Шпаргалки для егэ по информатике 2023

09.09.2012

Подборка шпаргалок по ИНФОРМАТИКЕ.

Обновлено: 01.11.2022

Полный набор теоретического материала для подготовки к ЕГЭ 2023 и ОГЭ для 9 класса. Таблицы, схемы, формулы, теория. Всё, что необходимо для самостоятельной работы. Эти шпаргалки помогут написать информатику на 100 баллов.

  • Тренировочные варианты ЕГЭ по информатике

Что содержите в себе сборник шпаргалок по информатике

  • Шпаргалка ко всем заданиям по информатике
  • Таблицы по всем задания ЕГЭ по информатике
  • Мини-шпаргалка

Для чтения шпаргалок необходимы бесплатные программы: WinDJView и Adobe Reader

СКАЧАТЬ

Материал (полный список формул, теории и книг) для подготовки к ЕГЭ по информатике

1.     Кодирование
текста

2.        
Анализ  таблицы истинности

4. Бд  и  файловая система

6. Алгоритмы

Сколько  1, 0, целых A<X<B, вычислить, перевести (-а) в 2сс

Свойства чисел:

1.числа вида 2k записываются в двоичной системе как единица и k нулей, например:16 = 24 = 100002 (числа,
являющиеся степенями 2,3.. ( в любой СС!!)

2. числа вида 2k-1 записываются в двоичной системе k единиц, например:      15 = 24-1 = 11112 (числа
, предшествующие степеням «2»- состоят из «1» и на разряд меньше (в 3 из 2, 4
из 3 , т.е
n-1))

3. Двоичное число (другая n CC), оканчивающееся — на 0 – четное(кратно n), — на 1- нечетное (и любое отличное от нуля  число в той СС
говорит о том, что число не кратно
n).

Отрицательное число  = 

1) а-1       2) (а-1)из10 перводим в 2сс       3) первая 1
сохраняется,  все остальные цифры переворачиваем 1-0,0-1

10сс

2сс

8 сс

триады

16сс

тетрады

0

0

0

000

0

0000

1

1

1

001

1

0001

2

10

2

010

2

0010

3

11

3

011

3

0011

4

100

4

100

4

0100

5

101

5

101

5

0101

6

110

6

110

6

0110

7

111

7

111

7

0111

8

1000

10

8

1000

9

1001

11

9

1001

10

1010

12

A

1010

11

1011

13

B

1011

12

1100

14

C

1100

13

1101

15

D

1101

14

1110

16

E

1110

15

1111

17

F

1111

16

10000

20

10

10000

0+0=0

0-0=0

0*0=0

0+1=1

1-0=1

0*1=0

1+0=1

1-1=0

1*0=0

1+1=10

10-1=1

1*1=1

  0015

Сопоставлять
значений переменных с функциями                    (начинать с «одиночных»)

1. Отрицание
(НЕ,¬ , Ā) меняет знаки:
< на >=,> на<=.<= на
>, >= на <

2.
Логическое умножение (И, •, ˄, &)

3.
Логическое сложение (ИЛИ, +, ˅, |)

Порядок
выполнения операций: ( ), не, и, или, →,
º ….

А

не(А)

А

В

А ˄ В

А

В

А ˅ В

А

В

А→В

А

В

АºВ

1

0

0

0

0

0

0

0

0

0

1

0

0

1

0

1

0

1

0

0

1

1

0

1

1

0

1

0

1

0

0

1

0

1

1

0

0

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1)внимательно читать задание

2)файловая система:?-точно 1 знак, *-произвольное количество или
их отсутствие

 Автомат(10 СС):

1)определяем СС

2)записываем правило a+b, c+d или другое

3)определяем порядок записи  ­, ¯

4) определяем максимально возможное числов этой СС и
максимальные суммы(!!!помнить о правилах сложения в разных СС)

5) помним о разрядах числа (десятки, сотни, единицы)

Автомат(2СС): четное оканчивается 0, нечетное на 1.

Обработка искаженных сообщений, Калькулятор и др.

5. Декодирование (условие Фано)

Условие Фано: ни одно кодовое слово
не является началом другого кодового слова (дерево 0-1): минимальный код,
короткое слово, сумма кодовых слов, только для конкретного слова и др.

Алгоритм Хаффмана
(оптимальный префиксный код): для самого частого- самый короткий код. Самое
частое повторение обычно 1 бит(0),самые малые повторения обычно 2-3 бита
(умножаем и складываем все ветви)

9.        
Кодирование информации (+передача)

7. Анализ диаграмм и таблица Excel

8. Анализ программ (цикл  while)

Звук:  I=n*i*f*t (n-кол-во дорожек, i-бит на отсчет, f-частота дискретизации ,t-время)

1)
запись близка  2) секунды-минуты

3)
перезаписывают  один и тот же файл — пропорция

1кГц=1000Гц, моно-1, стерео-2, квадро -4, …

Графика: I=k*i, N=2i(k –кол-во пикселей (200dpi= 200ppi=200*200)

                              i -инф. вес 1 пикселя, N-количество цветов)   

1)определить кол-во цветов 

2)не может превышать <
, >=, > , <=

3) перезаписывают  один и тот же файл — пропорция

4) сохраняют каждые t сек(мин)

Передача информации: Iбит=Vбит/сек*tсекV =I/t,   t=I/V

 I – размер файла, V – скорость , t – время передачи.

1)сравнение
способов передачи А и Б и на сколько

Наименьшая
единица информации 1 бит

1
байт = 8 бит = 23бит

1Кбайт(килобайт)
= 1024байт = 210байт

1Мбайт(мегабайт)
= 1024Кбайт = 210Кбайт

1Гбайт(гигабайт) = 1024Мбайт = 210Мбайт

0

1

2

3

4

5

6

7

8

9

10

11

20

21

22

23

24

25

26

27

28

29

210

211

N

1

2

4

8

16

32

64

128

256

512

1024

2048

S передачи
информации

 «Байт
в сек» и «бит в сек»

1
Кбит/сек = 1024 _бит/сек

1
Мбит/сек = 1024 Кбит/сек

1
Гбит/сек = 1024 Мбит/сек

1
байт/сек = 8бит/сек

1 Кбайт/сек
= 8Кбит/сек

1 Мбайт/сек
= 8Мбит/сек

!!!Важно в формулу подставлять значения в одинаковых единицах
измерения и переводить конечный результат в запрашиваемые в задаче единицы.

1)по формулам    2) по пропорции 

1)геометрическая или арифметическая прогрессия

2)условие выполнения цикла (с предусловием)

1)вычисляем значения в ячейках по формулам какие можно

2) соотносим числовые величины и графические изображения
(подбираем число или формулу).    Диапазон ячеек А1:D2 от первой ячейки до
последней.    Весь круг соответствует сумме всех значений, по которым
строится диаграмма. Отдельные сектора пропорциональны доле одного значения в
общей сумм

  
В формулах * — умножение, / — деление, $ — абсолютная ссылка,  при
копировании формулы значение не меняется

10. Перебор слов и СС

1)размещения(с повторениями,  букву сколько угодно раз)Варианты =

2)перестановки (без повторов, букву 1 раз, буквы разные) Р=n!

2)перестановки (без повторов, букву 1 раз, есть одинаковые буквы
разные) Р=
n!/n1! .n2!..

4) вероятности  формула Шеннона.

5)Слова(определяем СС (= количество букв), переводим в ту СС, из
той в 10)

— На каком месте стоит слово +1

— Какое слово стоит под номером -1

3. Анализ информационной модели

15.  Количество путей

Соотносим количество пересечений дорог и узлов вершин графа,
анализ начинаем с графа (вершин графа)

Город

Откуда

Кол-во путей

А

1

Б

А

1

В

АБ

2

……

….

…..

Потеря  маршрутов, считая «вручную»

Траектория через А и
не через Б –внимательно!

22. Оператор ветвления

Строим дерево внимательно через те точки, которые указаны в
траектории

11.Рекурсия (функция возврата к самой себе)

14.  Алгоритмы формальных исполнителей

1) Вызов функций F(n) или/и G(n)  от предыдущих значений

2) Количество напечатанных

3) Сумма напечатанных

4) Какие выведет числа (!!!Важен порядок вызова (обращения к
рекурсии).

-если write
стоит в начале, то прямой последовательный обход.

— если write
стоит после какой-то первой функции, то выполняется вызов по этой ветке до
конца, по окончанию вызывается оставшаяся функция.

— если write
стоит после всех функций, аналогично предыдущему

Чертежник

Начал и вернулся туда же: (х,у)+…-…=(0,0)

Вернулся в другую точку: (х,у)+…-…=(х11)

Повтори  n 
раз  
n*(3+2-4…)

Замена команды n*(а+2-4…)=0,   n*(b+3-8….)=0

1)отдельно считаем смещение по x и по y;

2)внимательно читаем вопрос;

3)даём ответ на вопрос, поставленный в задаче.

Робот:  клетка начала и конца
считается закрашенной, движение идет до упора и по условию.

Редактор: циклы считаем с НАЧАЛА!!!

17. Запросы интернета (Диаграммы Эйлера Венна)

23. Логические уравнения

19. Одномерные массивы

Знак
«&»-пересечение запросов (и) , а «|»-объединение запросов (или)

http://ya-znau.ru/information/userfiles/136/operacii.png

1) Обозначаем зоны запросов буквами a,b,c,d,e,f…..

2) !!! Два множества могут не пересекаться (просматриваем суммы 
пересечений и объединений)

А ˄ В

А ˅ В

А→В

АºВ

А¹В

1 и 1

1 и 1

1-1

1 и 1

0 и 1

0 и 1

0-0

0 и 0

1 и 0

1 и 0

0-1

1) замена переменных, если нужно

2) последовательное решение уравнений

Решение системы уравнений – это битовая цепочка (битовый вектор-
единичный объект)

3) уравнения–ограничения на битовый вектор (комбинации)

4) кол-во решений находиться по правилам комбинаторики (чаще
всего а
n)

5) варианты комбинаций истинности и лжи для ˄,˅,→, º

Стратегия решения:  трассировочная
таблица , узнать базовый алгоритм и проверить

а) алгоритм меняющий
элементы массива местами

б) массивы с индексами от 0
до 10  цикл
for

в) цикл for или while в
нем  ветвление (
if)

г) двумерные
массивы(прямоугольная матрица
A[i] , B[i]

Цикл for в цикле for
(выполняется первый внешний цикл, потом полностью выполняется внутренний цикл
for, далее 2 эл из 1, и все из
2го ) (прямоугольная матрица)

16. Уравнения в различных СС

26. Стратегия (теория игр)

13.  Вычисление количества информации

21. Анализ программы с
подпрограммами

1)помнить,
что любое число в степени в соответвующей СС=

2)выражения
упрастить и определить СС, если сс 2,3,4,5,…..при вычитании 1  получается на
1 меньше чем СС.

3)
числа  в конце переводим в нужную СС

4)
если произведение степени и числа, применяем правила арифменики  в той СС
(арифметические операции выполняются в одной СС)

5) если
степень числа * на число, применяем арифметические правила той сс в которой
производиться *.

Важно!!!
Арифметика возможна только в одной и той же СС

Описывать стратегию для «выигравшего- выигрышную стратегию, для
проигравшего- все стратегии» (строим дерево игры)

1) камни (камни две кучи, 2 разных хода)

2) фишки (расстояние

3) карточки(таблички) с числами, убирать дубль, если нужно
укоротить, ставить дубль если нужно удлинить

4) слова (считаем количество букв в словах) Игрок 1- нечетные
ходы, Игрок 2- четные ходы

I=k*i, N=2i  (N-алфавит, k–количество
символов в тексте,
i
инф. вес 1 символа:

КОИ-8(8 бит),  ASCII(8 бит),  Unicode (16
бит), др)

1) количество вариантов (кто прошел –это N из него находим  i  ( N=2i ), а  I=k*i –это всего.

2) пароли и номера авто: доп. сведения + код+ пароль

!!!Внимательно читать условие (сведения могут быть в 2 коде или
другой СС)

1) Квадратичные
(биквадратные)  уравнения:

Точки минимума = ,  =у(или через F`(x)

Можно искать точки
(
max, min), и
значения функций в точке (fmax,
fmin). Оценивать
знаки 
­, ¯ функции.

!!!Обязательно
проверять проверять  значения на концах отрезков.

2) вызов функции k=10,64 и
т.п.
min или max число

Если ­+1, то
интервал А
£ 
х
<В

Если ¯-1,  то
интервал А
<  х £В

12. IP-адресация

20. Анализ алгоритма с циклами и ветвлениями

24.  Поиск ошибки в программе

25. Обработка
массива

010=000000002    25510=111111112

маска-11111111.11111111.11111000.00000000 (1….потом  0)

1)мах количество 1 или 0 в маске

2)мах и min байт
маски

3) 2 байт маски, если 3 =0

4) сколько различных значений маски (сколько масок, варианты)

5)количество ПК  в сети (2 в степени нулей маски )

6) номер ПК в сети (нули маски в проекции на ip-адрес)

7) два ip принадлежат
одной сети (однозначная маска для обоих)

Номер компьютера

Количество адресов в сети

1) Алгоритм Евклида (2 переменные и разность), НОД
прописан в условии, в условии смотреть какое х  нужно вывести х>100, 150…

Выражаем L
через х,
L кратно НОД, далее проверяем на числах.

Вычисление НОД(а,b)= НОД(а-b,b)= НОД(а,ba)

Заменяем большее из двух чисел разностью большего и меньшего до
тех пор, пока они не станут равны. НОД(14
,21)= НОД(14,7)= НОД(7,7)=7

Если разница велика и нужно определить количество шагов.
Заменяем большее остатком от деления на меньшее до тех пор, пока меньше не
станет равно нулю. НОД(21,28) (28
mod21=7)= НОД(21,7) (21mod7=0)=НОД(0,7)=7

2) Обработка цифр в числе:

— на выводе отмечаем, какие числа выводит программа (указаны в
условии)

— ВАЖНО!!!определить СС в которой обрабатываются числа

x: = а div 10, x: = а div 2, x: = а div 3 , x: = а div 4 , x: = а div 5

ЗНАТЬ!!! числа входящие в конкретную СС (0- число четное!!!)

Перебор цифр в числе за счет цикла ( while x>0  ) пока оно не равно нулю.

— если  определяют не просто число , а разрядное (трехзначное,
двузначное)- это дополнительное условие (первое двузначное-10
n, трехзначное 100n и т.д конечная граница определяется переводом из 10 сс в нужную)

ЯЗЫК программирования Pascal не понимает другие СС, кроме 10!!

После решения задачи в какой-то СС , переводим полученное число
в 10СС

!!!Проверка на четность:

— в четных СС по последней цифре (0,2,4,6,8 СС)

— нечетных СС по сумме цифр в числе (1,3,5,7,9 СС)

Схема
решения задачи:
прогнать задачу на требуемом числе или
на любом удобном
Þ чаще всего можно сразу ответить на 1 и 3
вопрос задачи (найти ошибки)  (прогнать и убедиться в правильности) 
Þ  после
выполнить 2 задание задачи (найти число работающее правильно )

Решая
задачу делить ее на части:

1)
что выводит (
writeln(…)) и
запрашивает
readln(…))

2) проверять
инициализацию переменных
s:=0, p:=1, k:=0

3)
проверяем условия циклов и условий  (правила их работы) и  сам алгоритм

Проверка
на степень:
n=ak   Þ  , т.е if n=1.

    Формулу для вычисления n-ого элемента арифметической прогрессии: аn=a1+d(n-1) формулу для вычисления суммы первых n членов арифметической прогрессии:,           
где
ai i-ый
элемент последовательности,
d – шаг (разность) последовательности

1) Организация ввода данных (уже есть)

2) Инициализация начальных значений некоторых переменных (требуется
задать
!)

3)Обработка данных (требуется организовать!)

4) Вывод данных (требуется организовать!)

     Обработка данных происходит в процессе циклической
обработки элементов ( может  обрабатывается один, пара, тройка или
последовательность элементов, речь всегда идет о рядом стоящих элементах,
которые всегда можно обработать одним циклом) по некоторому комбинированному
условию, которое необходимо формализовать основе анализа условия задачи.

ВАЖНО!!! не писать программу полностью, а «дописать» её в рамках
уже организованного ввода, а также  заданного количества переменных и их
типов: необходимо дописать инициализацию, организовать обработку и вывод.

Для проверки на кратность использовать —

a[i] mod
2 <> 0 (
Кратность  n)

18. Логические выражения

https://sun1-5.userapi.com/c830209/v830209296/45207/HsWJ1p_FZQQ.jpg

1) отрезки (преобразуем,
отделяем
A (или   Ā ) от отрезков, сумма должна
покрывать всю числовую прямую)

 упростить А→В= Ā+В,  А º В=А*В+Ā*, (см. табл задания№2)

2) неопределенный отрезок
(более чем 25 целых, т.е 26 чисел)преобразуем, пользуемся
распределительным законом) 

Помнить  два закона !А+В*С=(А+В)*(А+С) 
и  А*В+С=(А*В)+(А*С)

3) множества (отделяем
числа, отделяем А, делаем отрицание с числами и применяем закон де Моргана,
как с отрезками только на диаграммах Эйлера -Венна)

4)  делители А=1,
остальное =0 (Ā=В, А=
)   закон де Моргана

Если меду числами ˄-ищем
кратные, если ˅-делители

1. Если формула истинна (равна 1), и  после упрощения A без
отрицания,
то используется закон: Amin = ¬B

    Если формула истинна (равна 1), и после
упрощения A с отрицанием, то используется закон:Amax =
B

2. Если формула ложна (равна 0), и после
упрощения A без отрицания,  то используется закон: Amax =
¬B

Если формула ложна (равна 0), и 2. после
упрощения A с отрицанием, то используется закон: Amin =
B,
где B — известная часть выражения

5)неравенства ( если А=1,
то  остальное берется с отрицанием, если А=0 (отрицательно), то остальное не
меняем, оно положительно)

а)длина –это модуль от точки
до точки: (А..)→(
….х ) )  ˄ ( (….х) → (А..)) через  и  , если  где-то парабола, то
модуль и отрезок значений параболы.

б) сколько существует
значений
: кол-во чисел 
n+1

в) линейные неравенства
(графическим способом, как задача с параметром, определяем область и
пересечение графиков прямых линий, анализируем)

6) битовые операции

1)  А→В= Ā+В

2) избавляемся от всех
отрицаний (закон де Моргана) и выстраиваем импликации

3) Упрощаем до выражений
следующего типа:

   a)  (QA) →P=1 , т.е  Q+А=P

   б)  (QP) →А=1, т.е  Q+ P = А

   в) P→ (Q+A) =1,       A→ (Q+P) =1,    

   г) (Q+Р) → (L+A) =1,   т.е  Q•А=A•L

        (L•A) →(Q•Р)  =1,  т.е  Q+А=A+L

   дпобитовые операции равны числам  

        (переводим их в 2СС)
решаем как с делителями и отрезками
А=1,
остальные =0, сначала находим маску х при =0 и варианты букв в маске х при
¹ 0) не решаем по общей схеме

4) применяем свойства 1)XP ˄XQ=XP or Q=P+Q

                                           
2) XP ˅ XQ=XP and Q=P•Q

А вот и много-много новых шпаргалок по Python, которые помогут тебе на ЕГЭ по информатике!

Не забудь скачать внизу по ссылке, чтобы не потерять.

СКАЧАТЬ ШПАРГАЛКУ ПО ИНФОРМАТИКЕ ДЛЯ ЕГЭ

Шпаргалка по Python

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!

Редакция Без Сменки

Редакция Без Сменки

Вам также будет интересно

ЗАДАНИЕ 4 | биосфера

II тип задания — биосфера

📚 Теория для задания:

Жизнь на Земле зародилась около 3,8 млрд лет…

Жесткое окисление алкенов

1️⃣ При жёстком окисление происходит разрыв по двойной связи и окисление атомов углерода, которые…

Косвенная речь

Что это вообще такое — косвенная речь? Проще всего объяснить на примере книги. Например, иногда…

Чётные и нечётные функции

Числа бывают чётными и нечётными. Тут всё просто: чётные те, что делятся на 2. Но в математике есть…


0 комментария

Авторизуйтесь, чтобы оставить комментарий.

Сдай ЕГЭ! Бесплатные материалы для
подготовки каждую неделю!

null

Нажимая на кнопку, вы даете согласие на обработку своих персональных
данных согласно 152-ФЗ. Подробнее

ШПАРГАЛКА ДЛЯ ПОДГОТОВКИ
К ЕГЭ ПО ИНФОРМАТИКЕ

Наконец-то! Большой подарок всем, кто сдает ЕГЭ по информатике или
готовит к нему.

Шпаргалка для подготовки к ЕГЭ по информатике.

  • Полная
  • Уникальная
  • Современная
  • Цветная
  • И очень крутая

Теперь у вас будут все формулы для успешной сдачи ЕГЭ.

Вышлем на email бесплатно!

В нашей Шпаргалке:

  • Самое необходимое для сдачи ЕГЭ. И ничего лишнего!
  • Авторские таблицы. Запоминаются сами собой!
  • Все формулы тщательно отобраны и проверены. Ошибок нет.

Просто. Понятно. Логично. Хорошо структурировано. И отлично
оформлено!

Вышлем на email

бесплатно!

Автор — Лада Есакова.

Окончила МГУ им. Ломоносова, факультет ВМиК (1988 г.). Репетиторский стаж – более 17 лет.

Автор книги «Информатика. Полный курс подготовки к ЕГЭ».

Лучшие результаты 2020 года: 100, 92, 88, 86, 86, 82, 80.

ОГЛАВЛЕНИЕ

Единицы измерения объемов информации 1

Кодирование звуковой информации 1

Кодирование графической информации 2

Передача информации 2

Информационный объём сообщения 2

Алгебра логики (Булева алгебра) 3

Порядок (приоритет) выполнения логических операций 5

Законы алгебры логики 6

Мы используем файлы cookie, чтобы персонализировать контент, адаптировать и оценивать результативность рекламы, а также обеспечить безопасность. Перейдя на сайт, вы соглашаетесь с использованием файлов cookie.

Шпаргалка ЕГЭ по информатике. Все необходимое

Скачать шпаргалку для подготовки к ЕГЭ по информатике. Содержимое:
— Логика
— Системы счисления
— Кодирование информации
— Программирование
— Теория игр
и другое

Похожие материалы

  • 1
  • 2
  • 3
  • 4
  • 5

Оценка: 2.6 из 34

Комментарии

Всего комментариев: 0

На уроке рассматривается разбор 2 задания ЕГЭ по информатике, дается подробное объяснение того, как решать подобные задачи

Содержание:

  • Объяснение задания 2 ЕГЭ по информатике
    • Таблицы истинности и порядок выполнения логических операций
  • Решение заданий 2 ЕГЭ по информатике
    • Задания для тренировки

2-е задание: «Таблицы истинности»

Уровень сложности

— базовый,

Требуется использование специализированного программного обеспечения

— нет,

Максимальный балл

— 1,

Примерное время выполнения

— 3 минуты.

  
Проверяемые элементы содержания: Умение строить таблицы истинности и логические схемы

Типичные ошибки и рекомендации по их предотвращению:

«Игнорирование прямо указанного в условии задания требования, что заполненная таблица истинности не должна содержать одинаковых строк. Это приводит к внешне правдоподобному, но на самом деле неверному решению»

ФГБНУ «Федеральный институт педагогических измерений»

Таблицы истинности и порядок выполнения логических операций

Для логических операций приняты следующие обозначения:

операция пояснение в программировании
¬ A, A не A (отрицание, инверсия) not(A)
A ∧ B, A ⋅ B A и B (логическое умножение, конъюнкция) A and B
A ∨ B, A + B A или B (логическое сложение, дизъюнкция) A or B
A → B импликация (следование) A <= B
A ↔ B, A ≡ B, A ∼ B эквиваленция (эквивалентность, равносильность) A==B (python)
A=B(pascal)
A ⊕ B строгая дизъюнкция A != B (python)
A <> B (pascal)

Егифка ©:

теория таблицы истинности

Отрицание (НЕ):

Таблица истинности операции НЕ

Таблица истинности операции НЕ

Конъюнкция (И):

Таблица истинности операции И (конъюнкция)

Таблица истинности операции И (конъюнкция)

Дизъюнкция (ИЛИ):

Таблица истинности операции ИЛИ (дизъюнкция)

Таблица истинности операции ИЛИ (дизъюнкция)

Импликация (если…, то…):

Таблица истинности операции Импликация (если..., то...)

Таблица истинности операции Импликация (если…, то…)

Эквивалентность (тогда и только тогда, …):

Таблица истинности операции Эквивалентность (тогда и только тогда, ...)

Таблица истинности операции Эквивалентность (тогда и только тогда, …)

Сложение по модулю 2 (XOR):

A B A ⊕ B
0 0 0
0 1 1
1 0 1
1 1 0

Порядок выполнения операций:

  • если нет скобок, сначала выполняются все операции «НЕ», затем – «И», затем – «ИЛИ», импликация, равносильность

Еще о логических операциях:

  • логическое произведение X∙Y∙Z∙… равно 1, т.е. выражение является истинным, только тогда, когда все сомножители равны 1 (а в остальных случаях равно 0)
  • логическая сумма X+Y+Z+… равна 0, т.е. выражение является ложным только тогда, когда все слагаемые равны 0 (а в остальных случаях равна 1)

О преобразованиях логических операций читайте здесь.

Егифка ©:

решение 2 задания ЕГЭ

Решение заданий 2 ЕГЭ по информатике


Задание 2_11: Решение 2 задания ЕГЭ по информатике:

Логическая функция F задается выражением

(¬x ∨ y ∨ z) ∧ (x ∨ ¬z ∨ ¬w)

Ниже приведен фрагмент таблицы истинности функции F, содержащей все наборы аргументов, при которых функция F ложна.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

Перем.1 Перем.2 Перем.3 Перем.4 F
??? ??? ??? ??? F
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 1 0 0 0

В ответе запишите буквы в том порядке, в котором идут соответствующие им столбцы.

✍ Решение:

✎ Способ 1. Электронные таблицы Excel + Логические размышления:

  • Отобразим перебор всех значений использующихся в выражении переменных (всю таблицу истинности). Поскольку в выражении используются 4 переменных, то строк таблицы будет 24=16:
  • егэ 2 электронные таблицы

  • Далее обе скобки исходного выражения необходимо записать в виде логического выражения, каждую — в отдельном столбце. Также в отдельном столбце добавьте формулу итоговой функции F:
  • егэ 2

  • Выделите таблицу и отсортируйте строки по столбцу с результатом функции. Для этого в меню Главная => Настраиваемая сортировка =>:
  • Получили верхние строки таблицы — с которыми сравним исходную таблицу и найдем результат:
  • Получаем следующий порядок переменных:
  • xwzy
      ✎ Способ 2. Программирование:
      Язык python:

      print('x y z w')
      for x in 0, 1:
        for y in 0, 1:
          for z in 0, 1:
            for w in 0, 1:
              F = (not(x) or y or z) and (x or not(z) or not(w))
              if not(F):
                print(x, y, z, w)
    • В результате будут выведены значения для F=0:
    • x y z w
      0 0 1 1
      0 1 1 1
      1 0 0 0
      1 0 0 1
      
    • Сопоставив их с исходной таблицей, получим результат:
    • xwzy

        Язык pascalAbc.net:

      begin
        writeln('x':7, 'y':7, 'z':7,'w':7);
        for var x:=false to true do
          for var y:=false to true do
            for var z:=false to true do
              for var w:=false to true do
                if not((not x or y or z) and (x or not z or not w)) then
                  writeln(x:7, y:7, z:7,w:7);
      end.
    • В результате будут выведены значения для F=0:
    •       x      y      z      w
        False  False   True   True
        False   True   True   True
         True  False  False  False
         True  False  False   True
      
    • Где false = 0, True = 1
    • Сопоставив их с исходной таблицей, получим результат:
    • Ответ:

      xwzy
      ✎ Способ 3. Логические размышления:

      • Внешняя операция выражения — конъюнкция (). Во всех указанных строках таблицы истинности функция принимает значение 0 (ложь). Конъюнкция ложна аж в трех случаях, поэтому проверить на ложь очень затруднительно. Тогда как конъюнкция истинна (= 1) только в одном случае: когда все операнды истинны. Т.е. в нашем случае:
      • (¬x ∨ y ∨ z) ∧ (x ∨ ¬z ∨ ¬w) = 1 когда:
        1. (¬x ∨ y ∨ z) = 1 
        И 
        2. (x ∨ ¬z ∨ ¬w) = 1
        
      • Общая идея дальнейшего решения такова: поскольку внешняя операция — конъюнкция, и результат ее истинен, когда оба сомножителя в скобках будут истинны (=1), то нам необходимо сначала составить все наборы таблицы истинности для обоих сомножителей в скобках. Затем, так как конъюнкция подразумевает пересечение, необходимо сопоставить обе таблицы истинности и выбрать для каждого подходящего набора первого сомножителя подходящий (подходящие) набор (наборы) второго сомножителя. НО! так как у нас в задании известны только наборы для F = 0, то мы сопоставлять будем наборы, которые возвращают ложь. Теперь подробно.
      • Разобьём исходное выражение на две части и составим таблицу истинности отдельно для двух частей.
      • Для сомножителя (¬x ∨ y ∨ z):
      • x y z результат
        0 0 0 1
        0 0 1 1
        0 1 0 1
        0 1 1 1
        1 0 0 0
        1 0 1 1
        1 1 0 1
        1 1 1 1
      • Получили ложь в одном наборе, так как дизъюнкция () ложна только тогда, когда ложны все операнды.
      • Для сомножителя (x ∨ ¬z ∨ ¬w):
      • x z w результат
        0 0 0 1
        0 0 1 1
        0 1 0 1
        0 1 1 0
        1 0 0 1
        1 0 1 1
        1 1 0 1
        1 1 1 1
      • Соответственно, опять получили ложь в одном наборе, когда ложны все операнды.
      • Учтем, что нам нужно выбрать и «пересечь» (так как внешняя операция ) из всех наборов только те, которые возвращают ложь (так как по заданию известны только строки, где F = 0):
      • Решение 2 задания ЕГЭ по информатике

      • Выпишем только пересеченные наборы:
      • x y z w F
        0 0 1 1 0
        0 1 1 1 0
        1 0 0 0 0
        1 0 0 1 0
      • Сравнив вторую строку заданной таблицы и вторую строку получившейся таблицы, находим, что x находится в первом столбце.
      • x y z w F
        0 0 1 1 0
        0 1 1 1 0
        1 0 0 0 0
        1 0 0 1 0
        x ??? ??? ??? F
        0 1 1 0 0
        0 1 1 1 0
        1 0 0 0 0
        1 1 0 0 0
      • Сравнив первую и четвертую одинаковые строки получившейся таблицы, находим, что y в обоих случаях равен 0. Значит он находится в 4-м столбце.
      • x y z w F
        0 0 1 1 0
        0 1 1 1 0
        1 0 0 0 0
        1 0 0 1 0
        x ??? ??? y F
        0 1 1 0 0
        0 1 1 1 0
        1 0 0 0 0
        1 1 0 0 0
      • Сравнив предпоследнюю и последнюю строки получившейся таблицы, там где x = 1, находим, что z в обоих случаях равен 0, тогда как w принимает значение и 1 и 0. Значит z находится в 3-м столбце.
      • x y z w F
        0 0 1 1 0
        0 1 1 1 0
        1 0 0 0 0
        1 0 0 1 0
      • Для w остается второй столбец:
      • x w z y F
        0 1 1 0 0
        0 1 1 1 0
        1 0 0 0 0
        1 1 0 0 0

      Результат: xwzy

    🎦 Видеорешение (бескомпьютерный вариант):

    📹 здесь
    📹 Видеорешение на RuTube здесь


    Задание 2_12: Разбор 2 задания ЕГЭ:

    Миша заполнял таблицу истинности функции:

    (¬z ∧ ¬(x ≡ y)) → ¬(y ∨ w)

    но успел заполнить лишь фрагмент из трех различных ее строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z:

    Перем.1 Перем.2 Перем.3 Перем.4 F
    ??? ??? ??? ??? F
    1 1 0
    1 0 0
    1 1 0 0

    Определите, какому столбцу таблицы соответствует каждая из переменных x, y, z, w.

    В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы.

    Подобные задания для тренировки

    ✍ Решение:
     

    ✎ Способ 1. Логические размышления (бескомпьютерный вариант):

    • Решим задание методом построения полной таблицы истинности.
    • Посчитаем общее количество строк в таблице истинности и построим ее:
    • 4 переменных -> 24 = 16 строк
      

      полная таблица истинности

    • Для начала упростим выражение и выделим в нем две основные части относительно внешней операции (операция, которая выполняется последней).
    • (¬z ∧ ¬(x ≡ y)) → ¬(y ∨ w)
      1. Избавимся от импликации:
      ¬(¬z ∧ ¬(x ≡ y)) ∨ ¬(y ∨ w)
      2. Внесем знак отрицания в скобки (закон Де Моргана):
      (z ∨ (x ≡ y))(¬y ∧ ¬w) = 0
         1 часть = 0     2 часть = 0
      
      * Исходное выражение должно быть = 0. Дизъюнкция = 0, когда оба операнда равны 0.
      
    • Разбили исходное выражение на две части, теперь добавим столбцы для двух частей в таблицу истинности:
    • таблица истинности

    • Поясним: в первой части внешняя операция — дизъюнкция (ложна, когда оба операнда ложны). Во второй части внешняя операция — конъюнкция — ложна во всех случаях кроме того, когда оба операнда истинны:
    • (z ∨ (x ≡ y)) = 0 когда z = 0 и x ≡ y = 0
      
      ¬y ∧ ¬w = 0 когда:
      1. ¬y = 0  ¬w = 0
      2. ¬y = 1  ¬w = 0
      3. ¬y = 0  ¬w = 1
      
    • В результирующей таблице истинности получили только три набора значений переменных при которых выражение возвратит ложь.
    • x y w z F
      0 1 0 0 0
      0 1 1 0 0
      1 0 1 0 0
    • Сравнив их с исходной таблицей истинности, имеем:
    • y w x z F
      1 1 0 0 0
      1 0 0 0 0
      0 1 1 0 0
    • Таким образом, ответ: ywxz

    Результат: ywxz

    ✎ Способ 2. Программирование:

      Язык PascalAbc.net:

      begin
        writeln('x':7, 'y':7, 'z':7,'w':7);
        for var x:=false to true do
          for var y:=false to true do
            for var z:=false to true do
              for var w:=false to true do
                if not((not z and (x xor y)) <= not(y or w)) then
                  writeln(x:7, y:7, z:7,w:7);
      end.
    • В результате будут выведены значения для F=0:
    •       x      y      z      w
        False   True  False  False
        False   True  False   True
         True  False  False   True
      
    • Где false = 0, True = 1
    • Сопоставив их с исходной таблицей, получим результат: ywxz

      Язык Python:

      print ('x y z w')
      for x in 0,1:
          for y in 0,1:
              for z in 0,1:
                  for w in 0,1:
                      F=(not z and not(x==y))<=(not(y or w))
                      if not F:
                          print (x,y,z,w)
    • В результате будут выведены значения для F=0:
    • x y z w
      0 1 0 0
      0 1 0 1
      1 0 0 1
      

      Сопоставив их с исходной таблицей, получим результат:

    Результат: ywxz

    🎦 Доступно видео решения этого задания (бескомпьютерный вариант):

      
    📹 здесь
    📹 Видеорешение на RuTube здесь

    🎦 Видео (решение 2 ЕГЭ в Excel):

     
    📹 здесь
    📹 Видеорешение на RuTube здесь
    📹 Видеорешение на RuTube здесь (Программирование)


    Задание 2_10: Решение 2 задания ЕГЭ по информатике:

    Логическая функция F задается выражением

    ¬a ∧ b ∧ (c ∨ ¬d)

    Ниже приведен фрагмент таблицы истинности функции F, содержащей все наборы аргументов, при которых функция F истинна.

    Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c, d.

    Перем.1 Перем.2 Перем.3 Перем.4 F
    ??? ??? ??? ??? F
    0 1 0 0 1
    1 1 0 0 1
    1 1 0 1 1

    В ответе запишите буквы в том порядке, в котором идут соответствующие им столбцы.

    ✍ Решение:

    🎦 (Бескомьютерный вариант) Предлагаем подробный разбор посмотреть на видео:

    📹 здесь
    📹 Видеорешение на RuTube здесь


    Задание 2_3: Решение задания 2. Демоверсия ЕГЭ 2018 информатика:

    Логическая функция F задаётся выражением ¬x ∨ y ∨ (¬z ∧ w).
    На рисунке приведён фрагмент таб. ист-ти функции F, содержащий все наборы аргументов, при которых функция F ложна.
    Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z.

    Перем. 1 Перем. 2 Перем. 3 Перем. 4 F
    ??? ??? ??? ??? F
    1 0 0 0 0
    1 1 0 0 0
    1 1 1 0 0

    В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала – буква, соответствующая первому столбцу; затем – буква, соответствующая второму столбцу, и т.д.) Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

    Подобные задания для тренировки

    ✍ Решение:

      ✎ Логические размышления (бескомпьютерный вариант):

    • Внешним действием (последним выполняемым) в исходном выражении является дизъюнкция:
    • ¬x  y  (¬z ∧ w)
    • Вспомним таб. ист-ти для дизъюнкции (логическое сложение):
    • x1 x2 F
      0 0 0
      0 1 1
      1 0 1
      1 1 1
    • Чтобы исходное выражение было истинным, нужно, чтобы хотя бы один из операндов равнялся единице. Т.е. нельзя наверняка сказать, где будет 1, а где 0 (¬x = 1 или 0, y = 1 или 0, ¬z ∧ w = 1 или 0).
    • Функция же ложна только в одном случае, — когда все операнды ложны. Поэтому будем искать по признаку лжи.
    • В исходной таблице истинности во всех строках функция ложна. Чтобы понять в каком столбце должна находиться та или иная переменная, возьмем за основу строку, в которой только одна единица или только один нуль.
    • Строка №1: в ней одна единица — первый столбец. В исходной формуле, чтобы функция была ложна, необходимо, чтобы ¬x = 0, иными словами x = 1. Значит первый столбец соответствует переменной x.
    • Перем. 1 Перем. 2 Перем. 3 Перем. 4 F
      x ??? ??? ??? F
      1 0 0 0 0
    • Строка №3: в ней один нуль — четвертый столбец. В исходной формуле, чтобы функция была ложна, необходимо, чтобы y = 0. Значит четвертый столбец соответствует переменной y.
    • Перем. 1 Перем. 2 Перем. 3 Перем. 4 F
      x ??? ??? y F
      1 1 1 0 0
    • Строка №2: в ней второй столбец равен единице, а третий — нулю. В исходном выражении ¬z ∧ w должно равняться 0, чтобы функция была ложной. Конъюнкция истинна только тогда, когда оба операнда истинны (=1); в нашем случае функция должна быть ложной, но пойдем от обратного. Если ¬z = 1, т.е. z = 0, а w = 1, то это неверно для нашего случая. Значит всё должно быть наоборот: z = 1, а w = 0. Таким образом столбец второй соответствует z, а столбец третий — w.
    • x z w y F
      1 0 0 0 0
      1 1 0 0 0
      1 1 1 0 0

    Результат: xzwy

    ✎ Способ 2. Программирование:
    Язык pascalABC.NET:

    begin
      writeln('x  ','y  ','z  ','w  ');
      for var x:=false to true do
        for var y:=false to true do
          for var z:=false to true do
            for var w:=false to true do
              if not(not x or y or(not z and w)) then
                writeln(x:7,y:7,z:7,w:7);
    end.

    🎦 (бескомпьютерный вариант) Подробное решение данного 2 задания из демоверсии ЕГЭ 2018 года смотрите на видео:

    📹 здесь
    📹 Видеорешение на RuTube здесь


    Задание 2_13: Разбор досрочного егэ по информатике 2019

    Логическая функция F задаётся выражением

    (x ∧ ¬y) ∨ (y ≡ z) ∨ ¬w
    

    Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
    В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

    Перем.1 Перем.2 Перем.3 Перем.4 F
    ??? ??? ??? ??? F
    0 0 0
    0 1 0 1 0
    1 0 0

    ✍ Решение:
     

    🎦 Видеорешение (бескомпьютерный вариант):
    📹 здесь
    📹 Видеорешение на RuTube здесь


    Задания для тренировки

    Задание 2_2: Задание 2 ЕГЭ по информатике:

    Каждое из логических выражений F и G содержит 5 переменных. В табл. истинности для F и G есть ровно 5 одинаковых строк, причем ровно в 4 из них в столбце значений стоит 1.

    Сколько строк таблицы истинности для F ∨ G содержит 1 в столбце значений?

    Подобные задания для тренировки

    ✍ Решение:

    • Поскольку в каждом из выражений присутствует 5 переменных, то эти 5 переменных порождают таблицу истинности из 32 строк: т.к. каждая из переменных может принимать оно из двух значений (0 или 1), то различных вариантов с пятью переменными будет 25=32, т.е. 32 строки.
    • Из этих 32 строк и для F и для G мы знаем наверняка только о 5 строках: 4 из них истинны (=1), а одна ложна (=0).
    • Вопрос стоит о количестве строк = 1 для таб. истинности F ∨ G. Данная операция — дизъюнкция, которая ложна только в одном случае — если F = 0 и одновременно G = 0
    • В исходных таблицах для F и G мы знаем о существовании только одного 0, т.е. в остальных строках может быть 1. Т.о., и для F и для G в 31 строке могут быть единицы (32-1=31), а лишь в одной — ноль.
    • Тогда для F ∨ G только в одном случае будет 0, когда и F = 0 и G = 0:
    • F G F ∨ G
      1 0 0 0
      2 0 1 1
      1
      32 1
    • Соответственно, истинными будут все остальные строки:
    • 32 - 1 = 31

    Результат: 31

    Подробное объяснение данного задания смотрите на видео:

    📹 здесь


    Задание 2_6: Решение 2 задания ЕГЭ по информатике:

    Каждое логическое выражение A и B зависит от одного и того же набора из 7 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 4 единицы.

    Каково максимально возможное число единиц в столбце значений таблицы истинности выражения A ∨ B?

    ✍ Решение:

    • Полная таблица истинности для каждого из выражений A и B состоит из 27 = 128 строк.
    • В четырех из них результат равен единице, значит в остальных — 0.
    • A ∨ B истинно в том случае, когда либо A = 1 либо B = 1, или и A и B = 1.
    • Поскольку А = 1 только в 4 случаях, то чтобы получить максимальное количество единиц в результирующей таблице истинности (для A ∨ B), расположим все единицы т.и. для выражения A так, чтобы они были в строках, где B = 0, и наоборот, все строки, где B = 1, поставим в строки, где A = 0:
    • A B
      1 0
      1 0
      1 0
      1 0
      0 1
      0 1
      0 1
      0 1
      0 0
    • Итого получаем 8 строк.
    • Если бы в задании требовалось найти минимальное количество единиц, то мы бы совместили строки со значением = 1, и получили бы значение 4.

    Результат: 8


    Задание 2_7: Решение 2 задания ЕГЭ по информатике:

    Каждое логическое выражение A и B зависит от одного и того же набора из 8 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 6 единиц.

    Каково максимально возможное число нулей в столбце значений таблицы истинности выражения A ∧ B?

    ✍ Решение:

    • Полная таблица истинности для каждого из выражений A и B состоит из 28 = 256 строк.
    • В шести из них результат равен единице, значит в остальных — 0.
    • A ∧ B ложно в том случае, когда:
      A ∧ B = 0 если:
      
      1. A = 0, B = 1 
      2. B = 0, A = 1
      3. A = 0 и B = 0
      
    • Во всех случаях там где А=1 может стоять B=0, и тогда результат F = 0. Поскольку нам необходимо найти максимально возможное число нулей, то как раз для всех шести А=1 сопоставим B=0, и наоборот, для всех шести возможных B=1 сопоставим A=0
    • A B F
      1 0 0
      1 0 0
      1 0 0
      1 0 0
      0 1 0
      0 1 0
      0 1 0
      0 1 0
      0 0 0
    • Поскольку строк всего 256, то вполне возможно, что все 256 из них возвратят в результате 0

    Результат: 256


    Задание 2_4: 2 задание:

    Дан фрагмент таблицы истинности выражения F.

    x1 x2 x3 x4 x5 x6 x7 F
    1 0 0 1 1 1 1 0
    0 1 0 0 1 0 1 1
    0 1 0 1 1 0 1 0

    Каким из приведённых ниже выражений может быть F?
    1) ¬x1 ∧ x2 ∧ ¬x3 ∧ ¬x4 ∧ x5 ∧ ¬x6 ∧ x7
    2) x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7
    3) x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7
    4) x1 ∨ ¬x2 ∨ x3 ∨ x4 ∨ ¬x5 ∨ ¬x6 ∨ x7

    ✍ Решение:

    • В первом внешняя операция (выполняется последней) — конъюнкция. Начнем рассмотрение с нее. Соответственно, проверяем по второй строке таб. ист-ти, там где F = 1, так как в таком случае все аргументы должны быть истинными (см. таб. истинности для конъюнкции).
    • Если мы подставим в нее все аргументы выражения, то функция действительно возвращает истину. Т.е. пункт первый подходит:
    • гвэ 11 класс решение задания 2

    • Но проверим на всякий случай остальные.
    • Второй пункт проверяем по первой и третьей строке, так как основная операция — дизъюнкция — ложна только в том случае, если все аргументы ложны (см. таб. истинности для дизъюнкции). Проверяя по первой строке, сразу видим, что x1 в ней равен 1. В таком случаем функция будет = 1. Т.е. этот пункт не подходит:
    • информатика гвэ, решение 2 задания

    • Третий пункт проверяем по второй строке, так как основная операция — конъюнкция — возвратит истину только тогда, когда все операнды равны 1. Видим, что x1 = 0, соответственно функция будет тоже равна 0. Т.е. выражение нам не подходит:
    • гвэ 11 класс

    • Четвертый пункт проверяем по первой и третьей строкам. В первой — x1 = 1, т.е. функция должна быть равна 1. Т.е. пункт тоже не подходит:
    • разбор 2 задания гвэ

    • Таким образом, ответ равен 1.

    Результат: 1

    Решение 2 задания ГВЭ по информатике смотрите на видео:

    📹 здесь


    Задание 2_8: Решение 2 задания ЕГЭ по информатике:

    Дано логическое выражение, зависящее от 5 логических переменных:

    (¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5)

    Сколько существует различных наборов значений переменных, при которых выражение истинно?

    1) 0
    2) 30
    3) 31
    4) 32

    Подобные задания для тренировки

    ✍ Решение:

    • Поскольку выражение включает 5 переменных, то таб. ист-ти состоит из 25 = 32 строк.
    • Внешней операцией (последней) является конъюнкция (логическое умножение), а внутри скобок — дизъюнкция (логическое сложение).
    • Обозначим первую скобку за А, а вторую скобку за B. Получим A ∧ B.
    • Найдем сколько нулей существует для таб. истинности:
    •    A  B  F
      1. 0  0  0
      2. 0  1  0
      3. 1  0  0
      

      Теперь рассмотрим каждый случай отдельно:

    • 1 случай. 0 0 : A = 0 и B = 0, то есть:
    • ¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ x5 = 0
      и
      x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 = 0.

    • Обратим внимание, что во вторых скобках везде стоит инверсия переменных, которые находятся в первых скобках. Таким образом, это невозможно, так как дизъюнкция равна нулю, когда все операнды равны нулю. А если в первых скобках все 0, то из-за инверсий во вторых скобках все 1. То есть этот случай нам не подходит.
    • 2 случай. 0 1 : нам он подходит, так как если первая скобка возвратит 0, то вторая вернет 1.
    • 3 случай. 1 0 : нам он подходит, так как если вторая скобка возвратит 0, то первая вернет 1.
    • Итого получаем два случая, когда исходное выражение вернет 0, т.е. две строки таблицы истинности.
    • Тогда получим количество строк, с результатом равным 1:
    • 32 - 2 = 30, что соответствует номеру 2
      

    Результат: 2

    Подробное решение задания смотрите в видеоуроке:

    📹 здесь


    Задание 2_5: Решение 2 задания ЕГЭ по информатике:

    Дан фрагмент таблицы истинности для выражения F:

    x1 x2 x3 x4 x5 x6 F
    0 0 1 1 0 0 1
    0 0 0 0 1 1 1
    1 0 1 0 1 1 1
    0 1 1 1 0 1 0

    Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x3 не совпадает с F.

    Подобные задания для тренировки

    ✍ Решение:

    • Полная таблица истинности будет иметь 26 = 64 строк (т.к. 6 переменных).
    • 4 из них нам известны: в них x3 два раза не совпадает с F.
    • Неизвестных строк:
    •  
      64 - 4 = 60
      
    • В неизвестных x3 может не совпадать с F, кроме того, в двух известных x3 не совпадает с F. Соответственно максимально возможное число строк с несовпадающими x3 и F, будет:
    • 60 + 2 = 62
      

    Результат: 62


    Задание 2_9: Решение 2 задания ЕГЭ по информатике:

    Дан фрагмент таблицы истинности для выражения F:

    x1 x2 x3 x4 x5 x6 x7 F
    0 0 0
    0 0 1
    1 1 1

    Каким выражением может быть F?
    1) x1 ∧ (x2 → x3) ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7
    2) x1 ∨ (¬x2 → x3) ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7
    3) ¬x1 ∧ (x2 → ¬x3) ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7
    4) ¬x1 ∨ (x2 → ¬x3) ∨ x4 ∨ x5 ∨ x6 ∧ x7

    ✍ Решение:

    • Рассмотрим отдельно каждый пункт и найдем последнюю операцию, которая должна быть выполнена (внешнюю).
    • 1 пункт:

      (((x1 ∧ (x2 → x3) ∧  ¬x4) ∧ x5) ∧ x6)  ¬x7
      
    • Внешняя операция — конъюнкция. Ее проще проверять по строке, в которой F = 1 (значит все сомножители должны быть равны 1).
    • Возьмем 3-ю строку, в ней x4=1. В нашем выражении х4 с отрицанием, т.е. = 0. Для конъюнкции, когда хоть один из сомножителей равен нулю, выражение вернет в результате 0, а у нас в строке 1. Т.е. этот пункт не подходит:
    • пример решения 2 задания егэ
      2 пункт:

      (((x1 ∨ (¬x2 → x3) ∨  ¬x4) ∨ ¬x5) ∨ x6)   ¬x7
      
    • Последняя выполняющаяся операция (внешняя) — дизъюнкция. Ее легче проверять по строке, в которой F = 0 (значит все слагаемые должны быть равны 0).
    • Смотрим по первой строке: х4 = 0, в рассматриваемом пункте он с отрицанием, т.е. = 1. Соответственно все выражение вернет единицу, а в таблице в строке 0. Т.е. этот пункт не подходит:
    • решение задания 2 егэ
      3 пункт:

      (((¬x1 ∧ (x2 → ¬x3) ∧  x4) ∧ ¬x5) ∧ x6)  x7
      
    • Последняя операция — конъюнкция. Ее проще проверять по строке, в которой F = 1 (значит все сомножители должны быть равны 1).
    • Возьмем 2-ю строку: в ней х7 = 0, в рассматриваем пункте х7 без отрицания, т.е. так и остается равным нулю. При умножении выражение вернет в результате 0. В таблице — 1. Т.е. пункт тоже не подходит:
    • Как решать 2 задание

    • Единственным подходящим вариантом остался пункт под номером 4 (на всякий случай всегда стоит проверить и его).

    Результат: 4

    В видеоуроке рассмотрено подробное решение 2 задания:

    📹 здесь


    Задание 2_1: Задание 2 ЕГЭ по информатике:

    Логическая функция F задается выражением
    (y → x) ∧ (y → z) ∧ z.

    Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

    Перем. 1 Перем. 2 Перем. 3 F
    ??? ??? ??? F
    1 0 0 0 0
    2 0 0 1 0
    3 0 1 0 1
    4 0 1 1 1
    5 1 0 0 0
    6 1 0 1 0
    7 1 1 0 0
    8 1 1 1 1

    В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

    ✍ Решение:

    • Сначала необходимо рассмотреть логическую операцию, которую мы будем выполнять в последнюю очередь — это логическое И (конъюнкция) или . То есть внешнюю операцию:
    • (y → x) ∧ (y → z)  z
      
    • Конъюнкцию легче рассматривать по тем строкам таб. ист-ти, в которых F = 1, т.е. №3, №4, и №8
    • Поскольку для конъюнкции функция истинна только тогда, когда все переменные истинны, то необходимо чтобы отдельно каждая скобка была истинна ((y → x) = 1 и (y → z)=1) и переменная z тоже была истинной (=1)
    • (y → x) ∧ (y → z) ∧ z = 1
         если: 
      1. (y → x) = 1
      2. (y → z) = 1
      3. z = 1
      
    • Поскольку с выражениями в скобках сложней работать, определим сначала какому столбцу соответствует z. Для этого выберем строку (№3), где F = 1, а в остальных ячейках только одна единица, остальные — нули.
    • Перем. 1 Перем. 2 Перем. 3 F
      3 0 1 0 1
    • Таким образом, делаем вывод, что z находится во втором столбце (отсчет ведем слева):
    • Перем. 1 Перем. 2 Перем. 3 F
      _ ??? z ??? F
    • Дальше нам необходимо рассмотреть две скобки, в которых находится операция импликации: (y → x) и (y → z). Обе эти скобки должны возвращать истину (=1). В таб. истинности для импликации, функция возвращает в результате 1 тогда, когда:
    • вторая переменная (заключение) равна 1 (первая при этом может быть любой),
    • вторая переменная (заключение) равна 0, а первая обязательно должна быть равна тоже 0.
    • Рассмотрим скобку (y → x) и строку 4 таблицы:
    • Перем. 1 z Перем. 3 F
      4 0 1 1 1
    • Для этой строки только y может быть равен 0, т.к. если x = 0, тогда y=1, и скобка в результате возвратит ложь (1 → 0 = 0). Соответственно, y находится в первом столбце. А x значит должен стоять в третьем:

    Результат: yzx

    Детальный разбор данного задания 2 ЕГЭ по информатике предлагаем посмотреть в видео:

    📹 здесь


    Понравилась статья? Поделить с друзьями:
  • Шпаргалки для экзаменов егэ
  • Шпаргалки для егэ по информатике 2022 по заданиям
  • Шпаргалки для экзаменов 9 класс
  • Шпаргалки для экзамена по тгп
  • Шпаргалки для егэ по биологии самые лучшие шпаргалки по биологии