Шпора по тригонометрии на егэ

Алгебра — ЕГЭ                Тригонометрия — ЕГЭ                Геометрия — ЕГЭ                Стереометрия — ЕГЭ                Алгебра — ОГЭ                Геометрия — ОГЭ

Формулы по тригонометрии

Формулы по тригонометрии

Шпаргалка по тригонометрическим формулам

Шпаргалка по тригонометрическим формулам

Таблица формул тригонометрии

Таблица формул тригонометрии

Единичный круг — тригонометрия

Единичный круг - тригонометрия

11 декабря 2020

В закладки

Обсудить

Жалоба

Шпаргалка по тригонометрии

Основные тригонометрические тождества и формулы.

shpargalka_po_trigonometrii.pdf

Содержание

Основные тригонометрические тождества.
Формулы приведения.
Формулы периодических углов.
Формулы суммы и разности углов.
Формулы двойного угла.
Формулы половинного угла (формулы понижения степени).
Формулы произведения тригонометрических функций.
Формулы суммы и разности тригонометрических функций.
Универсальная тригонометрическая подстановка (УТП).
Обратные тригонометрические функции (аркфункции).
Простые тригонометрические уравнения.

  • Материалы для подготовки к ЕГЭ
  •    

  • Рубрики
    • 01 Геометрия (13)
    • 02 Стереометрия (9)
    • 03 Теория вероятностей ч.1 (1)
    • 04 Теория вероятностей ч.2 (1)
    • 05 Простейшие уравнения (5)
    • 06 Вычисления (5)
    • 07 Производная, ПО (4)
    • 08 «Прикладные» задачи (5)
    • 09 Текстовые задачи (7)
    • 10 Графики функций (7)
    • 11 Исследование функции (2)
    • 12 (С1) Уравнения (78)
    • 13 (С2) Стереометр. задачи (94)
    • 14 (С3) Неравенства (89)
    • 15 (С4) Практич. задачи (71)
    • 16 (С5) Планиметр. задачи (86)
    • 17 (С6) Параметры* (79)
    • 18 (С7) Числа, их свойства (38)
    • A1 Простейшие текст/задачи (нет в ЕГЭ-22) (3)
    • A2 Читаем графики (нет в ЕГЭ-22) (1)
    • Видеоуроки (44)
    • ГИА (11)
      • II часть (11)
    • ЕГЭ (диагностич. работы) (70)
    • Иррациональные выражения, уравнения и неравенства (15)
    • Логарифмы (39)
    • МГУ (12)
    • Метод интервалов (4)
    • Метод рационализации (18)
    • Модуль (9)
    • Параметр (40)
    • Переменка (5)
    • Планиметрия (60)
    • Показательные выражения, уравнения и неравенства (8)
    • Разложение на множители (1)
    • Рациональные выражения, уравнения и неравенства (10)
    • Справочные материалы (92)
    • Стереометрия (52)
    • Т/P A. Ларина (443)
    • Текстовые задачи (12)
    • Теория чисел (2)
    • Тесты по темам (80)
    • Тригонометрические выражения, уравнения и неравенства (43)
    • Функции и графики (10)
  • Дружественные сайты

    Сайт А. Ларина
    ЕгэТренер – О. Себедаш
    Математика?Легко!
    Егэ? Ок! – И. Фельдман

  • Свежие записи
    • Тест «Гиперболы»
    • Тест. Графики функций. Комбинированные задачи
    • 10. Графики функций. Комбинированные задачи
    • Тест. Тригонометрические функции
    • 10. Тригонометрическая функция
    • Тест. Кусочно-линейная функция
    • 10. Кусочно-линейная функция
  • Архивы Архивы

Лобышева Ирина Сергеевна

Опубликовано 04.12.2014 — 11:35 — Лобышева Ирина Сергеевна

  каждый год выпускаю классы и имею подборку тригонометрических формул используемых в обеих частях ЕГЭ, которыми хочу поделиться с Вами. 

Скачать:

Вложение Размер
Файл trigonometriya.docx 1.28 МБ

Предварительный просмотр:

По теме: методические разработки, презентации и конспекты

Разработка урока алгебры в 10 классе по теме «Формулы тригонометрии»

Данный урок является обобщающим по теме «Тригонометрические формулы»…

Формулы тригонометрии

Обобщающий урок по теме в 10 классе по учебнику А.Г. Мордкович…

Основные формулы по тригонометрии

Приведены основные формулы по тригонометрии для 10 класса….

Тригонометрия. Сборник формул

Тригонометрия. Сборник формул…

Основные формулы тригонометрии

Основные формулы тригонометрии, которые необходимы при подготовке к ЕГЭ по математике…

Формулы тригонометрии

В  презентации  содержится  материал  о  различных  формулах  по  тригонометрии.  Содержание  презентации  можно  использовать  как…

Тригонометрия учебник с формулами

Учебник по тригонометрии включает теоретический материал с формулами…

  • Мне нравится 

 

На странице вы найдете все формулы тригонометрии в удобном для использования оформлении. Формулы структурированы в блоки по количеству аргументов, степеням, арифметическим операциям над ними.

Содержание:
  1. Основные тригонометрические тождества
  2. Формулы двойного угла
  3. Формулы тройного угла
  4. Формулы понижения степени
    1. Вторая степень
    2. Третья степень
    3. Четвертая степень
    4. Пятая степень
  5. Формулы половинного угла
  6. Формулы понижения степени половинного угла
  7. Формулы сложения аргументов
  8. Формулы вычитания аргументов
  9. Формулы суммы
  10. Формулы разности
  11. Формулы произведения
  12. Формулы произведения в степени
  13. Все формулы на одном листе

Все формулы тригонометрии

Основные тригонометрические тождества

tg alpha = dfrac {sin alpha}{ cos alpha} = dfrac{1}{ctg alpha}


ctg alpha = dfrac {cos alpha}{ sin alpha} = dfrac{1}{tg alpha}


sin ^2 alpha + cos ^2 alpha = 1


1+tg^2alpha=dfrac{1}{cos^2alpha}


1+ctg^2alpha=dfrac{1}{sin^2alpha}


tgalpha cdot ctgalpha=1

Формулы двойного угла (аргумента)

sin(2alpha)=2 cdot cos alpha cdot sin alpha


sin(2alpha)=dfrac{2 cdot tg alpha}{1+tg ^2 alpha}=dfrac{2 cdot ctg alpha}{1+ctg ^2 alpha}=dfrac{2}{tg alpha + ctg alpha}


cos(2alpha)=cos ^2 alpha- sin ^2 alpha = 2 cdot cos ^2 alpha- 1 = 1- 2 cdot sin ^2 alpha


cos(2alpha)=dfrac{1 -tg ^2 alpha}{1+tg ^2 alpha}=dfrac{ctg ^2 alpha- 1}{ctg ^2 alpha +1}=dfrac{ctg alpha-tg alpha}{ctg alpha + tg alpha}


tg(2alpha) = dfrac{2 cdot tg alpha}{1-tg ^2 alpha}=dfrac{2 cdot ctg alpha}{ctg ^2 alpha- 1}=dfrac{2}{ctg alpha- tg alpha}


ctg(2alpha) = dfrac{ctg ^2 alpha-1}{2 cdot ctg alpha}=dfrac{ctg alpha- tg alpha}{2}

Формулы тройного угла (аргумента)

sin(3alpha)=3 cdot sin alpha- 4 cdot sin ^3 alpha


cos(3alpha)= 4 cdot cos ^3 alpha- 3 cdot cos alpha


tg(3alpha)= dfrac{3 cdot tg alpha- tg ^3 alpha}{1-3 cdot tg ^2 alpha}


ctg(3alpha)= dfrac{ctg ^3 alpha- 3 cdot ctg alpha}{3 cdot ctg ^2 alpha -1}

Формулы понижения степени тригонометрических функций

Вторая степень

sin ^2 alpha = dfrac{1-cos(2alpha)}{2}


cos ^2 alpha = dfrac{1+cos(2alpha)}{2}


tg ^2 alpha = dfrac{1-cos(2alpha)}{1+cos(2alpha)}


ctg ^2 alpha = dfrac{1+cos(2alpha)}{1-cos(2alpha)}


(sin alpha- cos alpha)^2=1-sin(2 alpha)


(sin alpha+ cos alpha)^2=1+sin(2 alpha)

Третья степень

sin ^3 alpha = dfrac{3 cdot sin(alpha)-sin(3 alpha)}{4}


cos ^3 alpha = dfrac{3 cdot cos(alpha)+cos(3 alpha)}{4}


tg ^3 alpha = dfrac{3 cdot sin (alpha)-sin(3 alpha)}{3 cdot cos (alpha)+cos(3 alpha)}


ctg ^3 alpha = dfrac{3 cdot cos (alpha)+cos(3 alpha)}{3 cdot sin (alpha)-sin(3 alpha)}

Четвёртая степень

sin ^4 alpha = dfrac{3-4 cdot cos(2 alpha)+cos(4 alpha)}{8}


cos ^4 alpha = dfrac{3+4 cdot cos(2 alpha)+cos(4 alpha)}{8}


Пятая степень

sin ^5 alpha = dfrac{10 cdot sin(alpha)-5 cdot sin(3 alpha)+sin(5 alpha)}{16}


cos ^5 alpha = dfrac{10 cdot cos(alpha)+5 cdot cos(3 alpha)+cos(5 alpha)}{16}

Формулы половинного угла (аргумента)

sin Big( dfrac{alpha}{2} Big)=pm sqrt{dfrac{1-cos alpha}{2}}


cos Big( dfrac{alpha}{2} Big)=pm sqrt{dfrac{1+cos alpha}{2}}


tg Big( dfrac{alpha}{2} Big)= dfrac{1-cos alpha}{sin alpha}= dfrac{sin alpha}{1+cos alpha}


ctg Big( dfrac{alpha}{2} Big)= dfrac{1+cos alpha}{sin alpha}= dfrac{sin alpha}{1-cos alpha}

Формулы понижения степени половинного угла (аргумента)

sin ^2 Big( dfrac{alpha}{2} Big)=dfrac{1-cos alpha}{2}


cos ^2 Big( dfrac{alpha}{2} Big)=dfrac{1+cos alpha}{2}


tg ^2 Big( dfrac{alpha}{2} Big)=dfrac{1-cos alpha}{1+cos alpha}


ctg ^2 Big( dfrac{alpha}{2} Big)=dfrac{1+cos alpha}{1-cos alpha}

Формулы сложения аргументов

sin(alpha + beta)=sin alpha cdot cos beta + cos alpha cdot sin beta


cos(alpha + beta)=cos alpha cdot cos beta- sin alpha cdot sin beta


tg(alpha + beta)= dfrac{tg alpha + tg beta}{1-tg alpha cdot tg beta}


ctg(alpha + beta)= dfrac{ctg alpha cdot ctg beta-1}{ctg alpha + ctg beta}

Формулы вычитания аргументов

sin(alpha- beta)=sin alpha cdot cos beta- cos alpha cdot sin beta


cos(alpha- beta)=cos alpha cdot cos beta+ sin alpha cdot sin beta


tg(alpha- beta)= dfrac{tg alpha- tg beta}{1+tg alpha cdot tg beta}


ctg(alpha- beta)= dfrac{ctg alpha cdot ctg beta+1}{ctg beta — ctg alpha}

Формулы суммы тригонометрических функций

sin alpha+ sin beta=2 cdot sin big( dfrac{alpha + beta}{2} big) cdot cos big( dfrac{alpha- beta}{2} big)


cos alpha+ cos beta=2 cdot cos big( dfrac{alpha + beta}{2} big) cdot cos big( dfrac{alpha- beta}{2} big)


tg alpha + tg beta = dfrac{sin(alpha + beta)}{cos alpha cdot cos beta}


ctg alpha + ctg beta = dfrac{sin(alpha + beta)}{cos alpha cdot cos beta}


sin (alpha)+cos(alpha)=sqrt{2} cdot sin Big( alpha+ dfrac{pi}{4} Big)

Формулы разности тригонометрических функций

sin alpha- sin beta=2 cdot sin big( dfrac{alpha- beta}{2} big) cdot cos big( dfrac{alpha+ beta}{2} big)


cos alpha- cos beta=-2 cdot sin big( dfrac{alpha + beta}{2} big) cdot sin big( dfrac{alpha- beta}{2} big)


tg alpha- tg beta = dfrac{sin(alpha- beta)}{cos alpha cdot cos beta}


ctg alpha- ctg beta = dfrac{sin(alpha + beta)}{sin alpha cdot sin beta}


sin (alpha)-cos(alpha)=sqrt{2} cdot sin Big( alpha- dfrac{pi}{4} Big)

Формулы произведения тригонометрических функций

sin alpha cdot sin beta = dfrac{cos (alpha- beta)-cos(alpha + beta)}{2}


sin alpha cdot cos beta = dfrac{sin (alpha- beta)+sin(alpha + beta)}{2}


cos alpha cdot cos beta = dfrac{cos (alpha- beta)+cos(alpha + beta)}{2}


tg alpha cdot tg beta = dfrac{cos(alpha- beta)- cos(alpha+beta)}{cos(alpha- beta)+ cos(alpha+beta)}=dfrac{tg alpha + tg beta}{ctg alpha + ctg beta}


ctg alpha cdot ctg beta = dfrac{cos(alpha- beta)+ cos(alpha+beta)}{cos(alpha- beta)- cos(alpha+beta)}=dfrac{ctg alpha + ctg beta}{tg alpha + tg beta}


tg alpha cdot ctg beta = dfrac{sin(alpha- beta)+ sin(alpha+beta)}{sin(alpha+ beta)- sin(alpha-beta)}

Формулы произведения тригонометрических функций в степени

sin ^2 (alpha) cdot cos ^2 (alpha) = dfrac{1-cos(4 alpha)}{8}


sin ^3 (alpha) cdot cos ^3 (alpha) = dfrac{3 cdot sin(2 alpha)- sin(6 alpha)}{32}


sin ^4 (alpha) cdot cos ^4 (alpha) = dfrac{3-4 cdot cos(4 alpha)+ cos(8 alpha)}{128}


sin ^5 (alpha) cdot cos ^5 (alpha) = dfrac{10 cdot sin (2 alpha)-5 cdot sin(6 alpha)+sin (10 alpha)}{512}

Все формулы тригонометрии на одном листе

На этой картинке собраны все формулы тригонометрии для печати. Лист можно распечатать и использовать при решении задач ЕГЭ или вырезать таблицы и использовать как шпаргалку. Распечатанный лист можно применять как справочный материал при решении задач по тригонометрии в 10 и 11 классе.

Формулы тригонометрии на листе А4

Понравилась статья? Поделить с друзьями:
  • Шпоры для экзамена по физике
  • Шпора по стереометрии егэ
  • Шпоры для экзамена по пдд
  • Шпора по праву егэ
  • Шпоры для экзамена по мат анализу