Шпоры по биологии егэ по анатомии

ЕГЭ по биологии

Шпаргалка — краткая теория по биологии для подготовки к ЕГЭ для распечатывания.

→ скачать шпаргалку

План

Ботаника

Растительная клетка, ее строение
Корень
Побег. Лист. Стебель
Цветок — видоизмененный побег
Размножение растений
Опыление. Оплодотворение
Строение семян. Прорастание и распространение
Развитие растительного мира
Водоросли
Бактерии
Лишайники
Мхи
Папоротники
Хвощи и плауны
Отдел Голосеменные
Отдел Покрытосеменные, или цветковые растения
Цветковые растения. Класс однодольные
Цветковые растения. Класс двудольные
Царство Грибы

Зоология

Общие сведения о животных. Одноклеточные
Многоклеточные животные. Тип Кишечнополостные
Тип Плоские черви
Тип Круглые черви
Тип Кольчатые черви
Тип Моллюски
Тип Членистоногие
Класс Насекомые
Тип Хордовые
Надкласс Рыбы
Класс Земноводные (Амфибии)
Класс Пресмыкающиеся (Рептилии или Гады)
Класс Птицы (Пернатые)
Класс Млекопитающие (Звери)
Эволюция животного мира

Анатомия и физиология человека

Общий обзор организма человека
Опорно-двигательная система человека
Ткани, их строение и функции
Мышцы. Их строение и функции
Внутренняя среда организма
Иммунитет
Кровообращение. Лимфообращение
Строение сердца
Дыхание
Газообмен в легких и тканях
Пищеварение
Размножение человека
Выделение
Кожа
Железы внутренней секреции
Нервная система человека
Органы чувств (Анализаторы)
Высшая нервная деятельность
Общие биологические закономерности
Основные положения клеточной теории, ее значение
Химический состав клеток
Обмен веществ и превращение энергии в клетке
Фотосинтез
Синтез белка
Вирусы, их строение и функционирование
Деление клеток — основа размножения и роста организмов
Мейоз
Половое и бесполое размножение организмов
Эмбриональное развитие животных

Общая биология

Основы генетики. Законы наследственности
Половые хромосомы и аутосомы. Генотип
Изменчивость, ее формы и значение
Приспособленность организмов к среде обитания,ее причины
Генетика и теория эволюции
Додарвиновский период в развитии биологии
Эволюционное учение Дарвина
Антропогенез
Основы селекции
Основы экологии. Биогеоценоз
Агроценоз
Учение о биосфере

Связанные страницы:

Полезные картинки по системам органов человека

Мы подготовили для вас удобную шпаргалку для подготовки к ЕГЭ по биологии: разбираем систему органов человека.

• эндокринная система;
• сердечно-сосудистая система (ССС);
• выделительная система;
• нервная система (НС);
• пищеварительная система;
• опорно-двигательная система;
• дыхательная система.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!

Редакция Без Сменки

Редакция Без Сменки

Вам также будет интересно

ПРАВИЛА ЕГЭ

 

1) 🚩 Анализируй прочитанный текст, а не просто его пересказывай! Это первое правило ЕГЭ…

Потребности человека

Основная классификация потребностей:
🔸 Биологические потребности
Воспроизводство рода, питание,…

Алкины

Подготовили шпаргалки по алкинам для ЕГЭ по химии:

строение алкинов;
изомерия алкинов;

Окраска пламени

Многие металлы и их соединения окрашивают пламя в определённый, характерный для данного металла,…


0 комментария

Авторизуйтесь, чтобы оставить комментарий.

09.09.2012

Подборка шпаргалок по БИОЛОГИИ.

Обновлено: 01.11.2022

Полный набор теоретического материала для подготовки к ЕГЭ в 2023 году. Таблицы в кратком виде, схемы, теория по задания. Всё, что необходимо для самостоятельной работы. Эти шпаргалки помогут написать биологию на 100 баллов.

  • Тренировочные варианты ЕГЭ по биологии

Подборка шпаргалок содержит

  • Биология в схемах и таблицах
  • Весь курс биологии в таблицах
  • Шпаргалки по генетике, ДНК, митоз, мейоз и клеточная теория
  • Теоретические конспекты по биологии
  • Все термины по биологии
  • Книжка-шпаргалка по биологии

Для чтения шпаргалок необходимы бесплатные программы: WinDJView и Adobe Reader

СКАЧАТЬ

https://down.ctege.info/ege/obshee/shpory/bio-ege-shpora.zip

Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
РАЗДЕЛ III. БИОЛОГИЯ ЧЕЛОВЕКА. 12. АНАТОМИЯ, ФИЗИОЛОГИЯ И ГИГИЕНА ЧЕЛОВЕКА (Часть 1): параграфы 12.1 — 12.8.

ВСЕ РАЗДЕЛЫ СПРАВОЧНИКА

12.1. ТКАНИ, ОРГАНЫ, РЕГУЛЯЦИЯ ЖИЗНЕДЕЯТЕЛЬНОСТИ

Изучением организма человека и его здоровья занимаются различные биологические науки (табл. 12.1). В развитие этих наук внесли вклад Н.И. Пирогов, И. М. Сеченов, И. П. Павлов, С.П. Боткин, В. М. Бехтерев и др. Эти и другие биологические науки являются теоретической основой медицины. Здоровье — богатство человека и общества.

Таблица 12.1. Науки о человеке и его здоровье

Таблица 12.1. Науки о человеке и его здоровье

12.1.1. ТКАНИ

Человек представляет собой сложную саморегулирующуюся и самообновляющуюся систему клеток и неклеточных структур, которые в процессе развития образуют ткани, органы и системы органов, объединённые клеточными, гуморальными, нервными механизмами регуляции в целостный организм.

Ткань — совокупность клеток, сходных по строению, функциям и происхождению, а также связанное с ними межклеточное вещество. У человека различают 4 основных вида (группы) тканей: эпителиальную, соединительную, мышечную и нервную (табл. 12.2).

Эпителиальные ткани покрывают поверхность тела, выстилают изнутри полые органы и стенки полостей тела, образуют железы. Эпителиальные ткани содержат мало межклеточного вещества и не имеют сосудов. Различают однослойный, многослойный и железистый эпителии.

Однослойный эпителий в зависимости от формы клеток и других особенностей строения может быть плоским (серозные оболочки), кубическим (почечные канальцы), цилиндрическим (эпителий кишечника), многорядным мерцательным, имеющим реснички (воздухоносные пути).

Многослойный эпителий бывает ороговевающим (эпидермис кожи), неороговевающим (роговица глаза) и переходным (мочевой пузырь).

Железистый эпителий образует железы (поджелудочная железа, печень, слюнные и потовые железы и др.).

Эпителиальные ткани выполняют следующие функции: защитную, секреторную, выделительную, обмена веществ между организмом и внешней средой.

Соединительные ткани имеют хорошо развитое межклеточное вещество. Различают несколько видов соединительных тканей.

Рыхлая волокнистая соединительная ткань представлена волокнами, расположенными рыхло и лежащими в разных направлениях. Сопровождает сосуды, нервы, образует строму органов, формируя их мягкий скелет.

Плотная волокнистая соединительная ткань образует сетчатый слой кожи, формирует сухожилия мышц, связки, перепонки, фасции, голосовые связки, часть оболочек органов, эластические мембраны сосудов.

Жировая ткань расположена в подкожном жировом слое, сальнике, брыжейке кишечника, в жировой капсуле почек.

Хрящевая ткань состоит из клеток и плотного межклеточного вещества, состоящего из аморфного вещества и волокон.

Костная ткань включает клетки и межклеточное вещество, имеющее форму пластинок, пропитанных минеральными солями. Совместно с хрящевой тканью придаёт прочность позвоночнику и другим частям скелета.

Ретикулярная ткань образует кроветворные органы (красный костный мозг, лимфатические узлы, селезёнку).

Таблица 12.2. Ткани человека

БИОЛОГИЯ ЧЕЛОВЕКА. Часть 1. Ткани человека

Кровь и лимфа имеют межклеточное вещество жидкой консистенции, где во взвешенном состоянии находятся клеточные элементы.

Соединительные ткани выполняют следующие функции: трофическую (связанную с участием клеток в обмене веществ), защитную (фагоцитоз, выработка иммунных тел), механическую (образуют строму органов, фасции, связки, скелет), пластическую (участвуют в процессах регенерации, заживлении ран), гомеостатическую (обеспечивают поддержание постоянства внутренней среды организма).

Мышечные ткани обладают свойствами сократимости и возбудимости/ и обеспечивают двигательные процессы в организме. Клетки мышечных тканей в цитоплазме имеют микронити, способные к сокращению. У человека имеется 3 вида мышечной ткани: поперечно-полосатая (скелетная), гладкая и сердечная. Каждому виду ткани свойственен свой тип мышечных волокон.

Скелетная (поперечно-полосатая) мышечная ткань образует скелетные мышцы, мышцы языка, мягкого неба, глотки, верхней части пищевода, гортани и др. Она представлена крупными многоядерными клетками длиной до 10—12 см, называемыми мышечными волокнами. В цитоплазме этих клеток содержится сократительный аппарат в виде миофибрилл. Миофибриллы содержат множество волоконец — миофиламентов. Более тонкие миофиламенты состоят из белка актина, более толстые — из белка миозина. При сокращении мышечного волокна нити актина скользят между нитями миозина, что приводит к укорочению волокна. Для этого процесса необходимы ионы Са2+ и энергия АТФ.

Гладкая мышечная ткань входит в состав стенок внутренних органов и кровеносных сосудов. Её клетки небольшие, одноядерные, имеют веретенообразную форму. В цитоплазме присутствуют миофибриллы, способные к сокращению.

Сердечная мышечная ткань входит в состав сердца. Сердечная мышца образована поперечно-полосатой мышечной тканью особого строения. В ней соседние мышечные волокна связаны между собой цитоплазматическими мостиками. Межклеточные соединения не препятствуют проведению возбуждения, благодаря чему сердечная мышца способна быстро сокращаться. В нервных клетках и скелетных мышцах каждая клетка возбуждается изолированно.

Существуют функциональные различия между гладкой и поперечно-полосатой мышечной тканью. Гладкие мышцы сокращаются медленно, непроизвольно, мало утомляются. Поперечно-полосатые мышцы сокращаются быстро, произвольно, быстро утомляются.

Нервная ткань образована нервными клетками (нейронами) и нейроглией. Нейроны (рис. 12.1) состоят из тела и отростков: одного длинного неветвящегося аксона (проводит нервный импульс от тела клетки) и коротких ветвящихся дендритов (проводят нервный импульс к телу клетки). Аксоны покрыты светлой миелиновой оболочкой и образуют белое вещество. Тела нейронов и дендриты образуют серое вещество.

Строение нейрона

Нейроны делятся на чувствительные, двигательные и вставочные. Чувствительные нейроны передают возбуждение от органов чувств в спинной и головной мозг. Двигательные (исполнительные) передают возбуждение от головного и спинного мозга к мышцам и внутренним органам. Связь между ними осуществляют вставочные нейроны, располагающиеся в спинном и головном мозге.

Нервные отростки формируют нервные волокна. Пучки нервных волокон образуют нервы. Нервы делятся на чувствительные, двигательные и смешанные. Дендриты чувствительных нейронов образуют чувствительные нервы, а аксоны двигательных нейронов — двигательные нервы. Однако большинство нервов являются смешанными.

12.1.2. Органы и системы органов

Орган — часть организма, имеющая определённую форму, строение и место и выполняющая одну или несколько функций. Каждый орган образован несколькими тканями, но одна из них всегда преобладает и определяет его главную функцию. В каждом органе всегда есть нервная и соединительная ткани (нервы, кровеносные и лимфатические сосуды). Внутренние органы — органы, располагающиеся в полостях тела.

Система органов — совокупность органов, совместно выполняющих определённые функции. В организме человека различают следующие системы органов (табл. 12.3): опорно-двигательную, пищеварительную, дыхательную, выделительную, кровеносную, лимфатическую, нервную, органов чувств, желёз внутренней секреции, половую. Функциональная система — органы и системы органов, временно объединённые для достижения какого-либо результата. Например, при беге задействованы опорно-двигательная, дыхательная, кровеносная и др. системы.

12.1.3. Нервная и гуморальная регуляция деятельности организма

Организм функционирует как единое целое. Существует два способа регуляции деятельности организма: нервная и гуморальная.

Гуморальная (жидкостная) регуляция осуществляется с помощью химических веществ (гормонов, медиаторов, ионов, продуктов обмена) через жидкие среды организма (кровь, лимфу, межклеточную жидкость). Гуморальная регуляция осуществляется с помощью биологически активных веществ. Биологически активные вещества — химические вещества, очень малые концентрации которых способны оказывать значительное физиологическое действие.

Железы — органы, вырабатывающие биологически активные вещества, с помощью которых осуществляется гуморальная регуляция. Их делят на две группы: внешней (экзокринные) и внутренней (эндокринные) секреции. Экзокринные железы имеют выводные протоки, через которые выделяют свой секрет на поверхность слизистых оболочек или кожи (слёзные, слюнные железы, железы желудка, кишечника, печень, молочные, сальные, потовые и др.). Эндокринные железы не имеют выводных протоков и выделяют свой секрет (гормоны) в кровь и лимфу (гипофиз, щитовидная, паращитовидные железы, надпочечники, эпифиз, вилочковая железа). Кроме того, существуют железы смешанной секреции, осуществляющие и внешнесекреторную, и внутрисекреторную функции (половые и поджелудочная).

Таблица 12.3. Системы органов человека

Таблица 12.3. Системы органов человека

Нервная регуляция осуществляется при помощи нервных импульсов по мембранам нервных клеток. Это эволюционно более поздний способ регуляции. Он является более быстрым и более точным.

В организме механизмы нервной и гуморальной регуляции тесно взаимодействуют между собой и осуществляются одновременно. Они дополняют друг друга и оказывают взаимное влияние. Поэтому говорят о нейрогуморальной регуляции организма. Например, снижение уровня глюкозы в крови вызывает возбуждение симпатической нервной системы. Это стимулирует выделение надпочечниками адреналина, который с током крови поступает в печень, вызывая расщепление там гликогена до глюкозы. Глюкоза поступает в кровь, содержание её в крови нормализуется.

Особенностью организма является способность к саморегуляции. Саморегуляция — поддержание всех параметров жизнедеятельности организма (кровяного давления, температуры тела, содержания сахара в крови и т.д.) на относительно постоянном уровне. Нейро-гуморальная регуляция осуществляет взаимосвязь и согласованную работу всех систем органов. Поэтому организм функционирует как единое целое.

12.2. СКЕЛЕТ

Опорно-двигательная система образована костями, мышцами, сухожилиями и связками (табл. 12.4). Её основные функции — опорная и защитная. Скелет и его соединения являются пассивной частью аппарата движения, а прикреплённые к костям скелетные мышцы — активной.

Таблица 12.4. Части опорно-двигательной системы

Таблица 12.4. Части опорно-двигательной системы

12.2.1. Строение костей

Кости скелета образованы в основном костной тканью (разновидность соединительной ткани). Она на 2/3 состоит из твёрдого и плотного межклеточного вещества. Костные клетки (остеоциты) сообщаются между собой через «канальца», заполненные межклеточной жидкостью. Костная ткань снабжена нервами и кровеносными сосудами. В состав костной ткани входят органические вещества, которые придают эластичность и упругость, и неорганические, которые придают твёрдость (табл. 12.5). Их сочетание обеспечивает прочность. С возрастом количество неорганических веществ в костях увеличивается, и они становятся более хрупкими.

Таблица 12.5. Органические и неорганические вещества костей

Таблица 12.5. Органические и неорганические вещества костей

Рассмотрим строение длинной трубчатой кости (рис. 12.2, табл. 12.6). Рост в толщину осуществляется делением клеток надкостницы, в длину — делением клеток хрящевой ткани, покрывающей концы костей. Рост костей регулируется гормоном роста, выделяемым гипофизом. У взрослого организма происходит лишь замена костного вещества.

Таблица 12.6. Строение длинной трубчатой кости

Таблица 12.6. Строение длинной трубчатой кости

БИОЛОГИЯ ЧЕЛОВЕКА. Часть 1

Скелет человеческого зародыша состоит из одних хрящей, которые постепенно заменяются костной тканью. Процесс окостенения скелета и роста костей заканчивается к 22—25 годам. Выделяют четыре группы костей (табл. 12.7).

Таблица 12.7. Классификация костей

Таблица 12.7. Классификация костей

12.2.2. Соединения костей

Соединения костей обеспечивают либо подвижность, либо устойчивость частей скелета. В зависимости от этого соединения костей различают типы соединения костей (рис. 12.3, табл. 12.8).

Таблица 12.8. Классификация соединения костей

Таблица 12.8. Классификация соединения костей

Сустав состоит из одной кости с суставной впадиной и другой кости с головкой (суставные поверхности костей покрыты хрящом), прочных связок (обеспечивают прочность соединения костей), суставной сумки (в которой имеет место отрицательное давление, что усиливает сближение суставных поверхностей) и суставной жидкости (для уменьшения трения). Полусуставы имеют хрящевые прокладки между костями.

БИОЛОГИЯ ЧЕЛОВЕКА. Часть 1

12.2.3. Отделы скелета

Скелет человека (рис. 12.4, табл. 12.9) состоит из скелета головы (мозговой и лицевой отделы), скелета туловища (позвоночный столб и грудная клетка), скелета верхних и нижних конечностей (скелет поясов и скелет свободных верхних и нижних конечностей). Всего около 220 костей.

Таблица 12.9. Скелет человека

Таблица 12.9. Скелет человека

Скелет головы (череп) включает 23 кости и состоит из мозгового и лицевого отделов (рис. 12.5).

БИОЛОГИЯ ЧЕЛОВЕКА. Часть 1

Основные кости черепа следующие. В состав мозгового отдела входят парные кости — теменные и височные, непарные — лобная, затылочная. В состав лицевого отдела входят неподвижная верхнечелюстная, подвижная нижнечелюстная, носовые и скуловые кости. На челюстных костях находятся зубы. Для всех костей черепа, кроме нижнечелюстной, характерно непрерывное соединение друг с другом (межкостные швы).

БИОЛОГИЯ ЧЕЛОВЕКА. Часть 1

Скелет туловища состоит из позвоночника и грудной клетки. Позвоночник состоит из 33-34 позвонков, каждый из которых имеет тело, дугу и несколько отростков. Между позвонками расположены прослойки хрящевой ткани, обеспечивающие гибкость. Отделы позвоночника; шейный (7 позвонков), грудной (12 позвонков), поясничный (5 позвонков), крестцовый (5 позвонков), копчиковый (4—5 позвонков). Изгибы позвоночника (шейный, грудной, поясничный и крестцовый) придают ему упругость. Два из них (шейный и поясничный), направленные выпуклостью вперёд, — лордозы, и два (грудной и крестцовый), направленные выпуклостью назад, — кифозы. Дети рождаются на свет с почти прямым позвоночником. Развитие шейного изгиба связано с появлением у ребенка способности держать голову, грудного — с сидением, а поясничного и крестцового — со стоянием и ходьбой. Благодаря изгибам ослабляется сотрясение головы и туловища при ходьбе, беге, прыжках, обеспечивается сохранение равновесия. Грудная клетка образована 12 парами рёбер и грудиной. Из рёбер 7 пар — истинные рёбра (соединены с грудиной), 3 пары — ложные (присоединены к хрящам других рёбер), 2 пары — плавающие (свободно оканчиваются в мягких тканях).

Скелет верхних конечностей состоит из скелета плечевого пояса (лопатки и ключицы) и скелета свободной верхней конечности: плечо (плечевая кость), предплечье (локтевая и лучевая кости) и кисть (кости запястья, пясти, фаланги).

Скелет нижних конечностей состоит из пояса нижних конечностей (две тазовые кости и крестец) и скелета свободной нижней конечности: бедро (бедренная кость), голень (большая и малая берцовые кости) и стопа (кости предплюсны, плюсны, фаланг).

Особенности скелета, связанные с прямохождением и трудовой деятельностью. Позвоночник имеет изгибы, которые пружинят. Грудная клетка расширена в стороны. Пояс нижних конечностей широк и имеет вид чаши, он служит опорой для внутренних органов брюшной полости. Кости нижних конечностей толще и прочнее костей рук, так как несут всю тяжесть тела. Стопа сводчатая, пружинит. Рука — орган труда: кости пальцев подвижны, большой палец напротив остальных. Мозговой отдел черепа преобладает над лицевым.

12.2.4. Первая помощь при ушибах, растяжениях, вывихах, переломах

При ушибах, растяжениях, вывихах и переломах пострадавшим необходимо оказывать первую помощь (табл. 12.10).

Таблица 12.10. Первая помощь при ушибах, растяжениях, вывихах, переломах

Таблица 12.10. Первая помощь при ушибах, растяжениях, вывихах, переломах

12.3. МЫШЦЫ

12.3.1. Строение мышц

Скелетные мышцы выполняют следующие функции: перемещение тела в пространстве, перемещение частей тела относительно друг друга, поддержание позы, образование грудной и брюшной полостей, дыхательные движения, жевание и глотание, мимика, артикуляция звуков и др.

Скелетные мышцы образованы поперечно-полосатыми мышечными волокнами, которые осуществляют их сокращение. Мышечные волокна собраны в пучки, между которыми находятся прослойки из соединительной ткани, выполняющие опорную функцию. В них имеются кровеносные сосуды и нервы. Отдельные мышцы и группы мышц окружены плотными и прочными футлярами из соединительной ткани — фасциями. Мышцы прикрепляются к костям с помощью сухожилий. В зависимости от количества начальных частей (головок) и средних частей (брюшек) мышцы могут быть двух-, трёх-и четырёхглавыми, двубрюшными и т. д. Некоторые мышцы не связаны с костями (мышцы лица, глаз, рта). По форме мышцы делятся на длинные, короткие и широкие.

Таблица 12.11. Мышцы человека

Таблица 12.11. Мышцы человека

Скелетная мускулатура составляет около 40 % массы тела человека и насчитывает около 400 скелетных мышц. По расположению выделяют мышцы головы, шеи, туловища, верхних и нижних конечностей (рис. 12.6, табл. 12.11):

  • мышцы головы, жевательные (жевательная мышца, височная мышца) и мимические (мышца, сморщивающая бровь, щёчная мышца, мышца смеха);
  • мышцы шеи (грудинно-ключично-сосцевидная);
  • мышцы туловища, мышцы спины (поверхностные — трапециевидная, широчайшая; глубокие — мышца, выпрямляющая позвоночник); мышцы груди (поверхностные — большая и малые грудные мышцы; глубокие — межрёберные мышцы); мышцы живота (прямая мышца живота, наружная и внутренняя косые мышцы живота);
  • мышцы конечностей (дельтовидная, трёхглавая мышца плеча, портняжная мышца, четырёхглавая мышца бедра).

БИОЛОГИЯ ЧЕЛОВЕКА. Часть 1

12.3.2. Работа мышц

По функциям мышцы делятся на сгибатели и разгибатели, приводящие и отводящие, синергисты и антагонисты и др.

Скелетные мышцы прикрепляются с двух сторон от сустава и при своём сокращении производят в нём движение. Сгибатели (флексоры) обычно находятся спереди, а разгибатели (экстензоры) — сзади от сустава (за исключением коленного и голеностопного суставов).

Отводящие мышцы (абдукторы) располагаются снаружи от сустава, приводящие (аддукторы) — кнутри от сустава. Вращение производят мышцы, расположенные косо или поперечно по отношению к вертикальной оси (пронаторы — вращающие внутрь, супинаторы — кнаружи).

Синергисты — мышцы, осуществляющие движение в суставе в одном направлении (плечевая и двуглавая мышцы плеча), антагонисты — мышцы, выполняющие противоположные функции (двуглавая и трёхглавая мышцы плеча).

Работа различных групп мышц происходит согласованно. Когда сгибатель сокращён — разгибатель расслаблен, и наоборот. Это происходит при чередовании процессов возбуждения и торможения в спинном мозге. С другой стороны, сгибатели и разгибатели могут быть одновременно расслаблены или сокращены. В координации движений основная роль принадлежит нервной системе.

При интенсивной мышечной нагрузке может наступать утомление. Утомление — временное понижение работоспособности клетки, органа или целого организма, возникающее в результате работы и исчезающее после отдыха. Утомление зависит от ритма сокращений и от нагрузки. Статическая работа мышц требует одновременного сокращения всех групп мышц и поэтому не может быть продолжительной. При динамической работе сокращаются поочерёдно различные группы мышц, что даёт возможность длительное время совершать работу.

В экспериментальных условиях утомление мышцы связано с накоплением в ней продуктов обмена (фосфорной, молочной кислот), влияющих на возбудимость клеточной мембраны, а также с истощением энергетических запасов. При длительной работе мышцы уменьшаются запасы гликогена в ней и, соответственно, нарушаются процессы синтеза АТФ, необходимого для осуществления сокращения. Установлено, что в естественных условиях процесс утомления затрагивает прежде всего центральную нервную систему, затем нервно-мышечный синапс и в последнюю очередь — мышцу.

Тренировка мышц увеличивает их объём, силу и выносливость. При тренировке мышц утолщаются мышечные волокна, возрастает количество гликогена в них, увеличивается коэффициент использования кислорода, ускоряются восстановительные процессы.

12.4. ПИЩЕВАРЕНИЕ

12.4.1. Питательные вещества и пищевые продукты

Питательные вещества — это белки, жиры, углеводы, минеральные соли, вода и витамины. Питательные вещества содержатся в пищевых продуктах растительного и животного происхождения. Они обеспечивают организм всеми необходимыми питательными веществами и энергией.

Вода, минеральные соли и витамины усваиваются организмом в неизменённом виде. Белки, жиры, углеводы, находящиеся в пище, прямо не могут быть усвоены организмом. Они разлагаются на более простые вещества.

Процесс механической и химической обработки пищи и превращение её в более простые и растворимые соединения, которые могут всасываться, переноситься кровью и лимфой и усваиваться организмом как пластический и энергетический материал, называется пищеварением.

12.4.2. Органы пищеварения

Пищеварительная система осуществляет процесс механической и химической обработки пищи, всасывание переработанных веществ и выведение наружу непереваренных и неусвоенных составных частей пищи.

В пищеварительной системе (рис. 12.7) различают пищеварительный канал и пищеварительные железы, открывающиеся в него своими выводными протоками. Пищеварительный канал состоит из ротовой полости, глотки, пищевода, желудка, тонкой кишки и толстой кишки. К пищеварительным железам относятся большие (три пары слюнных желёз, печень и поджелудочная железа) и множество малых желёз.

БИОЛОГИЯ ЧЕЛОВЕКА. Часть 1

Пищеварительный канал представляет собой сложно–изменённую трубку длиной 8—10 м и состоит из ротовой полости, глотки, пищевода, желудка, тонкой кишки и толстой кишки. Стенка пищеварительного канала имеет три слоя: 1) наружный слой образован соединительной тканью и выполняет защитную функцию; 2) средний слой в полости рта, в глотке, верхней трети пищевода и в сфинктере прямой кишки образован поперечно-полосатой мышечной тканью, а в остальных отделах — гладкой мышечной тканью. Мышечный слой обеспечивает подвижность органа и передвижение по нему пищевой кашицы; 3) внутренний (слизистый) слой состоит из эпителия и соединительнотканной пластинки. Производными эпителия являются большие и малые пищеварительные железы, вырабатывающие пищеварительные соки.

12.4.3. Пищеварение в ротовой полости

В ротовой полости находятся зубы и язык. В ротовую полость открываются протоки трёх пар крупных слюнных желёз и многих мелких.

Зубы измельчают пищу. Зуб состоит из коронки, шейки и одного или нескольких корней (рис. 12.8).

БИОЛОГИЯ ЧЕЛОВЕКА. Часть 1

Коронка зуба покрыта твёрдой эмалью (самая твёрдая ткань организма). Эмаль защищает зуб от стирания и проникновения микробов. Корни покрыты цементом. Основную часть коронки, шейки и корня составляет дентин. Эмаль, цемент и дентин — разновидности костной ткани. Внутри зуба имеется небольшая зубная полость, заполненная мягкой пульпой. Она образована соединительной тканью, пронизанной сосудами и нервами.

У взрослого человека 32 зуба: в каждой половине верхней и нижней челюсти 2 резца, 1 клык, 2 малых коренных и 3 больших коренных зуба. У новорождённых зубов нет. Молочные зубы появляются к 6-му месяцу и к 10—12 годам заменяются на постоянные. Зубы мудрости вырастают к 20—22 годам.

В ротовой полости всегда много микроорганизмов, способных привести к заболеваниям органов ротовой полости, в частности к разрушению зубов {кариесу). Очень важно содержать ротовую полость в чистоте — полоскать рот после еды, чистить зубы специальными пастами, в состав которых входят фтор и кальций.

Язык — подвижный мышечный орган, состоящий из поперечнополосатой мускулатуры, снабжённый многочисленными сосудами и нервами. Язык передвигает пищу в процессе жевания, участвует в смачивании её слюной и глотании, служит органом речи и вкуса. Слизистая языка имеет выросты — вкусовые сосочки, содержащие вкусовые, температурные, болевые и тактильные рецепторы.

Слюнные железы — крупные парные околоушные, поднижнечелюстные и подъязычные; а также большое количество мелких желёз. Они открываются протоками в ротовую полость и выделяют слюну. Отделение слюны регулируется гуморальным путём и нервной системой. Слюна может выделяться не только во время еды при раздражении рецепторов языка и слизистой оболочки рта, но и при виде вкусной пищи, ощущении её запаха и др.

Слюна состоит на 98,5—99 % из воды (1-1,5 % сухого остатка). Она содержит муцин (слизистое белковое вещество, помогающее формированию пищевого комка), лизоцим (бактерицидное вещество), ферменты амилазу .(расщепляет крахмал до мальтозы) и мальтазу (расщепляет мальтозу на две молекулы глюкозы). Слюна имеет щелочную реакцию, так как её ферменты активны в слабощелочной среде.

Пища находится в ротовой полости 15—20 с. Основные функции ротовой полости: апробация, измельчение и смачивание пищи. В ротовой полости пища подвергается механической и частично химической обработке с помощью зубов, языка и слюны. Здесь начинается расщепление углеводов ферментами, содержащимися в слюне, и может продолжаться во время продвижения пищевого комка по пищеводу и некоторое время в желудке.

Из ротовой полости пища попадает в глотку, а затем в пищевод. Глотка — мышечная трубка, расположенная впереди шейных позвонков. Глотка делится на три части: носоглотку, ротоглотку и гортанную часть. В ротовой части пересекаются дыхательные и пищеварительные пути.

Пищевод — мышечная трубка длиной 25—30 см. Верхняя треть пищевода образована поперечно-полосатой мышечной тканью, остальная часть — гладкой мышечной тканью. Пищевод проходит через отверстие в диафрагме в брюшную полость и здесь переходит в желудок. Функция пищевода — перемещение пищевого комка в желудок в результате сокращений мышечной оболочки.

12.4.4. Пищеварение в желудке

Желудок — мешковидная, расширенная часть пищеварительной трубки. Стенка его состоит из трёх слоёв, описанных выше: соединительнотканного, мышечного и слизистого. В желудке различают вход, дно, тело и выход. Ёмкость желудка составляет от одного до нескольких литров. В желудке пища задерживается на 4—11 часов и подвергается в основном химической обработке желудочным соком.

Желудочный сок вырабатывают железы слизистой оболочки желудка (в количестве 2,0—2,5 л/сут.). В состав желудочного сока входят слизь, соляная кислота и ферменты.

Слизь предохраняет слизистую желудка от механических и химических повреждений.

Соляная кислота (концентрация НСl — 0,5 %) благодаря кислой среде обладает бактерицидным действием; активирует пепсин, вызывает денатурацию и набухание белков, чем облегчает их расщепление пепсином.

Ферменты желудочного сока: пепсин (расщепляет белки до полипептидов), желатиназа (гидролизует желатин), липаза (расщепляет эмульгированные жиры молока на глицерин и жирные кислоты), химозин (створаживает молоко).

При длительном непоступлении пищи в желудок возникает ощущение голода. Следует различать понятия «голод» и «аппетит». Для устранения ощущения голода основное значение имеет количество поглощаемой пищи. Аппетит же характеризуется избирательным отношением к качеству пищи и зависит от множества психологических факторов.

Иногда в результате попадания недоброкачественной пищи или сильно раздражающих веществ происходит рвота. При этом содержимое верхних отделов кишечника возвращается в желудок и вместе с его содержимым выбрасывается через пищевод в полость рта благодаря антиперистальтике и сильным сокращениям диафрагмы и брюшных мышц.

12.4.5. Пищеварение в кишечнике

Кишечник состоит из тонкой кишки (включает двенадцатиперстную, тощую и подвздошную кишку) и толстой кишки (включает слепую кишку с червеобразным отростком, ободочную и прямую кишку).

Из желудка пищевая кашица отдельными порциями через сфинктер (круговая мышца) поступает в двенадцатиперстную кишку. Здесь пищевая кашица подвергается химическому действию сока поджелудочной железы, желчи и кишечного сока.

Наиболее крупные пищеварительные железы — поджелудочная железа и печень.

Поджелудочная железа расположена позади желудка на задней брюшной стенке. Железа состоит из экзокринной части, вырабатывающей панкреатический сок (поступает в двенадцатиперстную кишку по выводному протоку поджелудочной железы), и эндокринной части, секретирующей в кровь гормоны инсулин и глюкагон.

Сок поджелудочной железы (панкреатический сок) имеет щелочную реакцию и содержит ряд пищеварительных ферментов: трипсиноген (профермент, переходящий в двенадцатиперстной кишке под влиянием энтерокиназы кишечного сока в трипсин), трипсин (в щелочной среде расщепляет белки и полипептиды до аминокислот), амилаза, мальтаза и лактаза (расщепляют углеводы), липаза (в присутствии желчи расщепляет жиры на глицерин и жирные кислоты), нуклеазы (расщепляют нуклеиновые кислоты до нуклеотидов). Секреция панкреатического сока осуществляется в количестве 1,5-2 л/сут.

Печень расположена в брюшной полости под диафрагмой. В печени вырабатывается желчь, которая через желчный проток попадает в двенадцатиперстную кишку.

Желчь вырабатывается постоянно, поэтому вне периода пищеварения собирается в желчном пузыре. В составе желчи нет ферментов. Она имеет щелочную реакцию, содержит воду, желчные кислоты и желчные пигменты (билирубин и биливердин). Желчь обеспечивает щелочную реакцию тонкой кишки, способствует отделению сока поджелудочной железы, переводит в активное состояние ферменты поджелудочной железы, эмульгирует жиры, что облегчает их пищеварение, способствует всасыванию жирных кислот, усиливает перистальтику кишечника.

Помимо участия в пищеварении, печень обезвреживает ядовитые вещества, образующиеся в процессе метаболизма или поступившие извне. В клетках печени синтезируется гликоген.

Тонкая кишка — самая длинная часть пищеварительной трубки (5-7 м). Здесь пищевые вещества почти полностью перевариваются и продукты переваривания всасываются. Она разделяется на двенадцатиперстную, тощую и подвздошную.

Двенадцатиперстная кишка (длиной около 30 см) имеет форму подковы. В ней пищевая кашица подвергается переваривающему действию сока поджелудочной железы, желчи и сока кишечных желёз.

Кишечный сок вырабатывается железами слизистой оболочки тонкой кишки. Он содержит ферменты, завершающие процесс расщепления питательных веществ: пептидаза (расщепляет полипептиды до аминокислот), амилаза, мальтаза, инвертаза, лактаза (расщепляют углеводы), липаза (расщепляет жиры), энтерокиназа (переводит трипсиноген в трипсин).

В зависимости от локализации пищеварительного процесса в кишечнике различают полостное и пристеночное пищеварение. Полостное пищеварение происходит в полости кишечника под воздействием пищеварительных ферментов, выделяемых в составе пищеварительных соков. Пристеночное пищеварение осуществляется ферментами, фиксированными на клеточной мембране, на границе внеклеточной и внутриклеточной сред. Мембраны образуют огромное количество микроворсинок (до 3000 на клетке), на которых адсорбируется мощный слой пищеварительных ферментов. Маятникообразные движения кольцевых и продольных мышц способствуют перемешиванию пищевой кашицы, перистальтические волнообразные движения кольцевых мышц обеспечивают продвижение кашицы к толстой кишке.

Толстая кишка имеет длину 1,5-2 м, диаметр в среднем 4 см и включает три отдела: слепую кишку с червеобразным отростком, ободочную и прямую кишку. На границе подвздошной и слепой кишки имеется илеоцекальный клапан, выполняющий роль сфинктера, который регулирует движение содержимого тонкой кишки в толстую отдельными порциями и препятствует его обратному перемещению. Для толстой кишки, как и для тонкой, характерны перистальтические и маятникообразные движения. Железы толстой кишки вырабатывают небольшое количество сока, который не содержит ферментов, а имеет много слизи, необходимой для формирования кала.

В толстой кишке происходит всасывание воды, переваривание клетчатки, формирование каловых масс из непереварившейся пищи. В толстой кишке живут многочисленные бактерии. Ряд бактерий синтезирует витамины (К и группы В). Целлюлозоразрушающие бактерии расщепляют растительную клетчатку до глюкозы, уксусной кислоты и других продуктов. Глюкоза и кислоты всасываются в кровь. Газообразные продукты деятельности микробов (углекислый газ, метан) не всасываются и выделяются наружу. Бактерии гниения в толстом кишечнике разрушают невсосавшиеся продукты переваривания белков. При этом образуются ядовитые соединения, часть которых проникает в кровь и обезвреживается в печени. Пищевые остатки превращаются в каловые массы, скапливаются в прямой кишке, которая осуществляет вывод каловых масс через анальное отверстие.

12.4.6. Всасывание

Всасывание происходит почти во всех отделах пищеварительной системы. В ротовой полости всасывается глюкоза, в желудке — вода, соли, глюкоза, алкоголь, в тонкой кишке — вода, соли, глюкоза, аминокислоты, глицерин, жирные кислоты, в толстой кишке — вода, алкоголь, некоторые соли.

Основные процессы всасывания происходят в нижних отделах тонкой кишки (в тощей и подвздошной кишках). Здесь имеется множество выростов слизистой — ворсинок (рис. 12.9), которые увеличивают всасывающую поверхность. В ворсинке имеются мелкие капилляры, лимфатические сосуды, нервные волокна. Ворсинки покрыты однослойным эпителием, что облегчает всасывание. Всасывающиеся вещества поступают в цитоплазму клеток слизистой и затем в кровеносные и лимфатические сосуды, проходящие внутри ворсинок.

БИОЛОГИЯ ЧЕЛОВЕКА. Часть 1

Механизмы всасывания разных веществ различны: диффузия и фильтрация (некоторое количество воды, солей и небольших молекул органических веществ), осмос (вода), активный транспорт (натрий, глюкоза, аминокислоты). Всасыванию способствуют сокращения ворсинок, маятникообразные и перистальтические движения стенок кишечника.

Аминокислоты и глюкоза всасываются в кровь. Глицерин растворяется в воде и поступает в клетки эпителия. Жирные кислоты реагируют со щелочами, образуют соли, которые в присутствии желчных кислот растворяются в воде и также всасываются клетками эпителия. В эпителии ворсинок глицерин и соли жирных кислот взаимодействуют, образуя специфичные для человека жиры, которые поступают в лимфу.

Процесс всасывания регулируется нервной системой и гуморально (витамины группы В стимулируют всасывание углеводов, витамин А — всасывание жиров).

12.4.7. Пищеварительные ферменты

Процессы пищеварения идут под влиянием пищеварительных соков, которые вырабатываются пищеварительными железами. При этом белки расщепляются до аминокислот, жиры — до глицерина и жирных кислот, а сложные углеводы — до простых сахаров (глюкоза и др.). Основная роль в такой химической обработке пищи принадлежит содержащимся в пищеварительных соках ферментам. Ферменты — биологические катализаторы белковой природы, вырабатываемые самим организмом. Характерное свойство ферментов — их специфичность: каждый фермент действует на вещество или на группу веществ только определённого химического состава и строения, на определённый тип химической связи в молекуле.

Под влиянием ферментов нерастворимые и неспособные к всасыванию сложные вещества расщепляются на простые, растворимые и легко усваиваемые организмом. При пищеварении пища подвергается следующему ферментативному воздействию (табл. 12.12).

Таблица 12.12. Роль ферментов в пищеварении

Таблица 12.12. Роль ферментов в пищеварении

Обитающие в толстом кишечнике человека микроорганизмы также выделяют пищеварительные ферменты, способствующие перевариванию некоторых видов пищи. Например, кишечная палочка способствует перевариванию лактозы, лактобактерии превращают лактозу и другие углеводы в молочную кислоту.

Ферменты обладают высокой активностью: каждая молекула фермента в течение 2 с при 37 °С может привести к распаду около 300 молекул вещества. Ферменты чувствительны к температуре среды, в которой они действуют. У человека они наиболее активны при температуре 37—40 °С. Для действия фермента нужна определённая реакция среды. Например, пепсин активен в кислой среде, остальные перечисленные ферменты — в слабощелочной и щелочной средах.

12.4.8. Вклад И. П. Павлова в изучение пищеварения

Изучение физиологических основ пищеварения было проведено главным образом И.П. Павловым (и его учениками) благодаря разработанной им фистульной методике исследования. Суть этого метода состоит в создании путём операции искусственного соединения протока пищеварительной железы или полости пищеварительного органа с внешней средой. И. П. Павлов, проводя хирургические операции на животных, образовал у них постоянные фистулы. С помощью фистул ему удалось собирать чистые пищеварительные соки, без примеси пищи, измерять их количество и определять химический состав. Главное достоинство этого метода, предложенного И. П. Павловым, состоит в том, что процесс пищеварения изучается в естественных условиях существования организма, на здоровом животном, и деятельность органов пищеварения возбуждается естественными пищевыми раздражителями. Заслуги И.П. Павлова в изучении деятельности пищеварительных желёз получили международное признание — он был удостоен Нобелевской премии.

У человека для извлечения желудочного сока и содержимого двенадцатиперстной кишки используют резиновый зонд, который испытуемый заглатывает. Сведения о состоянии желудка и кишечника можно получить, просвечивая области их расположения рентгеновскими лучами, или методом эндоскопии (в полость желудка или кишечника вводится специальный прибор — эндоскоп, который снабжён оптическими и осветительными приборами, позволяющими осматривать полость пищеварительного канала и даже протоки желёз).

12.5. ОБМЕН ВЕЩЕСТВ

Обмен веществ (метаболизм) — совокупность всех химических реакций, протекающих в организме. Значение метаболизма состоит в создании необходимых организму веществ и обеспечении его энергией. Между организмом и внешней средой идёт постоянный обмен веществом и энергией. Вещества, поступающие с пищей, распадаются на более простые химические соединения, которые усваиваются организмом и служат пластическим материалом для его построения. При распаде различных компонентов пищи выделяется энергия, расходуемая для осуществления ряда функций. Конечные продукты распада выводятся из организма.

Выделяют две составные части метаболизма — ассимиляция и диссимиляция. Диссимиляция — совокупность реакций распада сложных веществ на более простые с выделением энергии. Ассимиляция — совокупность реакций синтеза сложных веществ из более простых с затратами энергии. В период роста организма ассимиляция преобладает над диссимиляцией. Во взрослом организме устанавливается относительное равновесие между ассимиляцией и диссимиляцией. В старческом возрасте ассимиляция отстаёт от диссимиляции.

12.5.1. Обмен белков

Аминокислоты белков подразделяют на заменимые и незаменимые. Заменимые аминокислоты могут синтезироваться в организме и допускают замену другими аминокислотами (серин, глицин, тирозин и др.). Незаменимые аминокислоты не могут быть синтезированы в организме (валин, лизин, триптофан и др.). Их отсутствие в составе пищи приводит к нарушению обмена веществ. Белки, содержащие все требующиеся организму аминокислоты в необходимых количествах, называют полноценными (в основном белки животного происхождения). Белки, в которых отсутствует или находится в недостаточном количестве та или иная незаменимая аминокислота, называют неполноценными (в основном белки растительного происхождения). Два или три неполноценных белка, дополняя друг друга, могут обеспечить сбалансированное питание человека. Суточная потребность человека в белках составляет около 80—150 г и зависит от интенсивности физической нагрузки. При избытке поступающих с пищей белков они превращаются в жиры и углеводы. В то же время ни жиры, ни углеводы не могут компенсировать нехватку в пище белков.

Поступившие в организм человека белки под действием пищеварительных ферментов расщепляются до аминокислот. Аминокислоты всасываются в кровь и доставляются клеткам тела, где из них синтезируются белки, свойственные человеческому организму. В то же время белки могут быть использованы в качестве источника энергии. При окислении 1 г белка выделяется 17,6 кДж. Однако организм использует белки как источник энергии только при истощении запаса углеводов и жиров. Конечные продукты распада белков — углекислый газ, вода, мочевина, мочевая кислота и др. — выводятся из организма с мочой и потом. Образующийся при распаде аминокислот аммиак превращается в печени в менее ядовитое вещество — мочевину.

В регуляции белкового обмена участвуют гормоны щитовидной железы (тироксин), гипофиза (соматотропный гормон) и коры надпочечников (гидрокортизон, кортикостерон).

12.5.2. Обмен углеводов

Поступившие в организм человека углеводы расщепляются до простых сахаров, часть которых откладывается в мышцах и печени в виде гликогена, а часть окисляется до воды и углекислого газа.

Углеводы — основной источник энергии в организме. При расщеплении 1 г углеводов выделяется 17,6 кДж энергии. Суточное потребление углеводов должно составлять 300—500 г в зависимости от физической нагрузки. При избытке в пище углеводы могут превращаться в жиры, а при недостатке они могут образовываться из белков и жиров. Сложные углеводы пищи расщепляются в пищеварительном тракте до моносахаридов, которые с током крови попадают в печень, где из них синтезируется гликоген. При нормальном сбалансированном питании 3—5% глюкозы превращается в гликоген, 25% — в жиры, 70% окисляется до углекислого газа и воды. В мышцах, так же как в печени, синтезируется гликоген. Его распад служит основным источником энергии мышечных сокращений.

Гормоны адреналин, глюкагон и адренокортикотропный гормон вызывают повышение расщепления гликогена, тогда как инсулин тормозит распад гликогена и способствует его синтезу из глюкозы в печени. Согласованное действие этих гормонов сохраняет определённый уровень глюкозы в крови.

12.5.3. Обмен жиров

Поступившие в организм человека жиры расщепляются до глицерина и жирных кислот. Конечными продуктами распада жиров, как и углеводов, являются углекислый газ и вода.

Жиры содержат наибольшие запасы энергии. При распаде 1 г выделяется 38,9 кДж энергии. Суточная потребность в жирах составляет 70—80 г. Избыточное употребление в пищу углеводов и белков приводит к отложению жира в организме. В норме у человека 25—30% углеводов пищи превращаются в жиры. Половина энергетических затрат печени, почек, находящихся в покое сердечной и скелетной мышц обеспечиваются за счёт окисления жирных кислот и глицерина. Из липидов строятся оболочки клеток, липиды входят в состав медиаторов и гормонов, образуют жировые отложения в подкожной клетчатке, сальнике и других тканях и по мере необходимости используются организмом.

В регуляции жирового обмена участвуют гормоны надпочечников’, гипофиза и щитовидной железы.

Процессы превращения жиров, углеводов и белков взаимосвязаны между собой. При распаде этих веществ образуются общие промежуточные продукты, из которых при определённых условиях могут образовываться либо аминокислоты, либо углеводы, либо жирные кислоты, или же эти общие метаболиты могут окисляться до углекислого газа и воды с выделением энергии.

12.5.4. Водно-солевой обмен

Вода составляет около 70% массы тела. Суточная потребность в воде для взрослого организма — 2,5–3 л. Воду, используемую организмом, разделяют на экзогенную и эндогенную. Экзогенная вода поступает в организм человека извне в виде питья (1500 мл) и в составе пищи (1000–1200 мл). Эндогенная вода образуется в организме при окислении белков, жиров и углеводов (500 мл). В зависимости от местонахождения в организме воду делят на внутриклеточную и внеклеточную. Внутриклеточная вода содержится в протоплазме клеток (72%). Внеклеточная вода входит в состав крови, лимфы, спинномозговой жидкости (28%). Выделяется вода из организма почками (1200–1500 мл), кожей (800 мл), лёгкими в виде водяного пара (500 мл), через кишечник с калом (100–150 мл).

В нормальном состоянии и в нормальных условиях организм взрослого человека поддерживает равновесие между потреблением воды и её выделением. Поступление воды контролируется потребностью в ней, что проявляется в чувстве жажды. Это чувство возникает при возбуждении питьевого центра в гипоталамусе.

Минеральные вещества. В сутки человеку необходимо не менее 8 г натрия, 4 г хлора, 3 г калия, 0,8 г кальция, 2 г фосфора, 15—20 мг железа и др. Натрий, калий и хлор необходимы для поддержания кислотно-щелочного равновесия. Калий участвует в обеспечении процессов возбудимости нервной и мышечной тканей. Фосфор входит в состав нуклеиновых кислот, АТФ, некоторых ферментов; в соединении с кальцием и магнием образует костный скелет. Железо необходимо для гемоглобина, миоглобина, а также ферментов, участвующих в окислительно-восстановительных реакциях. Большое значение имеют микроэлементы: йод входит в состав гормонов щитовидной железы; цинк — поджелудочной; фтор придаёт прочность эмали зубов; кобальт являемся компонентом витамина В|2; медь необходима для процесса кроветворения, синтеза гемоглобина, влияет на рост.

12.5.5. Витамины

Витамины — группа биологически активных органических соединений различной химической природы, поступающих в организм с пищей растительного и животного происхождения, необходимых для нормального протекания обмена веществ в организме. Витамины присутствуют в пище в ничтожно малых количествах, но играют очень важную роль в процессах обмена, так как входят в состав многих ферментов. Большинство витаминов не образуется (или образуется недостаточно) в организме человека. Недостаток того или иного витамина (гиповитаминоз) или его полное отсутствие (авитаминоз) приводят к нарушению в организме обмена веществ. К нарушению метаболизма приводит и избыток витаминов в организме (гипервитаминоз).

Авитаминоз и гиповитаминоз возникают при отсутствии витаминов или их предшественников в пище, при нарушении их всасывания, при подавлении антибиотиками микрофлоры кишечника, способной-синтезировать витамины.

При приготовлении пищи необходимо стремиться к сохранению в ней витаминов. Большая часть витаминов разрушается при термической обработке пищи. Витамин С разрушается при соприкосновении с воздухом.

Известно около 50 витаминов. Их делят на водорастворимые (B1, В2, В6, В12, РР, С и др.) и жирорастворимые (A, D, Е, К). В таблице 12.13 дана характеристика основных витаминов по важнейшим показателям.

Таблица 12.13. Характеристика важнейших витаминов

Таблица 12.13. Характеристика важнейших витаминов

12.6. ДЫХАНИЕ

Дыхание — совокупность процессов, обеспечивающих поступление кислорода, использование его в окислении органических веществ и удаление углекислого газа и некоторых других веществ.

Человек дышит, поглощая из атмосферного воздуха кислород и выделяя в него углекислый газ. Каждой клетке для жизнедеятельности нужна энергия. Источник этой энергии — распад и окисление органических веществ, входящих в состав клетки. Белки, жиры, углеводы, вступая в химические реакции с кислородом, окисляются («сгорают»). При этом происходит распад молекул и освобождается заключённая в них внутренняя энергия. Без кислорода невозможны обменные превращения веществ в организме.

Запасов кислорода в организме человека и животных нет. Его непрерывное поступление в организм обеспечивает система органов дыхания. Накопление значительного количества углекислого газа в результате обмена веществ вредно для организма. Удаление из организма СО2 также осуществляется органами дыхания.

Функция дыхательной системы — снабжение крови достаточным количеством кислорода и удаление из неё углекислого газа.

Различают три этапа дыхания: внешнее (лёгочное) дыхание — обмен газов в лёгких между организмом и средой; транспорт газов кровью от лёгких к тканям организма; тканевое дыхание — газообмен в тканях и биологическое окисление в митохондриях.

12.6.1. Внешнее дыхание

Внешнее дыхание обеспечивается системой органов дыхания (рис. 12.10), которая состоит из лёгких (где совершается газообмен между вдыхаемым воздухом и кровью) и дыхательных (воздухоносных) путей (по которым проходит вдыхаемый и выдыхаемый воздух).

Воздухоносные (дыхательные) пути включают носовую полость, носоглотку, гортань, трахею и бронхи. Дыхательные пути делятся на верхние (носовая полость, носоглотка, гортань) и нижние (трахея и бронхи). Они имеют твёрдый скелет, представленный костями и хрящами, а изнутри выстланы слизистой оболочкой, снабжённой мерцательным эпителием. Функции дыхательных путей: обогрев и увлажнение воздуха, защита от инфекций и пыли.

Полость носа поделена перегородкой на две половины. Она сообщается с наружной средой при помощи ноздрей, а сзади — с глоткой посредством хоан. Слизистая оболочка носовой полости имеет большое количество кровеносных сосудов. Проходящая по ним кровь согревает воздух. Железы слизистой выделяют слизь, увлажняющую стенки носовой полости и снижающую жизнедеятельность бактерий. На поверхности слизистой находятся лейкоциты, уничтожающие большое количество бактерий. Мерцательный эпителий слизистой задерживает и выводит наружу пыль. При раздражении ресничек носовых полостей возникает рефлекс чихания. Таким образом, в носовой полости воздух согревается, обеззараживается, увлажняется и очищается от пыли. В слизистой оболочке верхней части носовой полости имеются чувствительные обонятельные клетки, образующие орган обоняния. Из носовой полости воздух поступает в носоглотку, а оттуда в гортань.

БИОЛОГИЯ ЧЕЛОВЕКА. Часть 1

Гортань образована несколькими хрящами: щитовидный хрящ (защищает гортань спереди), хрящевой надгортанник (защищает дыхательные пути при проглатывании пищи). Гортань состоит из двух полостей, которые сообщаются через узкую голосовую щель. Края голосовой щели образованы голосовыми связками. При выдыхании воздуха через сомкнутые голосовые связки происходит их вибрация, сопровождающаяся возникновением звука. Окончательное формирование звуков речи происходит при помощи языка, мягкого нёба и губ. При раздражении ресничек гортани возникает рефлекс кашля. Из гортани воздух поступает в трахею.

Трахея образована 16–20 неполными хрящевыми кольцами, не позволяющими ей спадаться, а задняя стенка трахеи мягкая и содержит гладкие мышцы. Благодаря этому пища свободно проходит по пищеводу, который лежит позади трахеи.

В нижней части трахея делится на два главных бронха (правый и левый), которые проникают в легкие. В лёгких главные бронхи многократно ветвятся на бронхи 1-го, 2-го и т.д. порядков, образуя бронхиальное дерево. Бронхи 8-го порядка называют дольковыми. Они разветвляются на концевые бронхиолы, а те — на дыхательные бронхиолы, которые образуют альвеолярные мешочки, состоящие из альвеол. Альвеолы — лёгочные пузырьки, имеющие форму полушария диаметром 0,2—0,3 мм. Их стенки состоят из однослойного эпителия и покрыты сетью капилляров. Через стенки альвеол и капилляров происходит обмен газами: из воздуха в кровь переходит кислород, а из крови в альвеолы поступают С02 и пары воды.

Лёгкие — крупные парные органы конусообразной формы, расположенные в грудной клетке. Правое лёгкое состоит из трёх долей, левое — из двух. В каждое лёгкое проходят главный бронх и лёгочная артерия, а выходят две лёгочные вены. Снаружи лёгкие покрыты лёгочной плеврой. Щель между оболочкой грудной полости и плеврой (плевральная полость) заполнена плевральной жидкостью, которая уменьшает трение лёгких о стенки грудной клетки. Давление в плевральной полости меньше атмосферного на 9 мм рт. ст. и составляет около 751 мм рт. ст.

Дыхательные движения. В лёгких нет мышечной ткани, и поэтому они не могут активно сокращаться. Активная роль в акте вдоха и выдоха принадлежит дыхательным мышцам: межрёберным мышцам и диафрагме. При их сокращении объём грудной клетки увеличивается и лёгкие растягиваются. При расслаблении дыхательных мышц рёбра опускаются до исходного уровня, купол диафрагмы приподнимается, объём грудной клетки, а следовательно, и лёгких уменьшается, и воздух выходит наружу. Человек делает в среднем 15—17 дыхательных движений в минуту. При мышечной работе дыхание учащается в 2—3 раза.

Жизненная ёмкость лёгких. В состоянии покоя человек вдыхает и выдыхает около 500 см3 воздуха (дыхательный объём). При глубоком вдохе человек может вдохнуть ещё около 1500 см3 воздуха (дополнительный объём). После выдоха он способен выдохнуть ещё около 1500 см3 {резервный объём). Эти три величины в сумме составляют жизненную ёмкость лёгких (ЖЕЛ) — это наибольшее количество воздуха, которое может человек выдохнуть после глубокого вдоха. Измеряют ЖЕЛ с помощью спирометра. Она является показателем подвижности лёгких и грудной клетки и зависит от пола, возраста, размеров тела и мышечной силы. У детей 6 лет ЖЕЛ равна 1200 см3; у взрослых — в среднем 3500 см3; у спортсменов она больше: у футболистов — 4200 см3, у гимнастов — 4300 см3, у пловцов — 4900 см3. Объём воздуха в лёгких превышает ЖЕЛ. Даже при самом глубоком выдохе в них остаётся около 1000 см3 остаточного воздуха, поэтому лёгкие полностью не спадаются.

Регуляция дыхания. В продолговатом мозге расположен дыхательный центр. Одна часть его клеток связана с вдохом, другая — с выдохом. Импульсы передаются из дыхательного центра по двигательным нейронам к дыхательным мышцам и диафрагме, вызывая чередование вдоха и выдоха. Вдох рефлекторно вызывает выдох, выдох рефлекторно вызывает вдох. На дыхательный центр оказывает влияние кора головного мозга: человек может на время задержать дыхание, изменить его частоту и глубину.

Накопление СО2, в крови вызывает возбуждение дыхательного центра, что обусловливает учащение и углубление дыхания. Так осуществляется гуморальная регуляция дыхания.

Искусственное дыхание делают при остановке дыхания у утопленников, при поражении электрическим током, отравлении угарным газом и проч. Производят дыхание изо рта в рот или изо рта в нос. В выдыхаемом воздухе содержится 16–17 % кислорода, что достаточно для обеспечения газообмена, а высокое содержание в выдыхаемом воздухе СО2 (3–4 %) способствует гуморальной стимуляции дыхательного центра пострадавшего.

12.6.2. Транспорт газов

Кислород транспортируется к тканям в основном в составе оксигемоглобина (HbO2). Небольшое количество СO2 транспортируется от тканей к лёгким в составе карбгемоглобина (НbСO2). Основная часть углекислого газа соединяется с водой, образуя углекислоту. Угольная кислота в тканевых капиллярах реагирует с ионами К+ и Na+, превращаясь в бикарбонаты. В составе бикарбонатов калия в эритроцитах (меньшая часть) и бикарбонатов натрия в плазме крови (большая часть) углекислый газ переносится от тканей к лёгким.

12.6.3. Газообмен в лёгких и тканях

Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9 %) и низким содержанием углекислого газа (0,03 %), а выдыхает воздух, в котором O2 – 16,3%, а СO2 – 4%. Азот и инертные газы, входящие в состав воздуха, в дыхании не участвуют, и их содержание во вдыхаемом и выдыхаемом воздухе практически одинаково.

В лёгких кислород вдыхаемого воздуха через стенки альвеол и капилляров переходит в кровь, а С02 из крови поступает в альвеолы лёгких. Движение газов происходит по законам диффузии, согласно которым газ проникает из среды, где его содержится больше, в среду с меньшим его содержанием. Газообмен в тканях также совершается по законам диффузии.

Гигиена дыхания. Для укрепления и развития органов дыхания важны правильное дыхание (вдох короче выдоха), дыхание через нос, развитие грудной клетки (чем она шире, тем лучше), борьба с вредными привычками (курение), чистый воздух.

Важной задачей является охрана воздушной среды от загрязнений. Одним из мероприятий по охране является озеленение городов и посёлков, так как растения обогащают воздух кислородом и очищают его от пыли и вредных примесей.

12.7. ВЫДЕЛЕНИЕ

В процессе обмена веществ образуются продукты распада. Часть их используется организмом на образование новых клеток, другие удаляются из него. Выделение — это процесс удаления конечных продуктов метаболизма, которые уже не могут быть использованы организмом.

Функция выделительной системы — выделение конечных продуктов метаболизма, ненужных организму. Выделение необходимо для поддержания постоянства внутренней среды организма.

Органы выделительной системы: почки, лёгкие, кишечник, потовые железы. Почки являются основными органами выделения. Они выводят из организма воду, мочевину, минеральные соли, некоторые органические вещества, многие вредные и ядовитые вещества. Лёгкие выделяют углекислый газ, воду и некоторые летучие вещества. Кишечник выводит соли тяжёлых металлов, продукты превращения желчных пигментов. Потовые железы выделяют с потом воду, мочевую кислоту, мочевину, аммиак, соли и др.

Таким образом, углекислый газ удаляется из организма через лёгкие; вода — через почки, лёгкие и кожу; мочевина — через почки; минеральные соли и некоторые органические вещества — через почки и кожу.

Мочевыделительная система. Органы мочевыделительной системы: почки, мочеточники, мочевой пузырь, мочеиспускательный канал (рис. 12.11). Функция — выделение конечных продуктов обмена веществ: воды, минеральных солей, мочевины, а также различных чужеродных и ядовитых веществ (например, лекарств), поддержание постоянства ионного состава, осмотического давления, pH крови и тканевой жидкости.

Почки — парные органы бобовидной формы, расположенные в брюшной полости по бокам от позвоночника на уровне поясницы. Вогнутый край почки обращён к позвоночнику, сюда подходят почечная артерия и почечная вена, лимфатические сосуды, нервы, отсюда берёт начало мочеточник. К верхней части почек примыкают железы внутренней секреции — надпочечники. Почка имеет тёмный наружный слой (корковый слой) и светлую внутреннюю часть (мозговой слой). У вогнутого края почки расположена небольшая полость — почечная лоханка. Из неё выходит мочеточник, который соединяет почку с мочевым пузырём.

БИОЛОГИЯ ЧЕЛОВЕКА. Часть 1

Единицей строения почки является нефрон. В каждой почке содержится около 1 млн нефронов. Нефрон состоит из капиллярного клубочка, почечной капсулы и почечного канальца. В корковом слое расположены капиллярные клубочки и почечные капсулы, в мозговом — почечные канальцы. Капсула представляет собой чашечку с полостью внутри, в которой находится капиллярный (мальпигиев) клубочек. От капсулы отходит извитой каналец, образующий петлю и впадающий в собирательную трубочку нефрона. Собирательные трубочки сливаются, образуя более крупные выводные протоки.

Почечная артерия разветвляется на приносящие артериолы, а те, в свою очередь, распадаются на капилляры капиллярного клубочка, которые затем собираются в выносящую артериолу. Выносящая артериола вновь распадается на сеть капилляров, оплетающих извитые канальцы. После этого капилляры соединяются в вены, впадающие в почечную вену. Таким образом, в почке имеются две системы капилляров: одна располагается внутри почечной капсулы, другая оплетает почечный каналец.

В почках происходит образование мочи из веществ, приносимых кровью. Через почки в течение суток протекает около 1700 л крови. Процесс образования мочи проходит в две фазы: фильтрация (образуется первичная моча) и реабсорбция (образуется вторичная моча).

В первую фазу образуется первичная моча путём фильтрации плазмы крови из капилляров клубочка в полость капсулы. Это возможно благодаря высокому гидростатическому давлению в капиллярах: 70-90 мм рт. ст. Первичная моча — профильтрованная плазма крови, образовавшаяся в полости капсулы. Стенки капилляров и почечной капсулы выполняют функции фильтра, не пропуская клетки крови и крупные молекулы белков. В первичной моче содержатся как ненужные вещества (мочевина, мочевая кислота и пр.), так и необходимые для организма питательные вещества (аминокислоты, глюкоза, витамины, соли и др.). За 1 сутки в организме человека образуется около 150 л первичной мочи.

Во вторую фазу происходит образование вторичной мочи в результате реабсорбции (обратного всасывания) воды и других нужных организму веществ назад в кровь из первичной мочи, когда та поступает в почечный каналец, густо оплетённый капиллярами. В кровь возвращаются вода, глюкоза, аминокислоты, витамины, некоторые соли. Обратное всасывание может происходить пассивно в результате диффузии и осмоса и активно благодаря деятельности эпителия почечных канальцев. Во вторичной моче остаются лишь ненужные организму вещества. В результате деятельности почек в 1 сутки образуется около 1,5 л вторичной мочи. В ней содержатся 95 % воды и 5 % твёрдых веществ: мочевина, мочевая кислота, соли калия, натрия и др. При воспалительных процессах в почках и при напряжённой мышечной работе в моче может появиться белок.

Конечная моча поступает из канальцев в почечную лоханку, оттуда в мочеточник и, благодаря перистальтике их стенок, в мочевой пузырь. Мочевой пузырь лежит в области таза. Он представляет собой мешок с толстой стенкой, которая при наполнении мочевого пузыря сильно растягивается. Выход из мочевого пузыря в мочеиспускательный канал закрыт двумя мышечными утолщениями, которые открываются только в момент мочеиспускания. Растяжение стенок мочевого пузыря (при увеличении его объёма до 200-300 мл) приводит к рефлекторному мочеиспусканию. Человек способен сознательно задерживать или осуществлять акт мочеиспускания.

Деятельность почек регулируется нервным и гуморальным путём. Симпатическая нервная система вызывает сужение сосудов почек, что уменьшает фильтрацию. Парасимпатическая система расширяет просвет сосудов почек и активирует реабсорбцию глюкозы. Гуморальная регуляция осуществляется с помощью гормонов. Гормон задней доли гипофиза — вазопрессин — усиливает реабсорбцию воды в почечных канальцах. Гормон коры надпочечников альдостерон увеличивает реабсорбцию ионов Na+ и секрецию К+ и Н+ в канальцах.

Нарушение или прекращение деятельности почек ведёт к отравлению организма веществами, которые обычно выводятся с мочой. Почки чувствительны к ядам, вырабатываемым возбудителями инфекционных заболеваний, к слишком острой пище, алкоголю. При лечении почечных заболеваний возможны использование искусственной почки или пересадка здоровой почки от другого человека.

12.8. КРОВЬ

Кровеносная система выполняет различные функции (табл. 12.14).

Таблица 12.14. Функции кровеносной системы

Таблица 12.14. Функции кровеносной системы

Внутренняя среда организма: кровь, лимфа, межклеточная (тканевая) жидкость. Клетки организма с кровью непосредственно не соприкасаются, а обмен веществ между ними происходит через межклеточную жидкость. Межклеточная жидкость образуется из плазмы крови, проникающей через стенки капилляров. Межклеточная жидкость, просочившаяся в лимфатические капилляры и сосуды, называется лимфой. Через кровеносную и лимфатическую системы осуществляется гуморальная регуляция организма.

Внутренняя среда организма имеет постоянный химический состав и постоянные физико-химические свойства. Это обеспечивает нормальную жизнедеятельность клеток, их существование в относительно постоянных условиях и смягчает влияние на них внешней среды. Постоянство внутренней среды организма (гомеостаз) поддерживается в результате саморегуляции процессов жизнедеятельности, поступления в организм необходимых веществ и вывода из него ненужных.

Кровь циркулирует в замкнутой системе кровообращения. Объём крови в теле взрослого человека в среднем около 5—6 л, что составляет 6–8% массы тела. Часть крови (около 40%) не циркулирует по кровеносным сосудам, а находится в так называемом депо крови (в капиллярах и венах печени, селезёнке, лёгких и коже). Во время мышечной работы, при кровопотерях, в условиях пониженного атмосферного давления кровь из депо поступает в кровяное русло. Потеря 1/3 – 1/2 объёма крови может привести к смерти.

Кровь — непрозрачная красная жидкость. В состав крови входят плазма (55%) и форменные элементы (45 %): эритроциты (красные кровяные клетки), лейкоциты (белые кровяные клетки) и тромбоциты (кровяные пластинки).

12.8.1. Плазма крови

Плазма крови — бесцветная прозрачная жидкость. Она содержит 90–92% воды и 8–10% неорганических и органических веществ. Неорганические вещества составляют 0,9–1,0%. Это ионы Na+, К+, Mg2+, Са2+, Cl, HPO43–, SO42–, СO32– и др. Кровь имеет солоноватый вкус. Состав крови по содержанию солей близок к морской воде. В нормальных условиях общая концентрация солей в плазме равна содержанию солей в клетках крови. Растворы, которые по солевому составу и их концентрации соответствуют составу плазмы крови, называются физиологическими растворами (например 0,9%-ный раствор NaCl). Их вводят в организм при недостатке жидкости.

Из органических веществ плазмы 6,5–8% составляют белки (альбумины, глобулины, фибриноген), около 2% — низкомолекулярные органические вещества (глюкоза — 0,1%, аминокислоты, мочевина, мочевая кислота, липиды). Минеральные соли и белки поддерживают кислотно-щелочное равновесие и создают определённое осмотическое давление крови.

12.8.2. Форменные элементы крови

Форменные элементы крови — это эритроциты (красные кровяные клетки), лейкоциты (белые кровяные клетки) и тромбоциты (кровяные пластинки) (табл. 12.15).

Эритроциты — красные кровяные клетки. Размер — 7–8 мкм. Зрелые эритроциты не имеют ядра. По форме выглядят как двояковогнутый диск. Такая форма и отсутствие ядра увеличивают поверхность и способствуют быстрому и равномерному проникновению в них кислорода.

Таблица 12.15. Форменные элементы крови

Таблица 12.15. Форменные элементы крови

Основная функция эритроцитов — перенос кислорода и углекислого газа. Эритроциты содержат белок гемоглобин, который состоит из белковой части — глобина и соединения, содержащего железо, — гема (придаёт крови красный цвет). Гемоглобин обеспечивает перенос кислорода и углекислого газа. В капиллярах лёгких он присоединяет кислород, образуя непрочное соединение — оксигемоглобин (при этом кровь имеет ярко-красный цвет — артериальная кровь), а в капиллярах тканей и органов отдаёт кислород и присоединяет углекислый газ, образуя нестойкое соединение — карбгемоглобин (при этом кровь имеет тёмно-красный цвет — венозная кровь).

Нарушение этого процесса приводит к кислородному голоданию клеток, наиболее чувствительными к которому являются клетки головного мозга. Уже 5–6-минутное кислородное голодание приводит к нарушению работы мозга. К кислородному голоданию может привести отравление угарным газом СО. Угарный газ способен присоединяться к гемоглобину вместо кислорода с образованием прочного соединения — карбоксигемоглобина. При отравлении угарным газом необходимо немедленно обеспечить доступ кислорода пострадавшему (свежий воздух, искусственное дыхание).

Малокровие (анемия) — уменьшение либо количества эритроцитов в крови, либо гемоглобина в эритроцитах. Причины малокровия: большие кровопотери, перенесение некоторых заболеваний (малярия), нарушение образования эритроцитов в кроветворных органах (облучение). Малокровие лечится различными лекарственными препаратами, а также переливанием крови.

Скорость оседания эритроцитов (СОЭ) используют для диагностики воспалительных процессов в организме.

Лейкоциты — белые кровяные клетки (бесцветные клетки). Относительно крупные — 8–10 мкм. Форма непостоянна. Продолжительность жизни: от нескольких часов до 20 суток, лимфоцитов — 20 лет и более.

Основная функция лейкоцитов — защита организма от патогенных микроорганизмов, чужеродных белков, инородных тел. Лейкоциты могут самостоятельно передвигаться, выпуская ложноножки. Могут покидать кровеносные сосуды. Различают несколько типов лейкоцитов: эозинофилы, базофилы, нейтрофилы, лимфоциты и моноциты (табл. 12.16).

Таблица 12.16. Форменные элементы крови

Таблица 12.16. Форменные элементы крови

Первым участие лейкоцитов в защитных реакциях крови обнаружил И. И. Мечников, который назвал такие лейкоциты фагоцитами. За фагоцитарную теорию иммунитета он получил Нобелевскую премию. И. И. Мечников создал теорию воспаления как защитной реакции организма против инфекций. При воспалении расширяются сосуды, в крови увеличивается количество лейкоцитов, выполняющих функцию фагоцитоза.

Тромбоциты — мелкие безъядерные клетки (кровяные пластинки) овальной или округлой формы. Основная функция — участие в свёртывании крови.

12.8.3. Свёртывание крови

Свёртывание крови — защитная реакция организма на потерю крови. При ранении кровь выходит из сосуда, тромбоциты разрушаются, и из них выделяется фермент тромбин. При участии тромбина и ионов кальция растворимый в плазме крови белок фибриноген превращается в нерастворимый фибрин. Фибрин выпадает в виде тонких нитей, которые образуют сеть и задерживают лейкоциты и эритроциты. Образуется кровяной сгусток — тромб, который закупоривает сосуд. Из тромба выдавливается прозрачная желтоватая жидкость — сыворотка.

В организме образуются вещества, препятствующие свёртыванию крови, например, белок фибринолизин, растворяющий в сосудах сгустки фибрина. Таким образом, в организме одновременно имеются две системы: свёртывающая и противосвёртывающая. При нарушении деятельности противосвёртывающей системы в сосудах образуются тромбы. Низкая температура замедляет свёртывание крови, а высокая — ускоряет.

12.8.4. Переливание крови

Потеря больших количеств крови опасна для жизни человека, поэтому часто прибегают к её переливанию. Донор — человек, предоставляющий кровь,реципиент — человек, принимающий кровь. При переливании крови группы крови и резус-фактор донора и реципиента должны быть совместимы.

Группы крови. По системе АВ0 у человека существует четыре группы крови (табл. 12.17). В крови имеются особые белковые вещества: в эритроцитах агглютининогены (А и В), в плазме — агглютинины (а и р). Если агглютинин α встречается с агглютининогеном А или агглютинин β с агглютининогеном В, то происходит агглютинация — склеивание эритроцитов.

Таблица 12.17. Характеристика крови человека по системе АВ0

Таблица 12.17. Характеристика крови человека по системе АВ0

При переливании небольших доз крови необходимо учитывать группу крови. При переливании крови учитывают агглютининогены донора и агглютинины реципиента. Агглютинины донора значительно разводятся и теряют способность агглютинировать эритроциты реципиента. Людей с I группой крови называются универсальными донорами, так как кровь этой группы можно переливать всем четырём группам. Людей с IV группой называют универсальными реципиентами, так как им можно переливать кровь любой группы. При переливании больших доз крови используют только одногруппную кровь. В настоящее время предпочитают переливать одногруппную кровь и в небольших дозах.

Резус–фактор. При переливании крови также учитывают резус-фактор. Кровь может иметь положительный резус–фактор (Rh+) или отрицательный резус–фактор (Rh). Если Rh+ кровь перелить человеку с Rh кровью, то у него образуются специфические агглютинины (антитела), и повторное введение такой крови вызовет агглютинацию. Когда у Rh женщины развивается плод, унаследовавший у отца положительный резус, может возникнуть резус-конфликт.

12.8.5. Иммунитет

Иммунитет — способ защиты организма от генетически чужеродных веществ и инфекционных агентов. Защитные реакции организма обеспечиваются клетками — фагоцитами, а также белками — антителами. Антитела вырабатывают клетки, которые образуются из В-лимфоцитов. Антитела формируются в ответ на появление в организме чужеродных белков — антигенов. Антитела связываются с антигенами, обезвреживая их патогенные свойства.

Различают несколько видов иммунитета.

  • Естественный врождённый (пассивный) — обусловлен передачей уже готовых антител от матери к ребёнку через плаценту или при кормлении молоком.
  • Естественный приобретённый (активный) — обусловлен выработкой собственных антител в результате контакта с антигенами (после болезни).
  • Приобретённый пассивный — создаётся введением в организм готовых антител (лечебной сыворотки). Лечебная сыворотка — препарат антител из крови специально ранее заражённого животного (обычно лошади). Сыворотку вводят уже заражённому инфекцией (антигенами) человеку. Введение лечебной сыворотки помогает организму бороться с инфекцией, пока в нём не выработаются собственные антитела. Такой иммунитет сохраняется недолго — 4–6 недель.
  • Приобретённый активный — создаётся введением в организм вакцины (антигена, представленного ослабленными или убитыми микроорганизмами или их токсинами), в результате чего происходит выработка в организме соответствующих антител. Такой иммунитет сохраняется долго.

ВСЕ РАЗДЕЛЫ СПРАВОЧНИКА

Материалы для подготовки к ЕГЭ. Онлайн-Справочник по биологии.
РАЗДЕЛ III. БИОЛОГИЯ ЧЕЛОВЕКА (Часть 1)


Просмотров:
21 634

1)Методы изучения наследственности человека

Применимость к человеку классического генетического анализа как основного метода изучения наследственности и изменчивости исключена из-за невозможности экспериментальных скрещиваний, длительности времени достижения половой зрелости и малого количества потомства на пару (семью). Поэтому для изучения нормальной и патологической наследственности используют другие методы. 2.Генеалогический метод (метод родословных). Cмысл данного метода заключается в изучении наследственности человека путем учета и анализа распределения наследственных признаков в семьях, т. е. в изучении наследственности человека по родословным. Метод сводится к изучению родословных связей и передачи признаков среди близких и дальних родственников, прямых и непрямых. С помощью этого метода возможно установление наследственного характера признака, типа и частоты наследования того или иного признака, сцепленности признака с полом, а также определение зависимости или независимости распределения признаков. Метод характеризуется относительно большой разрешающей способностью. Однако он имеет недостаток, связанный с трудностями сбора сведений о проявлении того или иного признака у родственников пробанда, поскольку люди плохо знают свои родословные. 2. Близнецовый метод. Этот метод заключается в изучении генетических закономерностей, присущих однояйцевым (монозигот-ным) и разнояйцевым (дизиготным) близнецам. Обычно сопоставляют монозиготных партнеров с дизиготными, а результаты анализа близнецовой выборки сравнивают с результатами анализа общей популяции. Метод позволяет выяснять наследственную предрасположенность в проявлении ряда признаков и заболеваний, устанавливать коэффициент наследуемости и степень влияния факторов внешней среды на проявление признаков. Успех в использовании этого метода чаще связан с изучением тех признаков, которые не подвержены резкому влиянию со стороны внешних факторов, например, группы крови, пигментации глаз и др. Недостаток метода связан с неполнотой сведений о пренатальном и постнатальном развитии близнецов.

2.ТИП МОЛЛЮСКИ.

Тип моллюски включает три класса: медленно ползающие улитки (брюхоногие), относительно оседлые двустворчатые и подвижные головоногие. Наличие защитной раковины, механизмов наружного и внутреннего оплодотворения, легких и жабр позволило моллюскам завоевать как сушу, так и воду. Тело моллюсков мягкое нерасчлененное, у большинства подразделяется на голову, туловище и ногу. Под раковиной находится кожная складка — мантия. Кровеносная система незамкнутая, кровь выливается в полости тела (лакуны). Капиллярная сеть утрачена. Органы дыхания у большинства водных моллюсков представлены жабрами. Наземные формы дышат с помощью легкого. Нервная система узлового типа, нервные узлы, расположены в разных отделах тела: голове, ноге, туловище и соединенных между собой нервными стволами. Органы чувств у моллюсков разнообразные и часто сложно устроены. Большинство моллюсков раздельнополы, но есть и гермафродиты. Оплодотворение у многих внутреннее. Класс Брюхоногие Представители класса — улитки, слизни — обитают на суше, в морях и пресных водоемах. У разных брюхоногих есть особенности в строении. Так, малый прудовик имеет следующее строение: тело включает голову, туловище и ногу, покрыто мантией и заключено в спирально закрученную раковину. На нижней стороне головы помещен рот с глоткой, в которой расположен мускулистый язык с зубчиками — терка (радула). Языком улитка соскабливает мягкие ткани растений. На боковых сторонах головы расположены два чувствительных щупальца — органы осязания. У их основания находятся глаза. Через глотку и пищевод пища попадает в желудок, сюда открывается проток печени, заканчивается переваривание в кишечнике. Непереваренная пища выделяется через анальное отверстие. Орган выделения — почка, протекающая через нее кровь очищается от ядовитых продуктов обмена. Выводной проток открывается около мантийного отверстия. Сердце состоит из двух камер — предсердия и желудочка. От желудочка отходят сосуды. Дышит малый прудовик через легкое — особый карман в мантии, пронизанный кровеносными сосудами. Здесь происходит газообмен. Прудовики — гермафродиты, но оплодотворение у них перекрестное. Яйца после оплодотворения помещаются в слизистый кокон, прикрепляемый к подводным предметам. Развитие прямое, как у большинства брюхоногих.

Класс Двустворчатые Все представители этого класса имеют двухстворчатую раковину. Тело состоит из туловища и ноги и покрыто мантией. На заднем конце тела складки мантии прижимаются друг к другу, образуя два сифона: нижний и верхний. Через нижний вводной сифон вода поступает в мантийную полость и омывает жабры. С водой приносятся остатки органики, которые отфильтровываются в рот и попадают в желудок и кишечник. Отфильтрованная вода выбрасывается наружу через выводной сифон. У двустворчатых моллюсков хорошо развита печень, ферменты которой попадают в желудок и участвуют в пищеварении. Двустворчатые — раздельнополые животные. Оплодотворение происходит в мантийной полости самки, куда вместе с водой через нижний сифон попадают сперматозоиды. Из яйца развивается личинка с двустворчатой зубчатой раковиной. Развитие личинки происходит на жабрах или коже рыб. Личинка паразитирует на рыбах, постепенно превращаясь в молодого моллюска. Таким образом, рыбы способствуют расселению малоподвижных двустворчатых моллюсков. Головоногие — кальмары, осьминоги — наиболее высокоорганизованые моллюски.

3. Оплодотворение – это процесс слияния мужской и женской половых клеток. Результатом оплодотворения является зигота – оплодотворенная яйцеклетка. Оплодотворение бывает наружное и внутреннее. Наружное оплодотворение наблюдается у всех первичноводных животных и растений (морские черви, моллюски, рыбы, водоросли). При наружном оплодотворении сперматозоиды выделяются прямо в водную среду, где плавают, находят яйцеклетки и оплодотворяют их. Внутреннее оплодотворение наблюдается у наземных животных и растений (пресмыкающиеся, птицы, млекопитающие, насекомые, высшие споровые и семенные растения). Внутреннее оплодотворение происходит внутри организма, поэтому требует развития специальных органов для переноса сперматозоидов из тела самца в тело самки (у животных). Кроме того, различают перекрестное оплодотворение (в оплодотворении участвуют половые клетки разных организмов) и самооплодотворение, при котором сливаются половые клетки одного организма. Число и размеры половых клеток различны у разных животных. Наблюдается такая закономерность: чем меньше вероятность встречи яйцеклетки и сперматозоида, тем большее число половых клеток образуется в организме.

4.Эволюция клеток и тканей

На основании изучения ископаемых остатков бактерий и циано-бактерий предполагают, что предковой клеточной формой была примитивная прокариотическая клетка, возникшая около 3,5 млрд. лет назад. Клетки этого типа для обеспечения своего существования и размножения в начале использовали органические молекулы небиологического происхождения. Первым актом в формировании примитивных клеток было образование мембраны, окружавшей вещество клетки. В последующем у примитивных прокариотических клеток стали развиваться механизмы синтеза и энергетического обеспечения. Предполагают, что первые прокариотические клетки обладали наиболее простыми каталитическими системами, в результате чего обеспечение их энергией основывалось на брожении. В последующем отдельные виды прокариотических клеток переключились с брожения на дыхание, что способствовало более эффективному получению энергии. Таким образом, эволюционные изменения прокариотических клеток шли по линии развития у них различных метаболических путей. Их геном развивался в направлении формирования «голых» молекул ДНК.

Эволюционные изменения эукариотических клеток шли в направлении увеличивающегося разнообразия в форме, размерах, структуре и функциях с одновременной компартментализацией биохимических систем и сохранением общего для всех Клеток аэробного метаболизма. Считают, что эукариотические клетки возникли менее 1 млрд лет назад из прокариотических клеток, причем для объяснения их происхождения выдвинуто три гипотезы. В соответствии с одной их этих гипотез, которая является наиболее распространенной, предполагают, что эукариотическая клетка является симбиотической структурой, состоящей из нескольких клеток разных типов, объединенных общей клеточной мембраной. В частности, предполагают, что пластиды клеток современных зеленых растений происходят от бактерий, бывших предками современных цианобактерий и способных к аэробному фотосинтезу, а митохондрии эукариотических клеток ведут начало от аэробных бактерий, которые вступали в симбиоз с примитивными анаэробными клетками, способными к фотосинтезу, что привело к образованию клеток, способных к существованию в атмосфере кислорода и использованию кислорода путем дыхания. Относительно ядра предполагают, что оно является рудиментом также какого-то древнего внутриклеточного симбионта, утратившего после включения в исходную клетку свою цитоплазму. В пользу этой гипотезы свидетельствуют данные о симбиотических взаимоотношениях некоторых современных организмов.

В соответствии с другой гипотезой считают, что эукариотическая клетка произошла от прокариотической клетки, содержавшей несколько геномов, прикрепленных к клеточной мембране. В результате инвагинаций клеточной мембраны образовывались мезо-сомы, способные первоначально к фотосинтезу. Однако в дальнейшем произошла специализация этих органелл, в результате чего одна из них, утратив дыхательную и фотосинтетическую функцию, развилась в ядро, другие, наоборот, развив эти функции, стали митохондриями у животных и пластидами у растений. В пользу этой гипотезы свидетельствуют данные о двойном строении мембран ядра, митохондрии и пластид. В соответствии с третьей гипотезой, основанной на мысли о том, что все живые формы произошли от предковых анаэробных ферментативных гетеротрофов, эукариоты представляют собой сублинию бесстеночных (анаэробных) прокариотов, которые развили способность к эндоцитозу. Посредством «заглатывания» других прокариотов, которые дали им дополнительные метаболические способности и которые, в конце концов, дегенерировали в органеллы, примитивная клетка (уркариот) стала эукариотической клеткой. Таким образом, прокариоты древнее, проще и примитивнее клеток-эукариот. В соответствии с четвертой гипотезой предполагают, что эука-риотические клетки возникли из прокариотической клетки, содержавшей много геномов, которые распадались на части, давшие начало структурам с разными функциями. В последующем шло кло-нирование структур со сходными функциями, после чего они покрывались двойными мембранами, что привело к образованию ядра, митохондрии, а позднее и мембранной сети. В пользу этой гипотезы свидетельствуют данные о сходстве генетического кода, содержащегося в ядерной и митохондриальной ДНК, а также о сходстве в регуляции дыхательной функции ядром и митохондриями.

Геном эукариотических клеток впоследствии развивался в направлении объединения молекул ДНК с белками и формирования хроматина и хромосом разной формы и в разном количестве. Специализация хроматина проявилась в формировании эухроматина и гетерохроматина, в формировании аутосом и половых хромосом. Что касается количества хромосом, то объяснить их эволюционную тенденцию пока трудно, поскольку многие примитивные организмы содержат в своих клетках большее число хромосом, чем организмы, занимающие высшие эволюционные ступени. Однако несомненно, что количественные и структурные изменения карио-типов в течение эволюции играли важную роль в видообразовании. Параллельно с этим происходило усложнение структуры и функции клеточных компонентов, развитие регуляторных механизмов. Несомненно эволюционное значение митоза. Считают, что точность разделения и распределения хромосом в результате митоза является условием, обеспечивающим многоклеточность. Однако происхождение самого митоза не имеет достаточных объяснений. Предполагают лишь, что он развился из примитивного митоза, представляющего собой механизм, при котором расхождение реп-лицировавшихся хромосом происходило после вытягивания и разрыва веретена без разрушения ядерной мембран. Объяснения эволюции тканей связаны со сложностями, которые обусловлены одинаковым строением тканей, принадлежащих живым организмам, находящимся на разных ступенях эволюционной лестницы. Например, мышечные волокна членистоногих, некоторых моллюсков и позвоночных имеют одинаковое строение. Между тем эти организмы филогенетически разделены очень большими «расстояниями». Аналогичная ситуация имеет место и при сравнении тканей растений из разных таксономических групп. Начала тканеобразования в эволюционном плане уже прослеживаются у самых простых организмов. Например, у вольвокса отмечается формирование колоний, состоящих иногда более чем из 50 000 клеток, причем часть клеток уже специализирована. В частности, клетки, располагающиеся по краям колониальной формы, ответственны за образование новых колоний. У цианобактерий при нерасхождении разделившихся клеток образуются клеточные нити, в которых часть клеток специализирована на фиксации азота, чем обеспечиваются потребности в азоте и других клеток. Идя вверх по эволюционной лестнице, можно видеть, что у губок уже отмечается около пяти специализированных типов клеток, специализация которых связана с выполнением разных функций в процессе фильтрации воды и поглощения отфильтрованных пищевых частиц. У кишечнополостных тело состоит из двух слоев эктодермы и энтодермы, представляющих собой наружный и внутренний эпителиальные слои. Наружные эпителиальные клетки являются стрекательными клетками, содержащими ядовитую жидкость, тогда как внутренние эпителиальные клетки секретируют пищеварительные ферменты и обеспечивают пищеварение. Поэтому предполагают, что первыми сформировались слои эпителиальных клеток и их роль в эволюции многоклеточных аналогизируется с ролью клеточных стенок и мембран одноклеточных организмов.

Значительный вклад в понимание эволюции тканей принадлежит А. А. Заварзину (1886-1945), который считал, что одни и те же факторы эволюции обеспечили не только разнообразие организмов, но и однообразие строения их тканей. Сходство в строении тканей у филогенетически далеко отстоящих животных А. А. За-варзин называл законом параллельных рядов тканевой эволюции. Работы А. А. Заварзина и его учеников заложили основы эволюционной гистологии.

5. РОСТ И РАЗВИТИЕ ОРГАНИЗМА. ОБМЕН В-В.

Рост организмов происходит путем прироста массы организма за счет увеличения размеров и числа клеток. Он сопровождается развитием, проявляющимся в дифференцировке клеток, усложнении структуры и функций. В процессе онтогенеза формируются признаки в результате взаимодействия генотипа и среды. Филогенез сопровождается появлением гигантского разнообразия организмов, органической целесообразностью. Процессы роста и развития подвержены генетическому контролю и нейро-гуморальной регуляции.

Обмен в-в: Благодаря этому свойству обеспечивается постоянство внутренней среды организмов и связь организмов с окружающей средой, что является условием для поддержания жизни организмов. Живые клетки получают (поглощают) энергию из внешней среды в форме энергии света. В дальнейшем химическая энергия преобразуется в клетках для выполнения многих работ. В частности, для осуществления химической работы в процессе синтеза структурных компонентов клетки, осмотической работы, обеспечивающей транспорт разных веществ в клетки и вывод из них ненужных веществ, и механической работы, обеспечивающей сокращение мышц и передвижение организмов. У неживых объектов, например, в машинах химическая энергия превращается в механическую только в случае двигателей внутреннего сгорания.

Таким образом, клетка является изотермической системой. Между ассимиляцией (анаболизмом) и диссимиляцией (катаболизмом) существует диалектическое единство, проявляющееся в их непрерывности и взаимности. Например, непрерывно проходящие в клетке превращения углеводов, жиров и белков являются взаимными. Потенциальная энергия поглощаемых клетками углеводов, жиров и белков превращается в кинетическую энергию и тепло по мере превращения этих соединений. Замечательной особенностью клеток является то, что они содержат ферменты. Будучи катализаторами, они ускоряют протекание реакций, синтеза и распада в миллионы раз, при этом в отличие от органических реакций осуществляемых с использованием искусственных катализаторов (в лабораторных условиях), ферментативные реакции в клетках осуществляются без образования побочных продуктов.

В живых клетках энергия, полученная из внешней среды, накапливается в виде АТФ (аденозинмонофосфата). Теряя концевую фосфатную группу, что имеет место при передаче энергии другим молекулам, АТФ превращается в АДФ (аденозиндифосфат). В свою очередь получая фосфатную группу (за счет фотосинтеза или химической энергии), АДФ может снова превратиться в АТФ, т. е. стать главным носителем химической энергии. Такие особенности у неживых систем отсутствуют.

Обмен веществ и энергии в клетках ведет к восстановлению (замене) разрушенных структур, к росту и развитию организмов.

6. Химический и структурный состав ДНК.

Дезоксирибонуклеиновая кислота

Молекулы ДНК (дезоксирибонуклеиновой кислоты) — это самые крупные биополимеры, их мономером является нуклеотид (рис. 4). Он состоит из остатков трех веществ: азотистого основания, углевода дезоксирибозы и фосфорной кислоты. Известны четыре нуклеотида, участвующие в образовании молекулы ДНК. Они отличаются друг от друга азотистыми основаниями. Два азотистых основания цитозин и тимин — производные пиримидина. Аденин и гуанин — относят к производным пурина. В названии каждого нуклеотида отражено

название азотистого основания. Различают нуклеотиды: цитидиловый, тимидиловый, адениловый, гуаниловый. Соединение нуклеотидов в нити ДНК происходит через углевод одного нуклеотида и остаток фосфорной кислоты соседнего. Согласно модели ДНК, предложенной Дж. Уотсоном и Ф. Криком (1953 г.), молекула ДНК представляет собой две спирально обвивающие друг друга нити. Обе нити вместе закручены вокруг общей оси. Две нити молекулы удерживаются

рядом водородными связями, которые возникают между их комплементарными азотистыми основаниями. Аденин комплементарен тимину, а гуанин — цитозину. Между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три. ДНК находится в ядре, где она вместе с белками образует линейные

структуры — хромосомы. Хромосомы хорошо видны при микроскопировании в период деления ядра; в интерфазе они деспирализованы. ДНК имеется в митохондриях и пластидах (хлоропластах и лейкопластах), где их молекулы образуют кольцевые структуры. В клетках доядерных организмов также присутствует кольцевая ДНК. ДНК способна к самоудвоению (редупликации). Это имеет место в определенном периоде жизненного цикла клетки, называемом синтетическим. Редупликация позволяет сохранить постоянство структуры ДНК. Если под воздействием различных факторов в процессе репликации в молекуле ДНК происходят изменения в числе, порядке следования нуклеотидов, то возникают

мутации. Основная функция ДНК — хранение наследственной информации, заключенной в последовательности нуклеотидов, образующих ее молекулу, и передача этой информации дочерним клеткам. Возможность передачи наследственной информации от клетки к клетке обеспечивается способностью хромосом к

разделению на хроматиды с последующей редупликацией молекулы ДНК. В ДНК заключена вся информация о структуре и деятельности клеток, о признаках каждой клетки и организма в целом. Эта информация называется генетической. В молекуле ДНК закодирована генетическая информация о последовательности аминокислот в молекуле белка. Участок ДНК, несущий информацию об одной полипептидной цепи, называется геном. Передача и реализация информации осуществляется в клетке при участии рибонуклеиновых кислот.

7. Класс Пресмыкающиеся

Тело животных, как правило, разделено на голову, туловище и хвост и покрыто роговыми чешуйкам или щитками, защищающими их от механического воздействия и высыхания. Такой покров мешает росту тела. Поэтому некоторые пресмыкающиеся периодически линяют. Кожа рептилий не имеет желез и абсолютно сухая, она не участвует в дыхании. На голове расположены глаза с двумя веками и мигательной перепонкой (третье веко). У змей веки срослись и стали прозрачными. Позади глаз находятся органы слуха, состоящие из внутреннего и среднего уха. Позвоночник включает развитый шейный, грудной, поясничный, крестцовый и хвостовой отделы. Грудной отдел позвоночника образован позвонками с развитыми ребрами и грудиной. Грудная клетка защищает внутренние органы от повреждения. У змей, в связи с их способом перемещения, нет грудной клетки и конечностей. У черепах ребра срастаются с панцирем. В плечевом поясе пресмыкающихся сохраняется воронья кость. Во рту у пресмыкающихся есть язык и слюнные железы. Интенсивность обменных процессов рептилий зависит от температуры окружающей среды. Оплодотворение у рептилий внутреннее. В организме самки развиваются яйца, которые откладываются на суше. Зародыш развивается за счет питательных веществ яйца и выходит наружу приспособленным к самостоятельному существованию. Класс Пресмыкающиеся включает три основных отряда: Чешуйчатые (ящерицы, змеи), Черепахи, Крокодилы.

8. Свойство живого

Для живого характерен ряд свойств, которые в совокупности «делают» живое живым. Основным свойствам живого можно отнести: 1. Химический состав. Живые существа состоят из тех же химических элементов, что и неживые, но в организмах есть молекулы веществ, характерных только для живого (нуклеиновые кислоты, белки, липиды). 2. Дискретность и целостность. Любая биологическая система (клетка, организм, вид и т.д.) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему (например, в состав организма входят

отдельные органы, связанные структурно и функционально в единое целое). 3. Структурная организация. Живые системы способны создавать порядок из хаотичного движения молекул, образуя определенные структуры. Для живого характерна упорядоченность в пространстве и времени. Это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в строго определенном порядке, направленном на поддержание постоянства внутренней среды — гомеостаза. 4. Обмен веществ и энергии. Живые организмы — открытые системы, совершающие постоянный обмен веществом и энергией с окружающей средой. При изменении условий среды происходит саморегуляция жизненных процессов по принципу обратной связи, направленная на восстановление постоянства внутренней среды — гомеостаза. Например, продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составили начальное звено в длинной цепи реакций. 5. Самовоспроизведение. Самообновление. Время существования любой биологической системы ограничено. Для поддержания жизни происходит процесс самовоспроизведения, связанный с образованием новых молекул и структур, несущих генетическую информацию, находящуюся в молекулах ДНК. 6. Наследственность. Молекула ДНК способна хранить, передавать наследственную информацию, благодаря матричному принципу репликации, обеспечивая материальную преемственность между поколениями. 7. Изменчивость. При передаче наследственной информации иногда возникают различные отклонения, приводящие к изменению признаков и свойств у потомков. Если эти изменения благоприятствуют жизни, они могут закрепиться отбором. 8. Рост и развитие. Организмы наследуют определенную генетическую информацию о возможности развития тех или иных признаков. Реализация информации происходит во время индивидуального развития — онтогенеза. На определенном этапе онтогенеза осуществляется рост организма, связанный с репродукцией молекул, клеток и других биологических структур. Рост сопровождается развитием. 9. Раздражимость и движение. Все живое избирательно реагирует на внешние воздействия специфическими реакциями благодаря свойству раздражимости. Организмы отвечают на воздействие движением. Проявление формы движения зависит от структуры организма.

9. Митоз — это непрямое деление клетки, в результате которого исходная клетка дает начало двум новым, имеющим совершенно одинаковый набор генов. Митоз длится 1-2 часа и протекает в четыре фазы, из которых самыми продолжительными являются первая и последняя. Фазы митоза: Профаза. Наблюдается конденсация хроматиновых нитей, то есть их упаковка. Образуются хорошо заметные в световой микроскоп (при специальном подкрашивании) утолщенные хромосомы. Синтез РНК и белков заканчивается. Разрушается оболочка ядра. Образуется веретено деления. Метафаза. Все хромосомы перемещаются в центр клетки, располагаясь по ее экватору. Каждая хромосома состоит из двух хорошо различимых дочерних хроматид , образованных дочерними ДНК, появившихся в результате редупликации материнской. Любая пара дочерних хроматид связывается между собой тонким перехватом, называемым центромерой. Это участок материнской ДНК, в котором редупликация еще не прошла. К каждой центромере присоединена своя нить веретена деления. Анафаза. Дочерние хроматиды отделяются друг от друга в результате редупликации центромер и быстро расходятся к противоположным полюсам клетки. Теперь на каждом полюсе находится свой набор хроматид. Оба этих набора содержат одинаковые гены, так как все дочерние хроматиды, образованные в ходе редупликации материнской ДНК являются копиями друг друга. Телофаза. На полюсах клетки хроматиды раскручиваются в хроматиновые нити. Возобновляется синтез РНК и белков. Вокруг каждого набора из дочерних хроматид формируются свои ядерные оболочки. Клетка перешнуровывается по экватору. Образуются две новые клетки. Биологическое значение митоза. В результате митотического деления появляются две клетки генетически абсолютно одинаковые. Это возможно только благодаря двум процессам: 1.редупликации ДНК, в основе которой лежит принцип комплиментарности. 2. расхождении каждой пары дочерних хроматид в новые клетки.

10. ТИП ЧЛЕНИСТОНОГИЕ

Членистоногие — Тело членистоногих покрыто плотным хитиновым покровом, который является их наружным скелетом. Конечности членистые, подвижно соединены с туловищем. Так как хитиновый покров не растяжим, рост членистоногих сопровождается линькой. Мышцы представлены пучками поперечно-полосатых волокон. Кровеносная система незамкнутая. Класс Ракообразные

В основном обитатели соленых и пресных водоемов. Небольшое число представителей этого класса обитает на суше, в увлажненных местах (мокрицы). Отряд Десятиногие раки. Представитель — речной рак, обитает в пресных водоемах, требователен к чистоте воды. Тело рака состоит из трех отделов: головы, груди и брюшка. Все сегменты тела несут конечности. Количество конечностей речного рака достигает 19 пар. Головной отдел рака несет короткие усики — органы обоняния, длинные антенны — органы осязания и ещё 3 пары конечностей, формирующих ротовой аппарат. Это пара верхних челюстей и 2 пары нижних. В грудном отделе 3 пары ногочелюстей (удерживают и подносят пищу ко рту) и 5 пар ходильных ног. Первая пара ходильных ног развита значительно сильнее и снабжена большими клешнями (захватывают пищу и измельчают ее). Раки всеядны. Раки раздельнополы. Оплодотворение внутреннее. Для введения половых продуктов самцы используют специальные ножки, расположенные на брюшке. Самки откладывают оплодотворенные яйца зимой, а в начале лета из яиц выходят рачки. Класс Паукообразные (скорпионами и клещами, пауки) К паукообразным относят наземных членистоногих, дышащих трахеями и легочными мешками. Тело их состоит из головогруди и несегментированного брюшка, однако у скорпионов тело более расчленено, а у клещей тело слитное. На головогруди расположены четыре пары простых глаз, ротовые органы и конечности. Ротовые органы снабжены острыми, загнутыми вниз коготками, у конца которых открываются протоки ядовитых желез. Челюсти служат для умерщвления жертвы и защиты, вторая пара ротовых органов -ногощупальца — служит для ощупывания и поворачивания жертвы во время еды. Четыре пары членистых ходильных ног покрыты чувствительными волосками. Насекомые.

Большинство насекомых обитает на суше, некоторые — в пресных водоемах. Большинство летает, имея одну или две пары крыльев. Всё насекомые дышат трахеями. Тело насекомых состоит из головы, груди и брюшка. На голове расположена пара членистых различных по. форме усиков, простые или сложные глаза и подвижные ротовые придатки. В зависимости от ротового аппарата насекомых делят на две группы: грызущие и сосущие. Грудной отдел включает три сегмента: переднегрудь, среднегрудь заднегрудь. Две пары крыльев насекомых расположены соответственно на средне- и, заднегруди. Число брюшных сегментов варьирует от З до 11. На сегментах расположены, дыхальца — отверстия, через которые воздух попадает в трахеи. Дыхальца могут открываться и закрываться, регулируя поступление воздуха в трахеи. Насекомые раздельнополы. Основные отряды насекомых:

Отряд Чешуекрылые(бабочки). Отряд Двукрылые. К отряду относятся комары, комнатные мухи, слепни, оводы, мошки, москиты. Отряд Перепончатокрылые. К отряду относятся шмели, пчелы, осы, муравьи, наездники.

11. Мутация

Мутацией (лат. mutatio — перемена) называют внезапные наследственные изменения генетического материала, возникающие без видимых причин (спонтанно), или могут быть индуцированы внешним воздействием на организм. Мутации имеют следующие

свойства:

• они возникают внезапно, скачкообразно;

• наследственны, т.е. передаются из поколения в поколение;

• ненаправлены — может мутировать любой локус хромосом;

• одни и те же мутации могут возникать повторно;

• мутации могут быть полезными и вредными, доминантными и рецессивными.

Различают мутации: 1) геномные, когда в ядре клетки изменяется число хромосом; 2) хромосомные, при которых или изменяется последовательность генов внутри одной хромосомы (инверсия), или часть хромосомы теряется (делеция), или же хромосомы обмениваются частями или присоединяются друг к другу (транслокация). Хромосомные перестройки часто обнаруживаются при помощи оптического микроскопа; 3) точковые, или генные, когда изменяется структура самого гена, т. е. последовательности в нем нуклеотидов, образующих генетический текст. Наиболее часто при этом один нуклеотид заменяется другим, и после этого в белке, который кодируется таким геном, одна аминокислота заменяется другой. В нормальных условиях каждый ген изменяется в каждом поколении у одной из 100 тыс. особей. Радиоактивное и ультрафиолетовое излучения, многие химические соединения (мутагены) повышают темп возникновения мутаций. Многие мелкие мутации практически не снижают жизнеспособности и плодовитости организма (нейтральные), другие приводят к смерти (летальные) или бесплодию. Но некоторые мутации в конкретных условиях оказываются полезными и сохраняются в следующих поколениях естественным отбором или же селекционеро. В эволюции особое значение имеют мутации генотипа половых клеток— гамет. Мутации, возникающие в клетках организма с диплоидным набором хромосом (соматические), не наследуются, кроме случаев бесполого размножения.

12. Естественный отбор процесс, в рез-те кот-го выживают и оставляют после себя потомство преимущественно особи с полезными в данных условиях наследственными изменнениями; протекает медленно, играет творческую роль в природе: из ненаправленных наследственных изменений отбираются те, кот-е могут привести к образованию новых групп особей, более совершенных в данных усл-х сущ-я. Естественный отбор — главная движущая сила процесса эволюции. В рез-те его действия создаётся увеличение числа популяций и повышение разнообр-я их генного состава. При таких усл-ях возм-ти отбора расширяются. При естественном отборе отбирающим фактором служат условия окружающей среды, при этом отбираются любые жизненно важные признаки. Естественный отбор действует только на пользу популяции и вида в целом, приводит к образованию новых популяций и в дальнейшем подвидов и видов. Ест. и Иск. отборы органически связаны. При искусственном человек направляет действие отбора в желательную ему сторону. Человек отбирает особи по замеченным признакам и напр-ет действие отбора в желательную ему сторону. Существуют три формы естественного отбора. 1) Движущий (или направляющий ) естественный отбор это такой отбор, который благоприятствует одному направлению изменчивости и не благоприятствует всем остальным направлениям. Движущий естественный отбор обычно наблюдается при изменении условий окружающей среды. 2) Стабилизирующий естественный отбор это такой отбор, который благоприятен сохранению какого-либо выработанного признака в популяции и неблагоприятен любым его изменениям. Рассмотрим пример с зимней окраской белой куропатки. Белый цвет оперения прекрасно маскирует куропаток на фоне снега. Не трудно понять, что стабилизирующий естественный отбор встречается там, где условия внешней среды постоянны, но при изменении условий приспособительный признак может потерять свое приспособительное значение. В изменившихся условиях стабилизирующий отбор заменится движущим отбором. 3. Разделяющий естественный отбор направлен на сохранение в популяции организмов с противоположными признаками. При этом носители промежуточных признаков уничтожаются (элиминируются) отбором. Например, результатом разделяющего естественного отбора может быть такой признак как скорость развития личинок комаров. В высоких широтах при коротком безморозном периоде популяции комаров, зимующей на стадии личинки или яйца, важно иметь либо высокую, либо низкую скорость развития личинок. Высокая скорость развития позволит до морозного периода осуществить вылет новой генерации комаров и отложить в воду яйца. Замедленное развитие приведет к появлению взрослых насекомых только летом следующего года. Средняя скорость развития личинок вредна для популяции, так как не позволяет успеть до наступления холодов комарам, отложить яйца в воду, то есть оставить новое потомство.

13. Антропогенные факторы — человек и все формы его деятельности, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни. Одни экологические факторы необходимы организму, без них невозможна жизнь; другие не являются обязательными. Все факторы, необходимые для жизни организма (популяции, сообщества), определяют условия его существования. Большинство экологических факторов (температура, влажность,

интенсивность солнечной радиации, источники пищи, конкуренты, паразиты и др.), подвержены значительным колебаниям в пространстве и времени. Воздействие экологического фактора зависит от его интенсивности. Интенсивность действия факторов называют оптимальной (opt) в том случае, если обеспечивается наиболее благоприятное существование организма. Для

каждой особи, популяции, биоценоза оптимальное значение того или иного фактора различно. Оно меняется с возрастом, зависит от силы воздействия других факторов. Недостаточное или избыточное действие фактора отрицательно сказывается на жизни особи. Минимальное (min) и максимальное (тах) значение действующего

фактора, при которых возможна жизнедеятельность, называют пределами выносливости. Это критические точки, за пределами которых существование живого уже невозможно. Границы, за которыми наступает гибель, называют верхними и нижними

пределами выносливости. Фактор среды в конкретных условиях, наиболее удаленный от оптимума, снижает возможность существования вида в данных условиях, несмотря на оптимальные сочетания остальных факторов. Такой фактор, интенсивность которого приближается к пределу выносливости или выходит за его

пределы, называют ограничивающим, или лимитирующим.

Ограничивающие факторы среды определяют географический ареал вида — расселение его по земной поверхности. Выявление ограничивающих факторов очень важно в практике растениеводства, животноводства, в обеспечении комфортного образа жизни человека и сохранения его здоровья. Факторы среды могут оказаться ограничивающими в одних условиях и

неограничивающими в других. Сочетание всех «ограничивающих» факторов называют сопротивлением среды. Одни виды способны выдерживать значительные отклонения от оптимального

значения фактора, т.е. обладают широким диапазоном выносливости и могут существовать при значительных изменениях климата и пищи. Их называют эврибионтными. Другие (стенобионтные) имеют узкий диапазон выносливости и существуют в относительно постоянных условиях среды. Иногда может происходить компенсация одного фактора другими, например, в местах, где мало кальция и много стронция, моллюски используют последний для

построения раковины. Низкая температура на северном пределе распространения растительности компенсируется продолжительностью в течение суток светового периода (беспрерывный световой день летом). Компенсация одного фактора другим всегда ограничена. Ни один из необходимых для жизни факторов не может быть заменен другим. Для жизни и процветания в тех или иных условиях организм должен располагать всеми веществами, которые ему необходимы. Потребности к факторам

внешней среды неодинаковы у разных видов, у одного и того же вида в разных условиях, а также на разных этапах жизненного цикла.

14. Класс Млекопитающие (Звери)

Млекопитающие — теплокровные позвоночные животные с развитым волосяным покровом и вскармливающие своих детенышей молоком. Сердце у них четырехкамерное, хорошо развита центральная нервная система. Для этого класса характерно живорождение и забота о потомстве. Большинство млекопитающих — четвероногие животные, у которых туловище высоко поднято над землей, а конечности располагаются под туловищем. Такое строение тела способствует более совершенному передвижению их по суше. У млекопитающих хорошо выражена шея, что позволяет голове иметь большую степень подвижности. Волосяной покров на теле неоднороден. Подшерсток — мягкий тонкий волос, не имеющий волосяных луковиц в коже, служащий для сохранения тепла. Ость — грубый волос, защищающий тело от намокания и повреждений и имеющий волосяные луковицы в коже. Роговыми образованиями являются когти, ногти, копыта и рога. Кожа зверей эластична и имеет сальные и потовые железы. Потовые железы выделяют пот, сходный по химическому составу с мочой. Пот, испаряясь, предохраняет тело от перегрева. Млечные железы есть только у самок и являются производными потовых желез. В связи с приспособлением к передвижению в разных средах конечности у млекопитающих имеют разную форму. Например, у китов и дельфинов конечности изменены в ласты, а у летучих мышей — в крылья. Расположенные во рту млекопитающих зубы дифференцированы на резцы, клыки и коренные зубы. Глаза имеют веки с ресницами. Мигательная перепонка недоразвита. Слух и обоняние хорошо развиты почти у всех млекопитающих. Органы осязания находятся на коже. Эту роль выполняют длинные жесткие волосы, расположенные на бровях, щеках, подбородке и губах. У млекопитающих хорошо развиты мышцы спины, ног и поясов конечностей. После проглатывания пища движется по пищеводу в желудок, где начинает перевариваться. У большинства млекопитающих желудок однокамерный (кроме жвачных). В его стенках находятся железы, выделяющие желудочный сок.

15. Класс Птицы Птицы — высокоорганизованные позвоночные. Их тело покрыто перьями, передние конечности видоизменены в крылья. Имеют постоянную температуру тела, которая обеспечивается интенсивным обменом веществ. Птицы обладают сложным инстинктивным поведением. Птицы отлично приспособлены к полету: тело обтекаемой формы, облегченный скелет, воздушные мешки в легких и др. На голове птиц есть пара глаз, позади которых расположены органы слуха. Глаза защищены дополнительным третьим веком. Птицы обладают очень острым зрением. Ухо состоит из трех отделов: наружного, среднего и внутреннего. Челюсти вытянуты в клюв и одеты роговым покровом. Форма и размеры клюва зависят от характера употребляемой пищи. В клюве различают надклювье и подклювье. Перьевой покров птиц составляют контурные и пуховые перья. Контурные перья имеют прочный стержень, нижняя часть которого погружена в кожу. Широкая часть пера — опахало состоит из бородок 1-го и 2-го порядка, сцепленных между собой крючочками. Среди контурных перьев различают рулевые, участвующие в управлении полетом, и маховые, образующие поверхность крыльев. Под контурными перьями расположены пуховые, имеющие тонкий стержень и бородки первого порядка. Они способствуют сохранению постоянной температуры тела. Кости скелета тонкие и прочные. Полости трубчатых костей заполнены воздухом, что облегчает полет птиц. Шейный отдел позвоночника образован большим числом подвижных позвонков. Поясничные и крестцовые позвонки прочно срослись и служат опорой туловищу. К грудным позвонкам прикрепляются ребра, образуя с грудиной грудную клетку. Грудина имеет вырост — киль, к которому крепятся грудные мышцы, приводящие в движение крылья. Череп имеет достаточно крупную мозговую коробку с большими глазницами и вытянутыми костями челюстей, лишенными зубов. Все птицы заботятся о потомстве: находят для него корм, согревают, защищают от хищников и обучают летать птенцов. Основные отряды птиц: Куринные(тетерев, рябчик, индейка); Водоплавающие птицы (утки, гуси); Дневные хищные птицы (ястребы, соколы); Ночные хищники (совы, филины); Степные (страусы, дрофы); Птицы открытых воздушных пространств (стрижи, ласточки); Птицы болот и побережий (цапли, аисты, выпи); Воробьиные (воробьи, дрозды, жаворонок).

16. Вирусы. Вирусы — очень мелкие неклеточные формы, различимые лишь в электронный микроскоп, состоят из молекул ДНК или РНК, окруженных молекулами белка. Вирусы могут воспроизводить себя только внутри живой клетки, поэтому они являются облигатными паразитами. Обычно они вызывают явные признаки заболевания. Попав внутрь клетки-хозяина, они «выключают» хозяйскую ДНК и, используя свою собственную ДНК или РНК, дают клетке команду синтезировать новые копии вируса. Вирусы передаются из клетки в клетку в виде инертных частиц. Вирусы устроены очень просто. Они состоят из фрагмента генетического материала, либо ДНК, либо РНК, составляющей сердцевину вируса, и окружающей эту сердцевину защитной белковой оболочкой, которую называют капсидом. Полностью сформированная инфекционная частица называется вирионом. У некоторых вирусов, таких, как вирусы герпеса или гриппа, есть еще и дополнительная липопротеидная оболочка, которая возникает из плазматической мембраны клетки-хозяина. В отличие от всех остальных организмов вирусы не имеют клеточного строения. Жизненные циклы большинства вирусов, вероятно, схожи. А вот в клетку они, по-видимому, проникают по-разному, поскольку в отличие от вирусов животных бактериальным и растительным вирусам приходится проникать еще и через клеточную стенку. Проникновение в клетку не всегда происходит путем инъекции, и не всегда белковая оболочка вируса остается на внешней поверхности клетки. Попав внутрь клетки-хозяина, некоторые фаги не реплицируются. Вместо этого их нуклеиновая кислота включается в ДНК хозяина. Здесь эта нуклеиновая кислота может оставаться в течение нескольких поколений, реплицируясь вместе с собственной ДНК хозяина. Такие фаги известны под названием умеренных фагов, а бактерии, в которых они затаились, называются лизогенными. Это означает, что бактерия потенциально может лизироваться, но лизиса клеток не наблюдается до тех пор, пока фаг не возобновит свою

деятельность. Такой неактивный фаг называется профагом или провирусом.

17. ОНТОГЕНЕЗ (ИНДИВИДУАЛЬНОЕ РАЗВИТИЕ ОСОБИ)

Онтогенез — индивидуальное развитие особи — начинается с момента слияния сперматозоида с яйцеклеткой и образования зиготы, заканчивается смертью. Есть два типа онтогенеза: прямой и непрямой. Непрямое развитие может быть личиночным, прямое развитие — в двух формах: неличиночной и внутриутробной.

Личиночная форма характеризуется наличием одной или нескольких

личиночных стадий. Личинки активно питаются, имеют временные органы. Этот тип развития сопровождается метаморфозом.

Неличиночная форма развития характерна для рыб, рептилий, птиц. Яйца этих животных богаты желтком. Для дыхания, выделения, питания развивающегося зародыша есть временные органы.

Внутриутробная форма характерна для млекопитающих и человека. Все функции зародыша осуществляются за счет организма матери, с помощью специального органа — плаценты.

18. Земноводные, или амфибии, сильно отличаются от всех вышеописанных позвоночных. В жизни их нужно различать два периода: в молодости они сходны с рыбами и дышат жабрами, а затем постепенно превращаются в животных с легочным дыханием. Таким образом, в цикле развития земноводных имеет место превращение, которое почти не встречается у других позвоночных, и, наоборот, широко распространено у низших, беспозвоночных животных.

По образу жизни и по наружному виду земноводные имеют большое сходство, с од­ной стороны, с пресмыкающимися, а с дру­гой, еще больше — с рыбами; личиночная стадия их составляет как бы переход между этими двумя отрядами.

Форма тела бывает очень различная. Хвостатые земноводные сходны более с ры­бами, имеют сжатое с боков туловище и длинный весловидный хвост; у других ту­ловище округлое или плоское, а хвост со­всем отсутствует. Конечностей у некото­рых амфибий совершенно нет, у других они развиты очень слабо, у третьих, на­оборот, сильно развиты.

Устройство скелета земноводных до не­которой степени сходно с тем, которое мы увидим дальше у рыб. У рыбообразных амфибий позвонки совершенно такие же, как и у рыб; у других же развиваются позвон­ки с сочленовой головкой впереди и ямоч­кой сзади, чем обусловливается полное со­членение. Поперечные отростки позвонков у всех амфибий хорошо развиты, но настоящие ребра обыкновенно не развиваются: вместо них бывают лишь маленькие костяные или хрящевые придатки. Вышеупомянутые попе­речные отростки у некоторых бывают очень длинны и заменяют недостающие ребра.

Устройство черепа бывает разнообразно; здесь можно заметить постепенное усложне­ние и увеличение костных образований засчет хрящевых и соединительно-тканных. Характерным признаком всего класса земно­водных являются две сочленовые головки на затылочной части черепа, которые соот­ветствуют двум ямочкам первого шейного позвонка. Череп всегда плоский, широкий, глазные впадины очень велики. Череп­ная коробка состоит из двух затылочных костей, двух лобных, основной кости. В боковых стенках черепа по большей части окостенения не происходит совсем, или же хрящ окостеневает отчасти. Небные ко­сти неподвижно соединены с черепом; на них, точно так же как на сошнике и на клиновидной кости, иногда сидят зубы. Ниж­няя челюсть состоит из двух или более частей и никогда не окостеневает вполне. Мозг земноводных имеет простое устрой­ство. Он имеет удлиненную форму и состоит из двух передних полушарий, среднего мозга и мозжечка, представляющего лишь узкий поперечный мостик, и продол­говатого. Спинной мозг развит гораздо силь­нее, чем головной.

Из чувств более развиты зрение, слух и обоняние. Язык у большинства амфибий хорошо развит и у лягушек существенно от­личается от языка других позвоночных тем, что прикреплен не задним, а перед­ним концом и может выбрасываться изо рта. Зубы, как и у пресмыкающихся, приспо­соблены лишь к схватыванию и к удержанию добычи, но не могут служить для разжевывания ее.

Пищеварительный канал сравни­тельно короток и просто устроен; он со­стоит из длинного пищевода, простого тол­стостенного желудка и задней кишки. У всех амфибий лопастная печень, желчный пузырь, поджелудочная железа, почки и мо­чевой пузырь.

Органы кровообращения и дыха­тельные имеют огромное значение в жиз­ни амфибий и будут рассмотрены далее, в связи с историей развития. Особенность земноводных заключается в отсутсвии каких-либо твердых наружных покровов, почему они называются голыми гадами. Действительно, у них нет ни че­шуи, как у рыб и пресмыкающихся, ни перьев, как у птиц, ни шерсти, как у млекопитающих: большинство покрыты сна­ружи лишь голой кожей, и только у очень немногих на коже имеются некоторые следы или подобия роговых образований. Зато в коже земноводных имеются некоторые обра­зования, которых нет у других позвоноч­ных.

В соединительно-тканном слое кожи у некоторых амфибий находятся небольшие капсюли, наполненные студенистым веще­ством; у других образуются довольно объ­емистые полости, приспособленные для раз­вития и первоначального хранения зароды­шей. Наконец, у некоторых в коже иногда появляются окостенения или твердые пла­стинки, похожие отчасти на рыбьи чешуйки. Верхний слой кожи очень тонок и в нем часто заключаются различные красящие ве­щества.

Впрочем, окраска у некоторых земно­водных может меняться, как мы видели это у хамелеонов, и обусловливается в большинстве случаев взаимным располо­жением и состоянием особых пигментных клеток, заключенных в коже. Сжатие или расширение, изменение формы, приближение к наружной поверхности кожи или удаление от нее все это придает ту или другую окраску коже и вызывается как измене­нием внешних условий, так и внутренним раздражением.

Как в верхнем слое кожи, так и во внутреннем у всех земноводных нахо­дится очень много железок различной ве­личины и различного назначения. Наиболее интересные из них ядовитые железы. Они расположены в нижнем слое кожи, име­ют шаровидную или овальную форму, отде­ляют слизистую жидкость, в которой на­ходится ядовитое вещество. Амфибии, у кото­рых более развиты такие железы, могут произвольно увеличивать выделения секрета этих желез и употребляют его как средство защиты. В настоящее время установ­лено, что яды некоторых земноводных очень сильны, но для человека и крупных животных они не опасны потому. что содержатся в слизи лишь в очень не­значительной примеси. Однако опыты пока­зывают, что яд этот может быть смер­телен для многих животных. Впрыскива­ние яда жаб в кровь маленьких птиц быстро убивает их; точно так же ядовитая слизь жаб, введенная в кровь щенят, морских свинок, лягушек и тритонов, действует смертельно. У некоторых жаб, и в особенности у саламандр, очень разви­ты слизистые железы, из коюрых они могут по своему произволу вызывать очень обильное выделение, даже брызжут каплями ядовитой жидкости; отсюда и произошло на­родное поверье, будто саламандра не юрит в огне.

Эластичная, очень тонкая и ничем не покрытая кожа земноводных имеет боль­шое значение в их жизни. Ни одна амфи­бия не пьет воды обыкновенным спосо­бом, а всасывает се исключительно че­рез кожу. Вот почему для них необ­ходима близость воды или сырость. Ля-тушки, удаленные от воды, быстро худеют, делаются вялыми и скоро совсем погибают. Если к таким изнуренным сухостью ля­гушкам положить мокрую тряпку, то они на­чинают прижиматься к ней своим те­лом и быстро оправляются. Насколько ве­лико количество воды, которую всасывают лягушки через кожу, видно из следующе­го опыта Томсона. Он взял обсохшую дре­весную лягушку и, взвесив, нашел, что вес ее равняется 95 граммам. После этого он обернул ее мокрой тряпкой, и через час она весила уже 152 г. Через кожу у амфибии вода всасывается и выпотевает. Через кожу также происходит обмен га­зов. В закрытой жестяной коробке лягуш­ка, окруженная влажной атмосферой, может прожить 20 40 дней, даже в том случае, если доступ воздуха в легкие прекращен.

У большинства земноводных первоначаль­ное развитие зародышей происходит так же, как и у рыб. Яйца откладываются обык­новенно в воду в виде икры, которая опло­дотворяется позднее, уже в воде. Яйца окру­жены бывают толстым слоем студенисто­го вещества. Эта оболочка имеет большое значение для зародыша, так как яйцо та­ким образом предохраняется от высыха­ния, от механических повреждений, а глав­ное, она предохраняет их от поедания други­ми животными; действительно, очень немногие птицы в состоянии проглотить студенистый комок лягушечьей икры; та же самая обо­лочка предохраняет яйца и от нападения рыб, моллюсков и водяных насекомых.

После того как зародыш закончит пер­воначальные стадии своего развития, личинка прорывает студенистую оболочку, питаясь ею, и начинает вести в воде самостоятель­ную жизнь.

Личинка имеет плоскую приплюснутую i олову, округлое тело и длинный веслообраз-ный хвост, отороченный сверху и снизу кожистым плавником. На голове отраста­ют первоначально наружные жабры в ви­де древовидно разветвленных отростков. Через некоторое время, эти жабры отпа­дают, и вместо них образуются внутрен­ние жабры. Тело постепенно еще более сужи­вается, хвостовой плавник увеличивается, и мало-помалу начинают развиваться конеч­ности; у головастиков-лягушек вырастают сначала задняя, а потом передняя конечно­сти, а у саламандр — наоборот. Головастики питаются сначала преимущественно расти­тельной пищей, но постепенно более и более переходят к животной. В то же время происходят изменения и в организации всего тела: хвост, который сначала является един­ственным органом движения, по мере раз­вития конечностей теряет свое значение и укорачивается; кишечник становится короче и приспособляется к перевариванию живот­ной пищи; заостренные роговые пластинки, которыми вооружены челюсти головастика, постепенно исчезают и заменяются настоя­щими зубами. Все укорачивающийся хвост наконец совсем отпадает—и головастик превращается во взрослую лягушку.

В развитии мозга и органов чувств зем­новодных замечается большое сходство с рыбами. Сердце образуется у личинок очень рано и тотчас же начинает действовать. Первоначально оно представляет простой ме­шок, который впоследствии разделяется на отдельные части. Аорта проходит в жа­берные дуги и разветвляется сначала в на­ружных жабрах, а позднее во внутренних. Обратно кровь течет по вене, идущей вдоль хвоста, а затем разветвляется на поверх­ности желточного пузыря и через желточ­ные вены возвращается обратно в предсер­дие. Позднее постепенно образуются воротные системы печени и почек. В конце личи­ночной стадии жаберное дыхание мало-пома­лу заменяется легочным; передние жаберные дуги превращаются в головные артерии, а средние образуют аорту.

 Земноводные живут во всех частях света и во всех поясах, за исключением стран полярных. Вода еще больше, чем теплота, является необходимым условием их существования, так как почти все зем­новодные проводят личиночные стадии в воде. Живут они исключительно в прес­ных водах, избегая морской или вообще соленой. Почти половина амфибий проводит всю свою жизнь в воде, другие же во взрослом состоянии поселяются на суше, хотя и держатся всегда вблизи воды и в местах сырых; в местностях совершен­но сухих земноводных нет, по они мо­гут жить там, где при общей сухости в известное время регулярно идут дожди. Сухое время года в таких странах прово­дят в спячке, глубоко зарывшись в ил; в умеренном поясе точно так же подвержены зимней спячке. Тропические страны, обиль­ные лесами и водой, являются наиболее бла­гоприятными для их жизни. Таковы цен­тральные части Южной Америки. Мадагаскар, острова Малайского архипелага, где в изо­билии растут девственные, влажные леса; наоборот. Средняя Азия, Австралия и большая часть внутренней Африки очень бедны зем­новодными. Все земноводные прекрасно пла­вают в воде не только в личиночном состоянии, но и во взрослом; па суше хво­статые ползают, как пресмыкающиеся, а бесхвостые передвигаются короткими тяже­лыми прыжками; многие из них могут даже лазить по деревьям.

В противоположность пресмыкающимся земноводные почти все голосисты; многие из них могут быть названы даже певунами, хотя голос их далеко не так приятен, как у птиц.

Впрочем, кричать и петь могут только взрослые самцы, а самки, равно как и все молодые амфибии, могут быть названы не­мыми. Душевные способности у земноводных раз­виты не более, чем у пресмыкающихся. По мнению некоторых исследователей, в об­щем их следует причислить к самым глупым из всех позвоночных.

Все, что говорилось о пресмыкающихся от­носительно незначительной степени их жиз­недеятельности, вполне применимо и к зем­новодным, которые имеют также холодную кровь. Общественная жизнь у них столь же мало развита; впрочем, забота о потомстве у них заметна несколько более, чем у пресмы­кающихся.

Большинство амфибий ведут ночной об­раз жизни, начиная с заката солнца и до утра. Днем многие из них заползают куда-нибудь в трещины или под камни и сидят неподвижно, другие пользуются сол­нечной теплотой и проводят день в полу­дремоте.

Пища земноводных изменяется сообразно с возрастом. Личинки поедают всякие мелкие организмы, как растительные, так и животные: инфузорий, коловраток, микроскопических ракообразных и мелкие водоросли; но по мере превращения у них бо­лее и более является потребность в живот­ной пище. Взрослые амфибии уже настоящие хищники и преследуют всех живот­ных, которых могут осилить, начиная с червячков и насекомых и кончая мелки­ми позвоночными; они поедают даже ли­чинки своего же вида, если в состоянии их проглотить. Большинство из них отлича­ются большой прожорливостью, которая воз­растает с повышением температуры окру­жающей среды; так, весной лягушки едят меньше, чем летом, хотя пробуждаются после зимней спячки сильно исхудавшими; точно гак же тропические виды прожорливее обитателей умеренных стран.

 В начале своей жизни амфибии рас гут очень быстро, но с течением времени рост их сильно замедляется. Лягушки становятся зрелыми лишь на 4 5 году жизни, но продол­жают расти еще лег до 10; другие дости­гают своей настоящей величины лишь лет в 30.

Голодание земноводные способны выно­сить не менее пресмыкающихся; жаба, по­саженная в сырое место, может пробыть без пищи более года.

Точно так же земноводные обладают и спо­собностью восстанавливать утраченные части: отломленный хвост, отрезанный палец и даже целая нога вырастают вновь: однако способность эта у более высоко организован­ных форм заметно уменьшается и даже совсем исчезает. Поранения у них зажи­вают столь же легко, как и у пресмыкающихся. Вообще живучесть некоторых ам­фибий поразительна, в особенности отлича­ются этим качеством хвостатые амфибии. Саламандру или тритона можно совершенно заморозить в воде; в таком состоянии они становятся ломкими и не проявляют реши­тельно никаких признаков жизни; но лишь только лсд растает, животные эти про­буждаются снова и, как ни в чем не бывало, продолжают жить. Вынутый из воды и помещенный в сухое место, три­тон съеживается и представляет совершенно безжизненную массу. Но стоит только этот мертвый комок бросить в воду, как снова получается живой тритон в полном бла­гополучии.

Саламандры, жабы и лягушки спасаются даже в совершенно безвыходном положе­нии: случалось, что из желудка убитой змеи, при вскрытии, к великому удивлению иссле­дователя, выпрыгивали ожившие жабы, у ко­торых некоторые части тела были уже пе­реварены. Вследствие наружного сходства с пресмыкающимися, отвращение и враждебное чувство совершенно по заслугам внушае­мое нам последними, переносится и на зем­новодных. Однако это несправедливо и не­разумно, так как из земноводных ни одно не может быть названо действительно вредным, а большинство, наоборот, очень полезны истреблением вредных насеко­мых.

По наружному виду и но степени организации земноводных разделяют на три отряда: бесхвостых, хвостатых и безногих.

19. Царство Грибы

Строение грибов

Тело грибов состоит из тонких ветвящихся трубчатых нитей — гиф. Вся совокупность гиф называете» мицелием. Каждая гифа окружена тонкой жесткой стенкой, содержащей хитин. В некоторых случаях клеточная стенка содержит целлюлозу. Питание грибов: Грибы гетеротрофны, т.к. для питания им нужны готовые органические вещества. Кроме этого, грибам необходим источник органического азота, минеральные соли и факторы роста (витамины). Грибы поглощают питательные вещества, всасывая их всей поверхностью путем диффузии. Пищеварение у грибов внешнее, осуществляемое внеклеточными ферментами. По типу питания грибы бывают сапрофитами, паразитами и симбионтами. Грибы вступают в симбиоз с растениями, которые обеспечивают их органическими веществами. Гриб образует чехол вокруг центральной части корня или проникает в ткани растения, получая от растения углеводы и витамины и обеспечивая дерево большой поверхностью всасывания воды. Грибы-сапрофиты обычно образуют большое количество легких устойчивых спор, которые позволяют им быстро распространяться. Грибы-паразиты могут быть факультативными или облигатными. Чаще паразитируют на растениях, чем на животных. Облигатные паразиты, как правило, не вызывают гибели своих хозяев, а факультативные паразиты — наоборот, сапрофитно живут и на мертвых остатках. К облигатным паразитам относятся мучнисторосные, ржавчинные и головневые грибы. Факультативные паразиты обычно вызывают гниль.

Размножение грибов Вегетативное размножение осуществляется частями мицелия. У дрожжевых грибов вегетативное размножение происходит почкованием. Бесполое размножение осуществляется спорами, они прорастают в трубочку, из которой развивается мицелий. Половой процесс состоит в слиянии мужских и женских гамет. Самым ядовитым грибом считают бледную поганку.

20. Половой диморфизм — наличие морфофизиологических различий между особями мужского и женского пола. Проявляется в широком спектре соматических, физиологических и поведенческих различий. Его сущность — в особенностях процессов воспроизведения и собственно размножения. В нём отражается природная целесообразность — наиболее оптимальный механизм в воспроизведении, когда на генетическом уровне происходит не просто копировка, но создаётся возможность биологического контроля и выбраковывания невыгодных и отбор более выгодных видовых качеств. При этом женский пол олицетворяет устойчивость, через него действует стабилизирующий отбор, а мужской пол несёт функции подвижного начала и создаёт поле для эволюционной изменчивости. Современная биология объясняет наличие половых различий на всех уровнях развития и функционирования организма, но вместе с тем, наряду с взаимоисключающими свойствами (один и тот же индивид не может в норме одновременно обладать мужскими и женскими гениталиями), существует множество бисексуальных качеств, присущих особям обоего пола. Это верно для соматических и поведенческих свойств, которые часто не совпадают. Понятие полового диморфизма первоначально не различало генетической, гормональной, морфологической, поведенческой и психологической дифференцировки индивидов. Предполагалось, что все эти измерения совпадают и детерминируются одними и теми же причинами, а по телосложению индивида можно судить и о его гормональной конституции, и о его психосексуальной ориентации.

21. Хим. Состав клетки.

По содержанию элементы, входящие в состав клетки, можно разделить на 3 группы:

1. Макроэлементы. Они составляют основную массу вещества клетки. На их долю приходится около 99% всей массы клетки. Особенно высока концентрация четырех элементов: кислорода, углерода, азота и водорода (98% всех макроэлементов). К макроэлементам относят также элементы, содержание которых в клетке исчисляется десятыми и сотыми долями процента. Это, например, такие элементы, как калий, магний, натрий, кальций, железо, сера, фосфор, хлор.

2. Микроэлементы. К ним относятся преимущественно ионы тяжелых металлов, входящие в состав ферментов, гормонов и других жизненно важных веществ. В организме эти элементы содержатся в очень небольших количествах: от 0,001 до 0,000001%; в числе таких элементов бор, кобальт, медь, молибден, цинк, ванадий, йод, бром и др.

3. Ультра микроэлементы. Концентрация их не превышает 0,000001%. К ним относятся уран, радий, золото, ртуть, бериллий, цезий, селен и другие редкие элементы. Роль ряда ультра микроэлементов в организме еще не уточнена или даже неизвестна (мышьяк). При недостатке этих элементов могут нарушаться обменные процессы.

Минеральные соли. Большая часть неорганических веществ в клетке находится в виде солей — либо диссоциированных на ионы, либо в твердом состоянии. Из катионов важны К+ , Na+ , Са2-, Mg2+, а из анионов H2PO4-, Cl-, НС03-. Концентрация различных ионов неодинакова в различных частях клетки и особенно в клетке и окружающей среде. Так, концентрация ионов натрия всегда во много раз выше во внеклеточной среде, чем в клетке, а ионы калия и магния концентрируются в значительно большем количестве внутри клетки. От концентрации солей внутри клетки зависят буферные свойства цитоплазмы, т.е. способность клетки сохранять определенную концентрацию водородных ионов.

57) Гельминты, или глисты, это паразитические черви, которые поселяются в организме человека и различных животных. Есть также гельминты па­разиты растений. По форме и строению паразитические черви разделяются на две большие группы: круглые, или нематоды, и плоские. Плоские, в свою очередь, под­разделяются на трематод и цестод (ленточных чер­вей). У трематод плоская листовидная форма тела, на теле имеются две присоски или реже одна. Некото­рые виды их очень малыот 1 до 3 мм, другие довольно крупные, достигают 10 см и более. У цестод тело удлиненное в виде ленты, оно состоит из головки, шейки и ряда отдельных члеников. Цестоды бывают различных размеров от очень мел­ких, в 1—2 мм, до очень крупных, достигающих 10 м и более. Число члеников у цестод тоже раз­лично: у одних видов всего 1—2 членика, у других их сотни и даже тысячи. Головкой паразит при­крепляется к тканям хозяина. За головкой тело суживается; это место называется шейкой. У нематод, или круглых червей, удлиненное нитевидное тело; в поперечном сечении нематоды круглые. Длина их от миллиметра до метра и даже более.

Развитие гельминтов протекает различно. Одни виды паразитируют и в личиночной и во взрослой стадии в одном хозяине. Таковы аскариды, власогла­вы, острицы, цепни карликовые и некоторые другие. Другие гельминты меняют хозяев. В личиночной ста­дии они живут в одном хозяине, а во взрослойв другом. Наиболее часто гельминты живут в кишечнике, но бывают такие формы, которые паразитируют в пе­чени, сердце, мышцах, глазах, крови, почках, мозгу и в других органах и тканях человека и животных. Чтобы удержаться в кишечнике, гельминты воору­жены специальными приспособлениями. У одних ви­дов есть присоски, у других маленькие плоские крючочки, у третьих своеобразные зубы. Поселяясь в организме хозяина, они питаются за его счет. При этом одни питаются кровью и тканевыми соками, а другие, живущие в кишечнике, частично поглощают питательные вещества, необходимые для питания организма хозяина. В про­цессе жизнедеятельности гельминты выделяют ядо­витые вещества, которые всасываются в кровь хозяина и отрицательно действуют на его нервную си­стему, кроветворные и другие органы. Наиболее ча­сто гельминты вызывают нарушение аппетита, тош­ноту, боли в животе, головные боли, головокруже­ние, общую слабость. Гельминты, паразитирующие в кишечнике, печени и легких, откладывают яйца. Яйца различны у каж­дого вида гельминтов и видимы только в микроскоп.

21. Обмен веществ и энергии — это совокупность физических, химических и физиологических процессов превращения веществ и энергии в живых организмах, а также обмен веществами и энергией между организмом и окружающей средой. Обмен веществ у живых организмов заключается в поступлении из внешней среды различных веществ, в превращении и использовании их в процессах жизнедеятельности и в выделении образующихся продуктов распада в окружающую среду.
Все происходящие в организме преобразования вещества и энергии объединены общим названием — метаболизм (обмен веществ). На клеточном уровне эти преобразования осуществляются через сложные последовательности реакций, называемые путями метаболизма, и могут включать тысячи разнообразных реакций. Эти реакции протекают не хаотически, а в строго определенной последовательности и регулируются множеством генетических и химических механизмов. Метаболизм можно разделить на два взаимосвязанных, но разнонаправленных процесса: анаболизм (ассимиляция) и катаболизм (диссимиляция).
Анаболизм — это совокупность процессов биосинтеза органических веществ (компонентов клетки и других структур органов и тканей). Он обеспечивает рост, развитие, обновление биологических структур, а также накопление энергии (синтез макроэргов). Анаболизм заключается в химической модификации и перестройке поступающих с пищей молекул в другие более сложные биологические молекулы. Например, включение аминокислот в синтезируемые клеткой белки в соответствии с инструкцией, содержащейся в генетическом материале данной клетки.
Катаболизм — это совокупность процессов расщепления сложных молекул до более простых веществ с использованием части из них в качестве субстратов для биосинтеза и расщеплением другой части до конечных продуктов метаболизма с образованием энергии. К конечным продуктам метаболизма относятся вода (у человека примерно 350 мл в день), двуокись углерода (около 230 мл/мин), окись углерода (0,007 мл/мин), мочевина (около 30 г/день), а также другие вещества, содержащие азот (примерно б г/день). Катаболизм обеспечивает извлечение химической энергии из содержащихся в пище молекул и использование этой энергии на обеспечение необходимых функций. Например, образование свободных аминокислот в результате расщепления поступающих с пищей белков и последующее окисление этих аминокислот в клетке с образованием СО2, и Н2О, что сопровождается высвобождением энергии.
Процессы анаболизма и катаболизма находятся в организме в состоянии динамического равновесия. Преобладание анаболических процессов над катаболическими приводит к росту, накоплению массы тканей, а преобладание катаболических процессов ведет к частичному разрушению тканевых структур. Состояние равновесного или неравновесного соотношения анаболизма и катаболизма зависит от возраста (в детском возрасте преобладает анаболизм, у взрослых обычно наблюдается равновесие, в старческом возрасте преобладает катаболизм), состояния здоровья, выполняемой организмом физической или психоэмоциональной нагрузки.

22. Эволюционное учение Дарвина Ч. Дарвин доказал, что огромное многообразие видов, населяющих Землю, образовалось благодаря постоянно возникающим в природе разнонаправленным наследственным изменениям и естественному отбору. Способность организмов к интенсивному размножению, и одновременное выживание немногих особей привели Дарвина к мысли о наличии между ними борьбы за существование, следствием которой является выживание организмов, наиболее приспособленных к конкретным усповиям среды и вымиранию неприспособленных. Движущие силы эволюции: * Борьба за существование — совокупность многообразных и сложных взаймоотношений, существующих между организмами и условиями среды. Различают борьбу внутривидовую (между особыми одного вида), межвидовую (между особями разных видов) и борьбу с неблагоприятными условиями. Внутривидовая борьба является наиболее острой, так как особи одного вида имеют сходные потребности для выживания. * Естественный отбор — процесс избирательного воспроизведения организмов, происходящий в природе, в результате которого в популяции возрастает доля особей с полезными Дли вида признаками и свойствами в конкретных условиях среды. Творческая роль отбора заключается в том, что в процессе эволюции он сохраняет и накапливает из разнонаправленных мутаций наиболее соответствующие условиям среды и полезные для вида. * Наследственная изменчивость, (мутационная или генотипическая) связана с изменением генсугипа особи, поэтому возникающие изменения наследуются. Она является материалом для естественного отбора. Дарвин назвал эту наследственность неопределенной. Источником наследственной изменчивости являются мутации. Образование новых видов начинается в популяциях, насыщенных постоянно возникающими мутациями, которые при свободном скрещивании приводят к изменениям генотипов и фенотипов. Изменение условий существования ведет к расхождению признаков среди особей данной популяции, к дивергенции. Исходная популяция образует группу форм, имеющих различную степень отклонений признаков. Отдельные организмы с измененными признаками способны осваивать новые места обитания, увеличивать свою численность. При движущем отборе наибольшие возможности выжить и оставить плодовитое потомство имеют особи с крайними, контрастными отклонениями. Промежуточные формы больше контактируют и быстрее вымирают. Так в исходной популяции возникают новые фуппы особей, из которых вначале образуются новые популяции, а затем, при последующей дивергенции, новые подвиды и виды. Принцип дивергенции объясняет происхождение многообразия жизненных форм. Согласно общепринятой классификации, систематической единицей живых организмов является вид. Вид — это группа особей, сходных по строению, происхождению и характеру физиологических процессов; свободно скрещивающихся между собой и дающих плодовитое потомство. Особи одного вида имеют одинаковые приспособления к жизни в определенных условиях. Любой вид, состоящий из одной или нескольких популяций, представляет собой единое целое. Целостность достигается связями между особями вида: заботой о потомстве, общением через различные сигналы, совместной защитой от врагов, скрещиванием. Целостность достигается и биологической изоляцией — обособленностью от других видов (особи разных видов, как правило, не скрещиваются). Все это характеризует вид как надорганизменную систему. Критерии вида:* Морфологический — сходство внешнего и внутреннего строения особей. * Физиологический — сходство процессов жизнедеятельности, сроков размножения. * Географический — занимаемый особями вида ареал (территория) характерен для всех особей вида. Он может быть большим или маленьким, прерывистым или сплошным* Экологический — ниша, занимаемая особями одного вида внутри ареала, обусловленная определенными экологическими условиями (влажностью, температурой и т.д.). * Генетический — главный критерий. Это характерный для каждого вида набор хромосом, их определённое число, размеры и форма. Особи разных видов имеют разные наборы хромосом и поэтому не могут скрещиваться, т. к. невозможна конъюгация при мейозе. При установлении видовой принадлежности правильно характеризует вид вся совокупность критериев

23. СТАРОСТЬ КАК  ЭТАП ОНТОГЕНЕЗА

Старение — общебиологическая закономерность, свойственная всем жи­вым организмам.

Старость характеризуется рядом внешних и внутренних признаков. Воз­никновение их связано не только с календарным возрастом, но и с рядом других причин, из которых для человека наибольшее значение имеют социальные факторы и болезни. Поэтому следует различать физиологи­ческую и преждевременную старость. У стариков осанка становится согбенной, появляются седина и облы­сение, кожа истончается, теряет эластичность и покрывается морщина­ми, выпадают зубы, гаснет блеск глаз, притупляется острота органов чувств, по­степенно снижается половая активность. Движения стариков теряют плавность, становятся медленными и неуверенными, снижается работоспособность, слабеет память. Однако у многих людей до глу­бокой старости сохраняется высокий уро­вень интеллектуальной деятельности, спо­собность к обобщениям, к концентрации внимания в работе. Eсли в молодом организме органы ра­стут, то в старости они подвергаются об­ратному развитию — инволюции (изгиб). Уменьшаются разме­ры печени, почек, снижаются функцио­нальные способности всех систем. Крове­носные сосуды теряют эластичность, ста­новятся ломкими. Снижается невосприимчи­вость к инфекционным болезням, падает способность к регенерации и теплообразованию.

Like this post? Please share to your friends:
  • Шпоры на экзамен по географии
  • Шпоры для профильной математики егэ 2022
  • Шпоры на экзамен по вождению
  • Шпоры по биологии егэ 2022
  • Шпоры для подготовки к егэ по русскому