в ЕГЭ, вам поможет образовательный проект «Школково». Здесь вы найдете весь необходимый материал для подготовки к прохождению аттестационного испытания.

Для того чтобы упражнения по теме «Площадь треугольника в задачах ЕГЭ» не вызывали у выпускников затруднений, рекомендуем прежде всего освежить в памяти базовые тригонометрические понятия и правила. Для этого достаточно перейти в раздел «Теоретическая справка». Там представлены основные определения и формулы, которые помогут при нахождении правильного ответа.

Чтобы закрепить усвоенный материал и попрактиковаться в решении задач, предлагаем выполнить упражнения, которые подобрали специалисты образовательного проекта «Школково». Каждое задание на сайте имеет правильный ответ и подробное описание способа решения. Учащиеся могут практиковаться как с простыми, так и с более сложными задачами.

«Прокачать» свои навыки в выполнении подобных упражнений школьники могут в режиме онлайн как в Москве, так и в любом другом городе России. В случае необходимости выполненное задание можно сохранить в разделе «Избранное», чтобы в дальнейшем вернуться к нему и обсудить ход решения с преподавателем.

16 сентября 2022

В закладки

Обсудить

Жалоба

Вариант профильного ЕГЭ с разбором

Тренировочный вариант от «Школково».

shk-m1.pdf

Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2023 из различных источников.

Варианты составлены в соответствии с демоверсией 2023 года 

Тренировочные варианты ЕГЭ 2023 по математике (профиль)

vk.com/pezhirovschool
Вариант 1 решения
Вариант 2 решения
Вариант 3 решения
Вариант 4 решения
Вариант 5 (с ответами)
Вариант 6 (с ответами)
Вариант 7 (с ответами)
Вариант 8 (с ответами)
egemath.ru
вариант 1 скачать
вариант 2 скачать
вариант 3 скачать
вариант 4 скачать
вариант 5 скачать
вариант 6 скачать
вариант 7 скачать
вариант 8 скачать
вариант 9 скачать
вариант 10 скачать
вариант 11 скачать
вариант 12 скачать
вариант 13 скачать
вариант 14 скачать
вариант 15 скачать
вариант 16 скачать
вариант 17 скачать
вариант 18 скачать
вариант 19 скачать
вариант 20 скачать
time4math.ru
вариант 1-2 ответы
вариант 3-4 ответы
вариант 5-6 ответы
вариант 7-8
yagubov.ru
вариант 33 (сентябрь) ege2023-yagubov-prof-var33
вариант 34 (октябрь) ege2023-yagubov-prof-var34
вариант 35 (ноябрь) ege2023-yagubov-prof-var35
вариант 36 (декабрь) ege2023-yagubov-prof-var36
вариант 37 (январь) ege2023-yagubov-prof-var37
вариант 38 (февраль) ege2023-yagubov-prof-var38
math100.ru (с ответами)
variant 179 скачать
variant 180 скачать
variant 181 скачать
variant 182 скачать
variant 183 скачать
variant 184 скачать
variant 185 скачать
variant 186 скачать
variant 187 скачать
variant 188 скачать
variant 189 скачать
variant 190 скачать
variant 191 скачать
variant 192 скачать
variant 193 скачать
variant 194 скачать
variant 195 скачать
variant 196 скачать
variant 197 скачать
variant 198 скачать
variant 199 скачать
variant 200 скачать
variant 201 скачать
variant 202 скачать
variant 203 скачать
variant 204 скачать
variant 205 скачать
alexlarin.net 
Вариант 397 проверить ответы
Вариант 398 проверить ответы
Вариант 399 проверить ответы
Вариант 400 проверить ответы
Вариант 401 проверить ответы
Вариант 402 проверить ответы
Вариант 403 проверить ответы
Вариант 404 проверить ответы
Вариант 405 проверить ответы
Вариант 406 проверить ответы
Вариант 407 проверить ответы
Вариант 408 проверить ответы
Вариант 409 проверить ответы
Вариант 410 проверить ответы
Вариант 411 проверить ответы
Вариант 412 проверить ответы
Вариант 413 проверить ответы
vk.com/ege100ballov
вариант 1 скачать
вариант 2 скачать
вариант 3 скачать
вариант 4 скачать
вариант 5 скачать
вариант 6 скачать
вариант 7 скачать
вариант 8 скачать
вариант 9 скачать
вариант 10 скачать
вариант 11 скачать
vk.com/math.studying
Вариант 1 ответы
vk.com/marsel_tutor
Вариант 1 разбор
Вариант 2 конспект / разбор
Вариант 3 конспект / разбор
Вариант 4 конспект / разбор
Вариант 5 конспект / разбор
Вариант 6 разбор
vk.com/shkolkovo_easy_math
Вариант 1 решение
Вариант 2 решение
Вариант 3 решение
Вариант 5 решение
Вариант 6 решение
vk.com/mathlearn_ru
вариант 1 разбор
vk.com/ekaterina_chekmareva
Вариант 1 ответы
Вариант 2 ответы
Вариант 3 ответы
Вариант 4 ответы
Вариант 5 ответы
Вариант 6 ответы
Вариант 7 ответы
Вариант 8 ответы

Структура варианта КИМ ЕГЭ 2023 по математике профильного уровня

Экзаменационная работа состоит из двух частей и включает в себя 18 заданий, которые различаются по содержанию, сложности и количеству заданий:

– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;

– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).

Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях. Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.

Задания части 1 предназначены для определения математических компетентностей выпускников образовательных организаций, реализующих программы среднего (полного) общего образования на базовом уровне. Задание с кратким ответом (1–11) считается выполненным, если в бланке ответов № 1 зафиксирован верный ответ в виде целого числа или конечной десятичной дроби.

Задания 12–18 с развёрнутым ответом, в числе которых 5 заданий повышенного уровня и 2 задания высокого уровня сложности, предназначены для более точной дифференциации абитуриентов вузов. 

Примеры заданий:

1. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 76 бадминтонистов, среди которых 22 спортсмена из России, в том числе Игорь Чаев. Найдите вероятность того, что в первом туре Игорь Чаев будет играть с каким-либо бадминтонистом из России.

2. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу

3. На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 363. Затем в каждом числе поменяли местами первую и вторую цифры (например, число 17 заменили на число 71).

а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 4 раза больше, чем сумма исходных чисел.

б) Могла ли сумма получившихся чисел быть ровно в 2 раза больше, чем сумма исходных чисел?

в) Найдите наибольшее возможное значение суммы получившихся чисел.

Смотрите также:

Like this post? Please share to your friends:
  • Школково биология егэ отзывы
  • Школково английский язык егэ
  • Школенко текст егэ
  • Школа юного географа при мгу вступительные экзамены
  • Школа это сочинение рассуждение