Шпоры егэ математика логарифмы

Свойства  и графики логарифмических функций

 

1.    
Область определения: D( y ): x ϵ (0; +∞).

2.    
Множество значений: E( y ): y ϵ (-∞;+∞).

3.    
Функция не является четной и не является нечетной.

4.    
Нули функции: при x = 1 логарифмическая функция y = log a x
приобретает значение, равное 0.

5.    
График пересекает ось O x в точке (1; 0).

6.    
Интервалы монотонности: При a > 1 функция возрастает на
интервале (0; +∞). При 0 < a < 1 функция убывает на интервале (0; +∞)

7.    
Интервалы выпуклости / вогнутости: При a > 1 график функции
выпуклый на интервале (0; +∞). При 0 < a < 1 график функции вогнутый на
интервале (0; +∞).

8.    
Из равенства логарифмов двух чисел по одному и тому же основанию
следует равенство самих чисел: log a x = log a y => x = y , a > 0, a ≠ 1.

Примеры решения логарифмических уравнений

Краткий алгоритм решения логарифмических
уравнений:

1. Привести логарифмы в разных частях уравнения к одному
основанию, исключая коэффициенты перед ними с помощью свойства логарифмов.

2. Исключить логарифмы, прибегая к правилу потенцирования.

3. Решить стандартное уравнение.

4. Проверить результат.

5.Записать ответ.

Несколько схем решений логарифмических
уравнений

Схема выполнения равносильных преобразований
логарифмических неравенств (потенцирование неравенств)

 

Обобщенный метод интервалов

Схема:

1. Привести неравенство к такому виду, где в
левой части находится функция f(x), а в правой 0.

2. Найти область определения функции f(x).

3. Найти нули функции f(x), то есть – решить
уравнение f(x) = 0 (а решать уравнение обычно проще, чем решать неравенство)

4. Изобразить на числовой прямой область
определения и нули функции.

5. Определить знаки функции f(x) на полученных
интервалах.

6. Выбрать интервалы, где функция принимает
необходимые значения и записать ответ.

Запомни:
знаки расставляются только на области определения функции!

Метод рационализации

(метод
декомпозиции, метод замены множителей, метод замены функции, правило знаков)

Метод рационализации заключается в замене сложного выражения F(x)ü0 на более простое выражение G(x)ü0 равносильно неравенству F(x)ü0 в области определения выражения F(x).

Выделим некоторые выражения F и
соответствующие им рационализирующие выражения
G, где f, g, h, p, q – выражения с переменной x (h>0; h≠1; f>0, g>0), a
фиксированное число (
a>0; a≠1)

 

Схема

1. Найти ОДЗ неравенства

2. Подобрать нужное
рационализирующее выражение

3. Решить неравенство, полученное в
п.2

4. Найти пересечение множеств п 2 и
п. 3

5.
Записать ответ

Интернет-ресурсы для подготовки к профильному
ЕГЭ по математике

1.       alexlarin.net
— каждую неделю публикуются качественные пробники.

2.       ege.sdamgia.ru
— лучший онлайн-тренажёр с решениями заданий.

3.       yandex.ru/tutor/
— Яндекс.Репетитор — тренировочные варианты онлайн.

4.       alleng.org/edu/math3.htm
— книги в pdf формате.

5.       berdov.com/ege/
— хорошие пробники, много нестандартных и сложных заданий.

6.       4ege.ru/video-matematika/50912…
— видеокурс с теорией и практикой.

7.       https://math100.ru/ege/ege-profil/-
задание ЕГЭ в pdf формате, с ответами.

8.       https://www.mathm.ru- задания разделены
по темам и уровням сложности

Шпаргалка для подготовки к ЕГЭ по математике

(профильный уровень) по теме:

Логарифмы.

Уравнения. Неравенства

Логарифмы

Предыдущую статью о показательных уравнениях мы начали с уравнения 2x = 8. Там всё было ясно: x = 3.

А теперь рассмотрим уравнение 2x = 7.

По графику функции y = 2x мы видим, что это уравнение имеет корень, и притом единственный.


Ясно, что этот корень — не целое число (так как 22 = 4, 23 = 8). Более того, оказывается, что он не является даже рациональным числом, т. е. не представляется в виде обыкновенной дроби. Интуитивно мы чувствуем лишь, что он меньше 3, но не намного.

Этот корень обозначается log27 (читается: «логарифм семи по основанию два»). Он является иррациональным числом, т. е. бесконечной непериодической десятичной дробью. Калькулятор даёт: log27 = 2,807354922057604107…

Итак, наше число log27 — это показатель степени, в которую надо возвести 2, чтобы получить 7.

Теперь дадим общее определение логарифма. Пусть a > 0 и a ≠ 1 (условия те же, что и для основания показательной функции).

Определение. Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b.

Иными словами,

Например:

  так как  ;

, так как  ;

  так как  ;

, так как  .

Логарифм с основанием 10 называется десятичным и обозначается lg. Например, lg 100 = 2, lg 1000 = 3, lg 0,01 = −2.

Логарифм с основанием e называется натуральным и обозначается ln.

Обратите внимание: логарифм определён только для положительных чисел. Причина заключается в том, что показательная функция может принимать лишь положительные значения. Например, число log2(−4) не существует: в какую бы степень мы ни возводили 2, мы никогда не получим −4.

Не забывайте также про ограничения на основание логарифма: 0 < a < 1 или a > 1.

Основные формулы

По определению, logab — это показатель степени, в которую надо возвести число a, чтобы получить число b:

Формула (1) называется основным логарифмическим тождеством.
Вот еще один вариант записи основного логарифмического тождества:

logaax=x.

Перечислим свойства логарифмов. Они являются простыми следствиями правил действия со степенями. Все логарифмы ниже считаются определёнными.

Логарифм произведения — это сумма логарифмов:

loga(bc) = logab + logac. (2)

Логарифм частного — это разность логарифмов:

log_{a}frac{b}{c}=log_{a}b-log_{a}c. (3)

Показатель степени логарифмируемого числа «спрыгивает» перед логарифмом:

log_{a}b^{m}=mlog_{a}b. (4)

Показатель степени основания логарифма тоже «спрыгивает», но в виде обратного числа:

log_{a^{n}}b=frac{1}{n}log_{a}b. (5)

Формулы (4) и (5) вместе дают:

. (6)

В частности, если m = n, мы получаем формулу:

. (7)

Например, .

Наконец, важнейшая формула перехода к новому основанию:

. (8)

В частности, если c = b, то logbb = 1, и тогда:

. (9)

Приведём несколько примеров из банка заданий.
1. (применили формулу (2) суммы логарифмов).

2. (применили основное логарифмическое тождество(1)).

3. log^{2}_{sqrt{7}}49=(log_{sqrt{7}}49)^{2}=(log_{sqrt{7}}7^{2})^{2}=(2log_{sqrt{7}}7)^{2}=(2cdot 2)^{2}=16 (применили формулу (4)).

4. log_{0,8}3cdot log_{3}1,25=log_{0,8}3cdot frac{log_{0,8}1,25}{log_{0,8}3}=log_{0,8}1,25=log_{frac{4}{5}}frac{5}{4}=-1 (применили формулу (9), перейдя к новому основанию 0,8).

5. frac{9^{log_{5}50}}{9^{log_{5}2}}=9^{log_{5}50-log_{5}2}=9^{log_{5}25}=9^{2}=81 (применили формулу (3) разности логарифмов).

Немного истории

Теперь вы поняли, что такое логарифмы и как ими пользоваться. Но для чего они всё-таки нужны? Или это просто такая математическая игрушка с хитрой инструкцией по применению?

Понятие логарифма и логарифмические таблицы появились в 17 веке, и значение их было огромно.

Это в наши дни вычисления не представляют труда — у каждого есть калькулятор. А как считали в «докомпьютерные» времена?

Складывать и вычитать можно было на счётах, а вот умножать и делить приходилось «в столбик» — медленно и трудно.

В 15–17 веках, в эпоху великих географических открытий, стали бурно развиваться торговля, экономика и наука. Требования к математике росли: расчёты становились более сложными, а точность — например, для решения навигационных задач — нужна была всё более высокая.

Необходим был инструмент, позволяющий упростить и ускорить расчёты, и таким инструментом явились логарифмы.

Предположим, что b и c — большие числа, которые надо перемножить. Появление таблиц логарифмов (например, с основанием 10) существенно упростило эту задачу. Теперь вычислителю достаточно было найти по таблицам десятичные логарифмы чисел b и c, сложить их (на счётах) и получить логарифм произведения: lgb + lgc = lg(bc).

А затем по таблице логарифмов найти само произведение чисел b и c.

Недаром французский математик и астроном Лаплас сказал, что изобретение логарифмов удлинило жизнь вычислителей. Логарифмическая линейка (которой инженеры пользовались до 70-х годов двадцатого века) была не менее прогрессивным изобретением, чем современный калькулятор.

Но это еще не всё! Мы не занимались бы логарифмами, если бы они имели лишь историческую, «музейную» ценность. О неожиданных применениях логарифмов мы расскажем в следующей статье, посвящённой логарифмической функции.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Логарифмы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Степени и логарифмы

Давно хотели освежить в памяти тему логарифмов, чтобы сдать ЕГЭ по математике на высший балл? Тогда наша шпаргалка для вас. Мы собрали в ней:

  • Основные логарифмические тождества;
  • Свойства логарифмов;
  • Формулы переходов к новому основанию;
  • Десятичные логарифмы;
  • Натуральный логарифм;
  • Степени.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!

Редакция Без Сменки

Редакция Без Сменки

Вам также будет интересно

Кора больших полушарий

Это самый молодой отдел, и у человека он достигает максимального развития среди всех млекопитающих….

Форма и содержание

Судим книги по обложке.

💭 Я держу книгу в руках. Вижу: у нее твердая обложка, она темно-красная…

Категории крестьян

Тема, в которой ОЧЕНЬ часто путаются❗️

🤴 ГОСУДАРСТВЕННЫЕ КРЕСТЬЯНЕ:

👉🏻 Черносошные крестьяне…

Фотосинтез

Другими словами, световая энергия превращается в химическую. Для этого нам нужны:
1. Пигменты…


0 комментария

Авторизуйтесь, чтобы оставить комментарий.

18
Фев 2013

Категория: Справочные материалы

Логарифм. Определение. Свойства логарифмов

2013-02-18
2021-06-18


Логарифм числа b по основанию a определяется как показатель степени, в которую нужно возвести основание a, чтобы получить число b.

Обозначение log_a b читается как логарифм b по основанию a.

Например, log_28=3, так как 2^3=8  (2 – основание степени, 3 – показатель степени)


ЛОГАРИФМЫ

;Large{log_{a}b=cLeftrightarrow a^{c}=b;}; 

ОСНОВНОЕ ТОЖДЕСТВО  

;Large{a^{log_{a}b;}=b};

СВОЙСТВА 

log_{a}a=1,   log_{a}1=0

log_ax+log_ay=log_axy

 log_ax-log_ay=log_afrac{x}{y}

 log_{a} x^{n}=n:log_{a}x  

log_{{a}^{p}}x=frac{1}{p}log_{a}x

 log_abcdot log_bc=log_ac  


Свойства, тождество, определение выполняются при a>0,; aneq1,; c>0,; b>0,; bneq1,; x>0,; y>0


Чаще всего используют логарифмы

– с основанием e (натуральный логарифм), кратко –  log_ea=ln a;

– с основанием 10 (десятичный логарифм), кратко –  log_{10}a=lg a. 


Автор: egeMax |

комментариев 14
| Метки: Логарифмы, шпаргалки-таблицы

Свойства логарифмов (формулы) таблица шпаргалкаСвойства логарифмов таблица шпаргалка

Основный свойства и формулы логарифмов


Логарифм единицы

 1. loga1 = 0 ⇔ a>0, a≠1


Логарифм основания

2. logaa = 1 ⇔ a>0, a≠1


Логарифм произведения

3.  loga(b⋅c) = loga b + loga c ⇔ a>0, b>0, c>0,a≠1

${log _6}2 + {log _6}3 ={log _6}(2⋅3) ={log _6}6=1$


Логарифм частного

4. ${text{lo}}{{text{g}}_a}frac{b}{c} = {log _a}b — {log _a}c$ ⇔ a>0, b>0, c>0,a≠1

${log _2}frac{2}{5} = {log _2}2 — {log _2}5 = 1 — {log _2}5$


Логарифм степени

5. logabn = n⋅loga b ⇔ a>0, b>0, a≠1

${text{3lo}}{{text{g}}_8}4 = {log _8}{4^3} = {log _8}64 = 2$


Формула перехода от одного основания логарифма к другому

6. ${text{lo}}{{text{g}}_a}b = frac{{{{log }_c}b}}{{{{log }_c}a}}$

${text{lo}}{{text{g}}_{text{4}}}3 = frac{{{{log }_3}3}}{{{{log }_3}4}} = frac{1}{{{{log }_3}4}}$


7. ${text{lo}}{{text{g}}_a}b = frac{1}{{{{log }_b}a}}$ ⇔ a>0, b>0, a≠1, b≠1

${text{lo}}{{text{g}}_{125}}5 = frac{1}{{{{log }_5}125}} = frac{{text{1}}}{{text{3}}}$


Логарифм степени

8. ${text{lo}}{{text{g}}_{{a^n}}}b = frac{1}{n}{text{lo}}{{text{g}}_a}b$ ⇔ a>0, b>0, a≠1, n≠0

${text{lo}}{{text{g}}_{25}}5 = {log _{{5^2}}}5 = frac{{text{1}}}{{text{2}}}{log _5}5 = frac{1}{2}$


9. ${text{lo}}{{text{g}}_{{a^{frac{{text{n}}}{{text{m}}}}}}}b = frac{m}{n} cdot {text{lo}}{{text{g}}_a}b$   ⇔ a>0, b>0, a≠1

${text{lo}}{{text{g}}_{{{text{2}}^{frac{{text{3}}}{{text{4}}}}}}}2 = frac{4}{3}{log _2}2 = frac{4}{3}$


10. ${a^{{{log }_с}b}} = {b^{{{log }_c}a}}$ ⇔ a>0, b>0, c>0, a≠1, b≠1, c≠1

${8^{{{log }_2}5}} = {5^{{{log }_2}8}} = {{text{5}}^{text{3}}} = {text{125}}$


Основное логарифмическое тождество (подробно см. здесь.)

11. aloga b = b ⇔ a>0, b>0, a≠1


Дополнительные свойства логарифма:

$log_a⁡x^{2m}=2m log_a⁡|x|,x≠0,m∈N$
$log_a⁡x=log_{a^n}x^n, x>0,n∈R,a≠1,a>0$
$log_{a^k} x^m=frac{m}{k}log_a⁡x, x>0,m∈R,k∈R,k≠0,a≠1,a>0$

Что такое логарифм?

Нагляднее всего понять это с помощью графического решения уравнений. Начертим график

и с его помощью решим уравнения:

График функции №1

Отлично! А теперь решим уравнение

.

И в этом случае невозможно назвать точное значение, то есть мы понимаем, что корень больше одного и меньше двух, но более точных данных нет.

График функции №2

Вот такой корень и задается с помощью логарифма, а именно

(читается как «логарифм пяти по основанию три» или «логарифм по основанию три от пяти»).

Мы определили смысл — теперь перейдем к общему определению логарифма.

Логарифмом числа b по основанию a называют показатель степени с основанием a, равной b. То есть, попросту говоря, логарифм — это степень, в которую нужно возвести a для получения b. Однако у логарифма есть условия или ограничения, что основание а больше нуля и не равно единице, а также показатель b больше нуля.

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Как решать примеры с логарифмами?

Рассмотрим пример, как решить логарифм:

Задаем вопрос: в какую степень нужно возвести 7, чтобы получить 49?

Ответ: во вторую степень. Значит,

.

Какие бывают виды логарифмов?

Логарифм по основанию 10 называется десятичным логарифмом и обозначается как

. Пример десятичного логарифма:

.

Логарифм по основанию e называется натуральным логарифмом и обозначается как

. Пример натурального логарифма:

.

Свойства и формулы логарифмов

  1. Эта формула называется основным логарифмическим тождеством.

    Пример:

    .

  2. Пример:

    .

  3. Пример:

    .

  4. Логарифм степени находится по формуле:

    .

    Видно, что показатель степени выносим перед логарифмом.

    Пример:

    .

  5. Показатель степени основания также выносим перед логарифмом, но в виде обратного числа, то есть, например, вместо 5 будет

    .

    Пример:

    .

  6. Если нужно перейти к другому основанию, то можно сделать это по формуле:

    . Свойство называется формулой перехода к новому основанию.

  7. А частным случаем предыдущей формулы является формула, которая позволяет менять местами основание и аргумент логарифма:

    .

Конечно, это не все свойства логарифмов, а только самые главные. Комбинируя свойства выше, можно получать все новые и новые формулы для логарифмов. Например, соединив 4-ю и 5-ю формулы, получим

. Но запоминать ее нет смысла, важно знать лишь базовые свойства логарифмов.

Применение логарифмических свойств в примерах

Пример 1

Найдите значение выражения

, если

.

Если видите частное в показателе логарифма, то распишите по 3-й формуле:

.

Решение

У каждого логарифма в показателе стоит степень, значит, поможет 4-я формула:

.

Первый логарифм можно вычислить по определению. И обратите внимание на второй логарифм: у него в основании стоит а, а в условии задачи дан логарифм с основанием b, значит, нужно а как-то заменить на b. Возможно ли это? Конечно, 7-я формула в помощь!

.

Подставьте числовое значение из условия, и все готово:

.

Отличный пример! Мы использовали практически все свойства логарифмов. А теперь попрактикуйтесь еще, но помните, что задача с подвохом!

Пример 2

Вычислите:

.

Получился ответ 27? Если да, то поздравляю: вы попались на удочку самых популярных ошибок! Какое бы задание вам ни встретилось, действия с логарифмами нужно производить только по определениям и правилам. В примере вы видите деление двух логарифмов. А есть ли какая-то формула, в которой записано деление двух логарифмов?

Конечно, это формула перехода к новому основанию, которую мы привели в пункте 6 выше. Применим ее к этому случаю и вычислим логарифм по определению, задав вопрос: в какую степень нужно возвести основание, чтобы получился показатель?

.

И получается ответ 4, а не 27.

Практическое применение логарифмов

Помните, выше мы говорили, что логарифм объединяет задания на ЕГЭ, галактики и рога горных козлов? И если с баллами на ЕГЭ все понятно, то про галактики и рога — интереснее.

Все дело в том, что существует логарифмическая спираль, которая задается по формуле:

. По этой логарифмической спирали растут рога горных козлов, закручены многие галактики (и даже та, в которой мы живем), а также раковины некоторых морских животных, усики растений, ураганы, смерчи и многое другое.

Галактика закручена по логарифмической спирали

Как видите, логарифмы имеют большое значение для нашей жизни — не только баллы на ЕГЭ!

Вопросы для самопроверки

Чтобы информация точно усвоилась, вспомните:

  1. Что такое логарифм?

  2. Какие ограничения есть у логарифма?

  3. Какие логарифмические свойства вы знаете?

  4. Какие бывают способы преобразования выражений с логарифмом?

  5. В чем практическое применение логарифмов?

На курсах по математике в онлайн-школе Skysmart мы всегда показываем, зачем нужны математические правила и формулы в реальной жизни — ведь так учиться гораздо интереснее! И подтянуть знания перед ЕГЭ тоже поможем: приходите на бесплатный вводный урок и все увидите сами.

Понравилась статья? Поделить с друзьями:
  • Шпоры для экзаменов 9 класс беларусь
  • Шпора по эволюции егэ биология
  • Шпора по тригонометрии на егэ
  • Шпоры для экзамена по физике
  • Шпора по стереометрии егэ