Системы уравнений с двумя переменными егэ

Поиск

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 165    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …

Добавить в вариант

Решите систему уравнений:  система выражений  новая строка x в квадрате =y, новая строка косинус y= корень из 3 синус левая круглая скобка x в квадрате правая круглая скобка . конец системы


При каждом а решите систему уравнении  система выражений  новая строка x в квадрате плюс y в квадрате плюс 2 левая круглая скобка x минус y правая круглая скобка плюс 2=0,  новая строка a в квадрате плюс ax плюс ay минус 4=0. конец системы .


Решите систему уравнений:  система выражений  новая строка yctg x= минус 9, новая строка y тангенс x= минус 3. конец системы


Решите систему уравнений:  система выражений  новая строка x в квадрате =8 синус y плюс 1, новая строка x плюс 1=2 синус y. конец системы


Решите систему уравнений:  система выражений  новая строка y в квадрате =4 косинус x плюс 1, новая строка y плюс 1=2 косинус x. конец системы


При каждом а решите систему уравнении  система выражений  новая строка x в квадрате плюс y в квадрате плюс 4 левая круглая скобка x минус y правая круглая скобка плюс 8=0,  новая строка a в квадрате плюс ax плюс ay минус 16=0. конец системы .


Решите систему уравнений:  система выражений  новая строка x синус y=3, новая строка x косинус y=4. конец системы


Решите систему уравнений:  система выражений дробь: числитель: синус 2x минус косинус x, знаменатель: корень из y плюс 1 конец дроби =0,y=4 синус x минус 3. конец системы


Решите систему уравнений:  система выражений дробь: числитель: синус 2x плюс косинус x, знаменатель: корень из y минус 1 конец дроби =0,y=4 синус x плюс 3. конец системы


Решите систему уравнений:  система выражений дробь: числитель: синус 2x плюс косинус x, знаменатель: корень из y минус 1 конец дроби =0,y=4 синус x плюс 3. конец системы


Решите систему уравнений:  система выражений дробь: числитель: синус 2x плюс косинус x, знаменатель: корень из y минус 1 конец дроби =0,y=4 синус x плюс 3. конец системы


Решите систему уравнений:  система выражений дробь: числитель: синус 2x плюс синус x, знаменатель: корень из y минус 1 конец дроби =0,y= минус 6 косинус x минус 2. конец системы


Решите систему  система выражений синус x минус синус y=1, синус в квадрате x плюс косинус в квадрате y=1. конец системы .


Решите систему:  система выражений  новая строка 25 в степени левая круглая скобка тангенс x минус 1 правая круглая скобка плюс 5 в степени левая круглая скобка тангенс x минус 1 правая круглая скобка минус 2=0, новая строка корень из минус 2 синус x минус 4y=5 корень 4 степени из левая круглая скобка 2 правая круглая скобка . конец системы


Решите систему неравенств:  система выражений  новая строка left| 2 в степени левая круглая скобка x плюс 2 правая круглая скобка минус 5 | плюс left| 2 в степени левая круглая скобка x плюс 1 правая круглая скобка минус 3 | меньше или равно left| 6 умножить на 2 в степени левая круглая скобка x правая круглая скобка минус 8 |,  новая строка log _2x в степени левая круглая скобка минус 1 правая круглая скобка левая круглая скобка 4x в квадрате правая круглая скобка меньше или равно 1. конец системы .

Источник: А. Ларин: Тренировочный вариант № 71.


Решите систему неравенств  система выражений  новая строка 4 в степени левая круглая скобка дробь: числитель: x правая круглая скобка в квадрате минус 2, знаменатель: x в квадрате плюс x плюс 1 конец дроби плюс 3 умножить на 6 в степени левая круглая скобка дробь: числитель: x правая круглая скобка в квадрате минус 2, знаменатель: x в квадрате плюс x плюс 1 конец дроби больше или равно 4 умножить на 9 в степени левая круглая скобка дробь: числитель: x правая круглая скобка в квадрате минус 2, знаменатель: x в квадрате плюс x плюс 1 конец дроби ,  новая строка log _ дробь: числитель: 1, знаменатель: 3 конец дроби left| x минус 2 | минус log _2 минус x3 меньше или равно 2.  конец системы .

Источник: А. Ларин: Тренировочный вариант № 16.


Известно, что значение параметра а таково, что система уравнений

 система выражений  новая строка 2 в степени левая круглая скобка натуральный логарифм y правая круглая скобка =4 в степени левая круглая скобка |x| правая круглая скобка ,  новая строка log _2 левая круглая скобка x в степени левая круглая скобка 4 правая круглая скобка y в квадрате плюс 2a в квадрате правая круглая скобка =log _2 левая круглая скобка 1 минус ax в квадрате y в квадрате правая круглая скобка плюс 1 конец системы .

имеет единственное решение. Найдите это значение параметра a и решите систему при найденном значении параметра.

Источник: ЕГЭ по математике 2021 года. Досрочная волна., Задания 18 ЕГЭ–2021

Источник/автор: Некрасов В. Б., Гущин Д. Д. «Просвещение», 2010; Гущин Д. Д. «Учительская газета», 2013; ЕГЭ по математике − 2021


При каждом значении а решите систему  система выражений  новая строка 6x в квадрате плюс 17xy плюс 7y в квадрате =a в степени 4 ,  новая строка log _2x плюс y левая круглая скобка 3x плюс 7y правая круглая скобка =3. конец системы .


При каждом значении а решите систему  система выражений  новая строка 6x в квадрате плюс 17xy плюс 7y в квадрате =a,  новая строка log _2x плюс y левая круглая скобка 3x плюс 7y правая круглая скобка =3. конец системы .


Решите систему  левая фигурная скобка beginmatrix 5 в степени левая круглая скобка 3x минус 1 правая круглая скобка минус 5 в степени левая круглая скобка 3x плюс 1 правая круглая скобка меньше или равно минус 72, логарифм по основанию левая круглая скобка дробь: числитель: x, знаменатель: 3 конец дроби правая круглая скобка левая круглая скобка 3x в квадрате минус 2x плюс 1 правая круглая скобка больше или равно 0.  endmatrix .

Всего: 165    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …

Материалы для подготовки к ЕГЭ. Онлайн-Справочник по математике.
Раздел 4 «Уравнения и системы уравнений» (§§ 14-16). Уравнения с одной переменной. Уравнения с двумя переменными. Система уравнений.

ВСЕ РАЗДЕЛЫ СПРАВОЧНИКА

Раздел IV. Уравнения и системы уравнений

ВСЕ РАЗДЕЛЫ СПРАВОЧНИКА

§ 14. Уравнения с одной переменной.

138. Определение уравнения. Корни уравнения.

Раздел 4. Уравнения и системы уравнений

139. Равносильность уравнений.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

140. Линейные уравнения.

Раздел 4. Уравнения и системы уравнений

141. Квадратные уравнения.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

142. Неполные квадратные уравнения.

Раздел 4. Уравнения и системы уравнений

143. Теорема Виета.

Раздел 4. Уравнения и системы уравнений

144. Системы и совокупности уравнений.

Раздел 4. Уравнения и системы уравнений

145. Уравнения, содержащие переменную под знаком модуля.

Раздел 4. Уравнения и системы уравнений

146. Понятие следствия уравнения. Посторонние корни.

Раздел 4. Уравнения и системы уравнений

147. Уравнения с переменной в знаменателе.

Раздел 4. Уравнения и системы уравнений

148. Область определения уравнения.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

149. Рациональные уравнения.

Раздел 4. Уравнения и системы уравнений

150. Решение уравнения р(х) = 0 методом разложения его левой части на множители.

Раздел 4. Уравнения и системы уравнений

151. Решение уравнений методом введения новой переменной.

Раздел 4. Уравнения и системы уравнений

152. Биквадратные уравнения.

Раздел 4. Уравнения и системы уравнений

153. Уравнения высших степеней.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

154. Решение задач с помощью уравнений.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

155. Иррациональные уравнения.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

156. Показательные уравнения.

Раздел 4. Уравнения и системы уравнений

157. Логарифмические уравнения.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

158. Показательно-логарифмические уравнения.

Раздел 4. Уравнения и системы уравнений

159. Простейшие тригонометрические уравнения.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

160. Решение тригонометрических уравнений методом разложения на множители.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

161. Решение тригонометрических уравнений методом введения новой переменной.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

162. Однородные тригонометрические уравнения.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

163. Универсальная подстановка.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

164. Метод введения вспомогательного аргумента.

Раздел 4. Уравнения и системы уравнений

165. Графическое решение уравнений.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

166. Уравнения с параметром.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

§ 15. Уравнения с двумя переменными.

167. Решение уравнения с двумя переменными.

Раздел 4. Уравнения и системы уравнений

168. График уравнения с двумя переменными.
169. Линейное уравнение с двумя переменными и его график.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

§ 16. Системы уравнений.

170. Системы двух уравнений с двумя переменными. Равносильные системы.

Раздел 4. Уравнения и системы уравнений

171. Решение систем двух уравнений с двумя переменными методом подстановки.

Раздел 4. Уравнения и системы уравнений

172. Решение систем двух уравнений с двумя переменными методом сложения.

Раздел 4. Уравнения и системы уравнений

173. Решение систем двух уравнений с двумя переменными методом введения новых переменных.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

174. Определители второго порядка. Исследование систем двух линейных уравнений с двумя переменными.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

175. Симметрические системы.

Раздел 4. Уравнения и системы уравнений

176. Графическое решение систем двух уравнений с двумя переменными.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

177. Системы трех уравнений с тремя переменными.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

178. Определители третьего порядка. Исследование систем трех линейных уравнений с тремя переменными.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений

179. Системы показательных и логарифмических уравнений.

Раздел 4. Уравнения и системы уравнений

180. Системы тригонометрических уравнений.

Раздел 4. Уравнения и системы уравнений
Раздел 4. Уравнения и системы уравнений
 


ВСЕ РАЗДЕЛЫ СПРАВОЧНИКА

Материалы для подготовки к ЕГЭ. Онлайн справочник по математике.
Раздел 4 «Уравнения и системы уравнений» (§§ 14-16). Уравнения с одной переменной. Уравнения с двумя переменными. Система уравнений.


Просмотров:
4 600

Как решать систему уравнений

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

Системы линейных уравнений

Линейные уравнения с двумя переменными

У школьника имеется 200 рублей, чтобы пообедать в школе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе можно накупить на 200 рублей?

Обозначим количество пирожных через x , а количество чашек кофе через y . Тогда стоимость пирожных будет обозначаться через выражение 25x , а стоимость чашек кофе через 10y .

25x — стоимость x пирожных
10y — стоимость y чашек кофе

Итоговая сумма должна равняться 200 рублей. Тогда получится уравнение с двумя переменными x и y

Сколько корней имеет данное уравнение?

Всё зависит от аппетита школьника. Если он купит 6 пирожных и 5 чашек кофе, то корнями уравнения будут числа 6 и 5.

Говорят, что пара значений 6 и 5 являются корнями уравнения 25x + 10y = 200 . Записывается как (6; 5) , при этом первое число является значением переменной x , а второе — значением переменной y .

6 и 5 не единственные корни, которые обращают уравнение 25x + 10y = 200 в тождество. При желании на те же 200 рублей школьник может купить 4 пирожных и 10 чашек кофе:

В этом случае корнями уравнения 25x + 10y = 200 является пара значений (4; 10) .

Более того, школьник может вообще не покупать кофе, а купить пирожные на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 8 и 0

Или наоборот, не покупать пирожные, а купить кофе на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 0 и 20

Попробуем перечислить все возможные корни уравнения 25x + 10y = 200 . Условимся, что значения x и y принадлежат множеству целых чисел. И пусть эти значения будут бóльшими или равными нулю:

Так будет удобно и самому школьнику. Пирожные удобнее покупать целыми, чем к примеру несколько целых пирожных и половину пирожного. Кофе также удобнее брать целыми чашками, чем к примеру несколько целых чашек и половину чашки.

Заметим, что при нечетном x невозможно достичь равенства ни при каком y . Тогда значениями x будут следующие числа 0, 2, 4, 6, 8. А зная x можно без труда определить y

Таким образом, мы получили следующие пары значений (0; 20), (2; 15), (4; 10), (6; 5), (8; 0). Эти пары являются решениями или корнями уравнения 25x + 10y = 200 . Они обращают данное уравнение в тождество.

Уравнение вида ax + by = c называют линейным уравнением с двумя переменными. Решением или корнями этого уравнения называют пару значений ( x; y ), которая обращает его в тождество.

Отметим также, что если линейное уравнение с двумя переменными записано в виде ax + b y = c , то говорят, что оно записано в каноническом (нормальном) виде.

Некоторые линейные уравнения с двумя переменными могут быть приведены к каноническому виду.

Например, уравнение 2(16x + 3y − 4) = 2(12 + 8xy) можно привести к виду ax + by = c . Раскроем скобки в обеих частях этого уравнения, получим 32x + 6y − 8 = 24 + 16x − 2y . Слагаемые, содержащие неизвестные сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой. Тогда получим 32x − 16x + 6y + 2y = 24 + 8 . Приведём подобные слагаемые в обеих частях, получим уравнение 16x + 8y = 32. Это уравнение приведено к виду ax + by = c и является каноническим.

Рассмотренное ранее уравнение 25x + 10y = 200 также является линейным уравнением с двумя переменными в каноническом виде . В этом уравнении параметры a , b и c равны значениям 25, 10 и 200 соответственно.

На самом деле уравнение ax + by = c имеет бесчисленное множество решений. Решая уравнение 25x + 10y = 200, мы искали его корни только на множестве целых чисел. В результате получили несколько пар значений, которые обращали данное уравнение в тождество. Но на множестве рациональных чисел уравнение 25x + 10y = 200 будет иметь бесчисленное множество решений.

Для получения новых пар значений, нужно взять произвольное значение для x , затем выразить y . К примеру, возьмем для переменной x значение 7. Тогда получим уравнение с одной переменной 25 × 7 + 10y = 200 в котором можно выразить y

Пусть x = 15 . Тогда уравнение 25x + 10y = 200 примет вид 25 × 15 + 10y = 200. Отсюда находим, что y = −17,5

Пусть x = −3 . Тогда уравнение 25x + 10y = 200 примет вид 25 × (−3) + 10y = 200. Отсюда находим, что y = −27,5

Система двух линейных уравнений с двумя переменными

Для уравнения ax + by = c можно сколько угодно раз брать произвольные значение для x и находить значения для y . Отдельно взятое такое уравнение будет иметь бесчисленное множество решений.

Но бывает и так, что переменные x и y связаны не одним, а двумя уравнениями. В этом случае они образуют так называемую систему линейных уравнений с двумя переменными. Такая система уравнений может иметь одну пару значений (или по-другому: «одно решение»).

Может случиться и так, что система вовсе не имеет решений. Бесчисленное множество решений система линейных уравнений может иметь в редких и в исключительных случаях.

Два линейных уравнения образуют систему тогда, когда значения x и y входят в каждое из этих уравнений.

Вернемся к самому первому уравнению 25x + 10y = 200 . Одной из пар значений для этого уравнения была пара (6; 5) . Это случай, когда на 200 рублей можно можно было купить 6 пирожных и 5 чашек кофе.

Составим задачу так, чтобы пара (6; 5) стала единственным решением для уравнения 25x + 10y = 200 . Для этого составим ещё одно уравнение, которое связывало бы те же x пирожных и y чашечек кофе.

Поставим текст задачи следующим образом:

«Школьник купил на 200 рублей несколько пирожных и несколько чашек кофе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе купил школьник, если известно что количество пирожных на одну единицу больше количества чашек кофе?»

Первое уравнение у нас уже есть. Это уравнение 25x + 10y = 200 . Теперь составим уравнение к условию «количество пирожных на одну единицу больше количества чашек кофе» .

Количество пирожных это x , а количество чашек кофе это y . Можно записать эту фразу с помощью уравнения x − y = 1. Это уравнение будет означать, что разница между пирожными и кофе составляет 1.

Либо второе уравнение можно записать как x = y + 1 . Это уравнение означает, что количество пирожных на единицу больше, чем количество чашек кофе. Поэтому для получения равенства, к количеству чашек кофе прибавлена единица. Это легко можно понять, если воспользоваться моделью весов, которые мы рассматривали при изучении простейших задач:

Получили два уравнения: 25x + 10y = 200 и x = y + 1. Поскольку значения x и y , а именно 6 и 5 входят в каждое из этих уравнений , то вместе они образуют систему. Запишем эту систему. Если уравнения образуют систему, то они обрамляются знаком системы. Знак системы это фигурная скобка:

Давайте решим данную систему. Это позволит увидеть, как мы придём к значениям 6 и 5. Существует много методов решения таких систем. Рассмотрим наиболее популярные из них.

Метод подстановки

Название этого метода говорит само за себя. Суть его заключается в том, чтобы одно уравнение подставить в другое, предварительно выразив одну из переменных.

В нашей системе ничего выражать не нужно. Во втором уравнении x = y + 1 переменная x уже выражена. Эта переменная равна выражению y + 1 . Тогда можно подставить это выражение в первое уравнение вместо переменной x

После подстановки выражения y + 1 в первое уравнение вместо x , получим уравнение 25(y + 1) + 10y = 200 . Это линейное уравнение с одной переменной. Такое уравнение решить довольно просто:

Мы нашли значение переменной y . Теперь подставим это значение в одно из уравнений и найдём значение x . Для этого удобно использовать второе уравнение x = y + 1 . В него и подставим значение y

Значит пара (6; 5) является решением системы уравнений, как мы и задумывали. Выполняем проверку и убеждаемся, что пара (6; 5) удовлетворяет системе:

Пример 2. Решить методом подстановки следующую систему уравнений:

Подставим первое уравнение x = 2 + y во второе уравнение 3x − 2y = 9 . В первом уравнении переменная x равна выражению 2 + y . Это выражение и подставим во второе уравнение вместо x

Теперь найдём значение x . Для этого подставим значение y в первое уравнение x = 2 + y

Значит решением системы является пара значение (5; 3)

Пример 3. Решить методом подстановки следующую систему уравнений:

Здесь в отличие от предыдущих примеров, одна из переменных не выражена явно.

Чтобы подставить одно уравнение в другое, сначала нужно выразить одну из переменных.

Выражать желательно ту переменную, которая имеет коэффициент единицу. Коэффициент единицу имеет переменная x , которая содержится в первом уравнении x + 2y = 11 . Эту переменную и выразим.

После выражения переменной x , наша система примет следующий вид:

Теперь подставим первое уравнение во второе и найдем значение y

Подставим y в первое уравнение и найдём x

Значит решением системы является пара значений (3; 4)

Конечно, выражать можно и переменную y . Корни от этого не изменятся. Но если выразить y, получится не очень-то и простое уравнение, на решение которого уйдет больше времени. Выглядеть это будет следующим образом:

Видим, что в данном примере выражать x намного удобнее, чем выражать y .

Пример 4. Решить методом подстановки следующую систему уравнений:

Выразим в первом уравнении x . Тогда система примет вид:

Подставим первое уравнение во второе и найдём y

Подставим y в первое уравнение и найдём x . Можно воспользоваться изначальным уравнением 7x + 9y = 8 , либо воспользоваться уравнением , в котором выражена переменная x . Этим уравнением и воспользуемся, поскольку это удобно:

Значит решением системы является пара значений (5; −3)

Метод сложения

Метод сложения заключается в том, чтобы почленно сложить уравнения, входящие в систему. Это сложение приводит к тому, что образуется новое уравнение с одной переменной. А решить такое уравнение довольно просто.

Решим следующую систему уравнений:

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. Получим следующее равенство:

Приведем подобные слагаемые:

В результате получили простейшее уравнение 3x = 27 корень которого равен 9. Зная значение x можно найти значение y . Подставим значение x во второе уравнение x − y = 3 . Получим 9 − y = 3 . Отсюда y = 6 .

Значит решением системы является пара значений (9; 6)

Пример 2. Решить следующую систему уравнений методом сложения:

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. В получившемся равенстве приведем подобные слагаемые:

В результате получили простейшее уравнение 5 x = 20, корень которого равен 4. Зная значение x можно найти значение y . Подставим значение x в первое уравнение 2 x + y = 11 . Получим 8 + y = 11 . Отсюда y = 3 .

Значит решением системы является пара значений (4;3)

Процесс сложения подробно не расписывают. Его нужно выполнять в уме. При сложении оба уравнения должны быть приведены к каноническому виду. То есть к виду ax + by = c .

Из рассмотренных примеров видно, что основная цель сложения уравнений это избавление от одной из переменных. Но не всегда удаётся сразу решить систему уравнений методом сложения. Чаще всего систему предварительно приводят к виду, при котором можно сложить уравнения, входящие в эту систему.

Например, систему можно сразу решить методом сложения. При сложении обоих уравнений, слагаемые y и −y исчезнут, поскольку их сумма равна нулю. В результате образуется простейшее уравнение 11x = 22 , корень которого равен 2. Затем можно будет определить y равный 5.

А систему уравнений методом сложения сразу решить нельзя, поскольку это не приведёт к исчезновению одной из переменных. Сложение приведет к тому, что образуется уравнение 8x + y = 28 , имеющее бесчисленное множество решений.

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному. Это правило справедливо и для системы линейных уравнений с двумя переменными. Одно из уравнений (или оба уравнения) можно умножить на какое-нибудь число. В результате получится равносильная система, корни которой будут совпадать с предыдущей.

Вернемся к самой первой системе , которая описывала сколько пирожных и чашек кофе купил школьник. Решением этой системы являлась пара значений (6; 5) .

Умножим оба уравнения, входящие в эту систему на какие-нибудь числа. Скажем первое уравнение умножим на 2, а второе на 3

В результате получили систему
Решением этой системы по-прежнему является пара значений (6; 5)

Это значит, что уравнения входящие в систему можно привести к виду, пригодному для применения метода сложения.

Вернемся к системе , которую мы не смогли решить методом сложения.

Умножим первое уравнение на 6, а второе на −2

Тогда получим следующую систему:

Сложим уравнения, входящие в эту систему. Сложение компонентов 12x и −12x даст в результате 0, сложение 18y и 4y даст 22y , а сложение 108 и −20 даст 88. Тогда получится уравнение 22y = 88 , отсюда y = 4 .

Если первое время тяжело складывать уравнения в уме, то можно записывать как складывается левая часть первого уравнения с левой частью второго уравнения, а правая часть первого уравнения с правой частью второго уравнения:

Зная, что значение переменной y равно 4, можно найти значение x. Подставим y в одно из уравнений, например в первое уравнение 2x + 3y = 18 . Тогда получим уравнение с одной переменной 2x + 12 = 18 . Перенесем 12 в правую часть, изменив знак, получим 2x = 6 , отсюда x = 3 .

Пример 4. Решить следующую систему уравнений методом сложения:

Умножим второе уравнение на −1. Тогда система примет следующий вид:

Сложим оба уравнения. Сложение компонентов x и −x даст в результате 0, сложение 5y и 3y даст 8y , а сложение 7 и 1 даст 8. В результате получится уравнение 8y = 8 , корень которого равен 1. Зная, что значение y равно 1, можно найти значение x .

Подставим y в первое уравнение, получим x + 5 = 7 , отсюда x = 2

Пример 5. Решить следующую систему уравнений методом сложения:

Желательно, чтобы слагаемые содержащие одинаковые переменные, располагались друг под другом. Поэтому во втором уравнении слагаемые 5y и −2x поменяем местами. В результате система примет вид:

Умножим второе уравнение на 3. Тогда система примет вид:

Теперь сложим оба уравнения. В результате сложения получим уравнение 8y = 16 , корень которого равен 2.

Подставим y в первое уравнение, получим 6x − 14 = 40 . Перенесем слагаемое −14 в правую часть, изменив знак, получим 6x = 54 . Отсюда x = 9.

Пример 6. Решить следующую систему уравнений методом сложения:

Избавимся от дробей. Умножим первое уравнение на 36, а второе на 12

В получившейся системе первое уравнение можно умножить на −5, а второе на 8

Сложим уравнения в получившейся системе. Тогда получим простейшее уравнение −13y = −156 . Отсюда y = 12 . Подставим y в первое уравнение и найдем x

Пример 7. Решить следующую систему уравнений методом сложения:

Приведем оба уравнения к нормальному виду. Здесь удобно применить правило пропорции в обоих уравнениях. Если в первом уравнении правую часть представить как , а правую часть второго уравнения как , то система примет вид:

У нас получилась пропорция. Перемножим её крайние и средние члены. Тогда система примет вид:

Первое уравнение умножим на −3, а во втором раскроем скобки:

Теперь сложим оба уравнения. В результате сложения этих уравнений, мы получим равенство, в обеих частях которого будет ноль:

Получается, что система имеет бесчисленное множество решений.

Но мы не можем просто так взять с неба произвольные значения для x и y . Мы можем указать одно из значений, а другое определится в зависимости от значения, указанного нами. Например, пусть x = 2 . Подставим это значение в систему:

В результате решения одного из уравнений, определится значение для y , которое будет удовлетворять обоим уравнениям:

Получившаяся пара значений (2; −2) будет удовлетворять системе:

Найдём еще одну пару значений. Пусть x = 4. Подставим это значение в систему:

На глаз можно определить, что значение y равно нулю. Тогда получим пару значений (4; 0), которая удовлетворяет нашей системе:

Пример 8. Решить следующую систему уравнений методом сложения:

Умножим первое уравнение на 6, а второе на 12

Перепишем то, что осталось:

Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

Первое уравнение умножим на −1. Тогда система примет вид:

Теперь сложим оба уравнения. В результате сложения образуется уравнение 6b = 48 , корень которого равен 8. Подставим b в первое уравнение и найдём a

Система линейных уравнений с тремя переменными

В линейное уравнение с тремя переменными входит три переменные с коэффициентами, а также свободный член. В каноническом виде его можно записать следующим образом:

Данное уравнение имеет бесчисленное множество решений. Придавая двум переменным различные значения, можно найти третье значение. Решением в этом случае является тройка значений (x; y; z) которая обращает уравнение в тождество.

Если переменные x, y, z связаны между собой тремя уравнениями, то образуется система трех линейных уравнений с тремя переменными. Для решения такой системы можно применять те же методы, которые применяются к линейным уравнениям с двумя переменными: метод подстановки и метод сложения.

Пример 1. Решить следующую систему уравнений методом подстановки:

Выразим в третьем уравнении x . Тогда система примет вид:

Теперь выполним подстановку. Переменная x равна выражению 3 − 2y − 2z . Подставим это выражение в первое и второе уравнение:

Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

Мы пришли к системе линейных уравнений с двумя переменными. В данном случае удобно применить метод сложения. В результате переменная y исчезнет, и мы сможем найти значение переменной z

Теперь найдём значение y . Для этого удобно воспользоваться уравнением −y + z = 4. Подставим в него значение z

Теперь найдём значение x . Для этого удобно воспользоваться уравнением x = 3 − 2y − 2z . Подставим в него значения y и z

Таким образом, тройка значений (3; −2; 2) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

Пример 2. Решить систему методом сложения

Сложим первое уравнение со вторым, умноженным на −2.

Если второе уравнение умножить на −2, то оно примет вид −6x + 6y − 4z = −4 . Теперь сложим его с первым уравнением:

Видим, что в результате элементарных преобразований, определилось значение переменной x . Оно равно единице.

Вернемся к главной системе. Сложим второе уравнение с третьим, умноженным на −1. Если третье уравнение умножить на −1, то оно примет вид −4x + 5y − 2z = −1 . Теперь сложим его со вторым уравнением:

Получили уравнение x − 2y = −1 . Подставим в него значение x , которое мы находили ранее. Тогда мы сможем определить значение y

Теперь нам известны значения x и y . Это позволяет определить значение z . Воспользуемся одним из уравнений, входящим в систему:

Таким образом, тройка значений (1; 1; 1) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

Задачи на составление систем линейных уравнений

Задача на составление систем уравнений решается путем ввода нескольких переменных. Далее составляются уравнения на основании условий задачи. Из составленных уравнений образуют систему и решают её. Решив систему, необходимо выполнить проверку на то, удовлетворяет ли её решение условиям задачи.

Задача 1. Из города в колхоз выехала машина «Волга». Обратно она возвращалась по другой дороге, которая была на 5 км короче первой. Всего в оба конца машина проехала 35 км. Сколько километров составляет длина каждой дороги?

Решение

Пусть x — длина первой дороги, y — длина второй. Если в оба конца машина проехала 35 км, то первое уравнение можно записать как x + y = 35. Это уравнение описывает сумму длин обеих дорог.

Сказано, что обратно машина возвращалась по дороге которая была короче первой на 5 км. Тогда второе уравнение можно записать как xy = 5. Это уравнение показывает, что разница между длинами дорог составляет 5 км.

Либо второе уравнение можно записать как x = y + 5 . Этим уравнением и воспользуемся.

Поскольку переменные x и y в обоих уравнениях обозначают одно и то же число, то мы можем образовать из них систему:

Решим эту систему каким-нибудь из изученных ранее методов. В данном случае удобно воспользоваться методом подстановки, поскольку во втором уравнении переменная x уже выражена.

Подставим второе уравнение в первое и найдём y

Подставим найденное значение y в во второе уравнение x = y + 5 и найдём x

Длина первой дороги была обозначена через переменную x . Теперь мы нашли её значение. Переменная x равна 20. Значит длина первой дороги составляет 20 км.

А длина второй дороги была обозначена через y . Значение этой переменной равно 15. Значит длина второй дороги составляет 15 км.

Выполним проверку. Для начала убедимся, что система решена правильно:

Теперь проверим удовлетворяет ли решение (20; 15) условиям задачи.

Было сказано, что всего в оба конца машина проехала 35 км. Складываем длины обеих дорог и убеждаемся, что решение (20; 15) удовлетворяет данному условию: 20 км + 15 км = 35 км

Следующее условие: обратно машина возвращалась по другой дороге, которая была на 5 км короче первой . Видим, что решение (20; 15) удовлетворяет и этому условию, поскольку 15 км короче, чем 20 км на 5 км: 20 км − 15 км = 5 км

При составлении системы важно, чтобы переменные обозначали одни и те же числа во всех уравнениях, входящих в эту систему.

Так наша система содержит два уравнения. Эти уравнения в свою очередь содержат переменные x и y , которые обозначают одни и те же числа в обоих уравнениях, а именно длины дорог, равных 20 км и 15 км.

Задача 2. На платформу были погружены дубовые и сосновые шпалы, всего 300 шпал. Известно, что все дубовые шпалы весили на 1 т меньше, чем все сосновые. Определить, сколько было дубовых и сосновых шпал отдельно, если каждая дубовая шпала весила 46 кг, а каждая сосновая 28 кг.

Решение

Пусть x дубовых и y сосновых шпал было погружено на платформу. Если всего шпал было 300, то первое уравнение можно записать как x + y = 300 .

Все дубовые шпалы весили 46x кг, а сосновые весили 28y кг. Поскольку дубовые шпалы весили на 1 т меньше, чем сосновые, то второе уравнение можно записать, как 28y − 46x = 1000 . Это уравнение показывает, что разница масс между дубовыми и сосновыми шпалами, составляет 1000 кг.

В результате получаем два уравнения, которые образуют систему

Решим данную систему. Выразим в первом уравнении x . Тогда система примет вид:

Подставим первое уравнение во второе и найдём y

Подставим y в уравнение x = 300 − y и узнаем чему равно x

Значит на платформу было погружено 100 дубовых и 200 сосновых шпал.

Проверим удовлетворяет ли решение (100; 200) условиям задачи. Для начала убедимся, что система решена правильно:

Было сказано, что всего было 300 шпал. Складываем количество дубовых и сосновых шпал и убеждаемся, что решение (100; 200) удовлетворяет данному условию: 100 + 200 = 300.

Следующее условие: все дубовые шпалы весили на 1 т меньше, чем все сосновые . Видим, что решение (100; 200) удовлетворяет и этому условию, поскольку 46 × 100 кг дубовых шпал легче, чем 28 × 200 кг сосновых шпал: 5600 кг − 4600 кг = 1000 кг.

Задача 3. Взяли три куска сплава меди с никелем в отношениях 2 : 1 , 3 : 1 и 5 : 1 по массе. Из них сплавлен кусок массой 12 кг с отношением содержания меди и никеля 4 : 1 . Найдите массу каждого исходного куска, если масса первого из них вдвое больше массы второго.

Решение

Пусть x — масса первого куска, y — масса второго куска, z — масса третьего куска. Если из этих кусков сплавлен кусок массой 12 кг, то первое уравнение можно записать как x + y + z = 12 .

Масса первого куска вдвое больше массы второго куска. Тогда второе уравнение можно записать как x = 2y .

Полученных двух уравнений недостаточно для решения данной задачи. Если второе уравнение подставить в первое, то мы получим уравнение 2y + y + z = 12 , откуда 3y + z = 12 . Это уравнение имеет бесчисленное множество решений.

Составим ещё одно уравнение. Пусть это уравнение будет описывать количество меди, взятого с каждого сплава и сколько меди оказалось в получившемся сплаве.

Если первый сплав имеет массу x , а медь и никель находится нём в отношении 2 : 1 , то можно записать, что в новом сплаве содержится меди от первого куска.

Если второй сплав имеет массу y , а медь и никель находится в нём в отношении 3 : 1 , то можно записать, что в новом сплаве содержится меди от второго куска.

Если третий сплав имеет массу z , а медь и никель находится в отношении 5 : 1 , то можно записать, что в новом сплаве содержится меди от третьего куска.

Полученный сплав имеет имеет массу 12 кг, а медь и никель находится в нём в отношении 4 : 1 . Тогда можно записать, что в полученном сплаве содержится меди.

Сложим , , и приравняем эту сумму к 9,6. Это и будет нашим третьим уравнением:

Попробуем решить данную систему.

Для начала упростим третье уравнение. Подставим в него второе уравнение и посмотрим, что из этого выйдет:

Теперь в главной системе вместо уравнения запишем уравнение, которое мы сейчас получили, а именно уравнение 25y + 10z = 115,2

Подставим второе уравнение в первое:

Умножим первое уравнение на −10 . Тогда система примет вид:

Сложим оба уравнения. Тогда получим простейшее уравнение −5y = −4,8 откуда найдём y равный 0,96 . Значит масса второго сплава составляет 0,96 кг .

Теперь найдём x . Для этого удобно воспользоваться уравнением x = 2y. Значение y уже известно. Осталось только подставить его:

Значит масса первого сплава составляет 1,92 кг .

Теперь найдём z . Для этого удобно воспользоваться уравнением x + y + z = 12 . Значения x и y уже известны. Подставим их куда нужно:

Значит масса третьего сплава составляет 9,12 кг.

Алгебра

План урока:

Уравнения с двумя переменными

Порою в ур-нии содержится не одна, а две переменных. Такие ур-ния мы уже изучали в 7 классе. Приведем несколько примеров уравнений с двумя переменными:

В абсолютном большинстве таких задач для обозначения переменных используют буквы х и у. Решение указывают в виде пары чисел, причем на первом месте пишут значение х, а на втором – значение у. Например, несложно убедиться, что пара чисел (– 1; 3) является решением ур-ния

Для этого надо лишь вместо х подставить (– 1), а вместо у – число 3:

Получили верное равенство. Заметим, что пара (– 1; 3) является не единственным решением ур-ния. Например, пара (2; 0) также обращает ур-ние в верное рав-во:

У ур-ний с двумя неизвестными, как и у ур-ний с одной неизвестной, можно определить степень. Для этого надо представить их в таком виде, когда слева записан многочлен, а справа – ноль. Тогда степень ур-ния будет равна степени многочлена. Так как ур-ние содержит две переменных, то для обозначения такого многочлена используется запись Р(х; у).

Пример. Определите степень уравнения

Решение. Раскроем скобки слева, а потом перенесем все слагаемые в одну сторону:

х 3 + ху – х – 1 = 0

В левой части стоит многочлен третьей степени (подробнее об определении степени полинома можно узнать из этого урока). Поэтому и степень ур-ния равна 3.

График уравнения с двумя переменными

Очень часто ур-ние с 2 переменными имеет бесконечное число решений. Их удобно изображать в виде графика, ведь каждой паре чисел (х1; у1) соответствует точка на координатной плоскости с координатами х1 и у1.

Проще всего строить график уравнения с двумя переменными в том случае, когда удается выразить переменную у через х. Например, пусть надо построить график ур-ния

Выразим неизвестную величину у через х, то есть попытаемся получить ф-цию у = у(х):

Построим график ф-ции у = 3 – 2х. Он одновременно будет являться и графиком ур-ния 6х + 3у = 9:

Не всегда можно так преобразовать ур-ние, чтобы получилась ф-ция у = у(х). Действительно, по определению функции, каждому значению аргумента должно соответствовать только одно значение ф-ции. Однако рассмотрим пример ур-ния

Можно убедиться, что его обращают в верное рав-во пары чисел (1; 1) и (1; – 1):

Получается, что одному значению х(х = 1) соответствует сразу 2 значения у (у = 1 и у = –1). Это значит, что графиком такого ур-ния не может являться ф-ция у = у(х)

В данном случае возможно выразить х через у. Перенесем слагаемое у 2 вправо:

Получили «перевернутую ф-цию» х = х(у), где не у зависит от х, а х от у. Ф-ция является квадратичной, а потому ее графиком будет парабола:

Так как х и у в ф-ции поменялись местами, то ось параболы стала не вертикальной, а горизонтальной.

Встречаются случаи, когда из ур-ния невозможно получить ни ф-цию у(х), ни ф-цию х(у). Рассмотрим ур-ние

Его решениями являются пары чисел (0; 5) и (0; – 5). То есть значению х = 0 соответствует два значения у (5 и – 5), поэтому не получиться записать ф-цию у(х). С другой стороны, решениями ур-ния являются также пары (5; 0) и (– 5; 0), то есть значению у = 0 также соответствует два значения х (– 5 и 5), поэтому и записать ф-цию х(у) не удастся. Вообще данное ур-ние является частным случаем ур-ния

где R– некоторое постоянное число, или параметр. Оно называется уравнением окружности, потому что его графиком как раз и является окружность.

Докажем это утверждение. Пусть на координатной плоскости есть точка А с произвольными координатами (х; у):

Опустим из А перпендикуляр на ось Ох в точку В. Получили прямоугольный треугольник ОАВ. Его катет ОВ равен у, а катет АВ = х. По теореме Пифагора можно найти длину гипотенузы ОА, которая и является расстоянием от О до А:

ОА 2 = ОВ 2 + АВ 2 = х 2 + у 2

Окружность радиусом R– это множество точек, удаленных от центра на расстояние R. То есть расстояние ОА равно R, то точка А лежит на окружности радиусом R c центром в О:

х 2 + у 2 = ОА 2 = R 2

Таким образом, координаты любой точки, лежащей на расстоянии Rот центра, удовлетворяют ур-нию

В частности, графиком ур-ния

является окружность с радиусом 5 (так как 25 = 5 2 )

Система уравнений с двумя переменными

Рассмотрим задачу. Разность двух чисел равна единице, а сумма их квадратов составляет 25. Чему равны эти два числа?

В задаче неизвестны два числа. Поэтому обозначим их за неизвестные величины х и у. Первое условие задачи, «разность чисел равна 1», можно записать ур-нием:

Второе условие записывается так:

Нам надо найти такие х и у, которые удовлетворяют одновременно обоим условиям задачи. То есть необходимо решить систему уравнений с двумя переменными:

Напомним, что в 7 классе мы уже изучали сис-мы ур-ний, однако рассматривались только случаи, когда все они являлись линейными. В рассматриваемом случае второе ур-ние линейным НЕ является (потому что переменные величины стоят во второй степени).

Для каждого ур-ния построим отдельный график. Точки их пересечения и будут соответствовать решениям сис-мы. Ур-ниех 2 + у 2 = 25 задает окружность. Ур-ние х – у = 1 будет совпадать с графиком линейной ф-ции у = х – 1:

Графики пересеклись в двух точках: (4; 3) и (– 3; – 4). Подставив их в сис-му, можно убедиться, что именно эти пары чисел являются решениями этой сис-мы.

Конечно, графический метод решения сис-м не всегда точный. Однако он позволяет оценить количество корней и их примерное расположение. Также графики помогают при изучении сис-м, содержащих параметры.

Пример. Найдите с помощью графиков решение сис-мы ур-ний

Решение. Построим графики каждого ур-ния. График первого ур-ния представляет собой параболу, а второй график – это прямая у = 4 – х:

Видно, что графики пересеклись в двух точках: (– 1; 5) и (4; 0). Убедиться в точности построения можно, просто подставив эти значения в решаемую сис-му.

Пример. При каком а сис-ма ур-ний

имеет ровно 3 решения?

Решение. Преобразуем 2-ое ур-ние сис-мы:

График ур-ния х 2 + у 2 = 9 представляет собой окружность радиусом 3. График у = – х 2 + а является параболой с ветвями, смотрящими вниз. Покажем на плоскости различные варианты взаимного расположения этих графиков при различных значениях параметра а:

Видно, что 3 точки пересечения у параболы и окружности может быть только в случае, если вершина параболы касается окружности в точке (0; 3). Для этого парабола должна определяться ур-нием у = – х 2 + 3. Это значит, что только при значении а = 3 сис-ма имеет 3 решения.

Метод подстановки

Конечно, решать сис-му ур-ний графическим способом не очень удобно, так как часто можно получить лишь приближенный ответ. При изучении систем линейных уравнений с двумя переменными мы познакомились с двумя универсальными способами их решения: методы подстановки и сложения. К сожалению, для нелинейных сис-м нет универсальных методов их решения. Однако тот же способ подстановки иногда может помочь.

Его суть заключается в том, что в одном ур-нии надо выразить одну переменную через другую. В результате получится ф-ция у(х) или х(у), и ее можно будет подставить во второе ур-ние и тем самым получить ур-ние с одной неизвестной. Иногда такое действие называют исключением переменной.

Пример. Найдите решение сис-мы уравнений методом подстановки:

Решение. Сразу видно, что во втором ур-нии можно выразить у через х:

Подставим выражение у = х 2 – 6 в первое ур-ние:

2х 2 + х – 3у – 16 = 0

2х 2 + х – 3(х 2 – 6) – 16 = 0

Получилось ур-ние, в котором уже нет у! Его достаточно легко решить, ведь оно сводится к квадратному ур-нию:

2х 2 + х – 3(х 2 – 6) – 16 = 0

2х 2 + х – 3х 2 + 18 – 16 = 0

D = b 2 – 4ас = 1 2 – 4•(– 1)•2 = 1 + 8 = 9

Получили два возможных значения х. Теперь выполним обратную подстановку:

Итак, имеем две пары чисел, (– 1; – 5) и (2; – 2), которые являются решениями сис-мы ур-ний.

Ответ: (– 1; 5); (2; – 2)

Пример. При каких х и у справедлива сис-ма

Решение. Попробуем найти решение методом подстановки. Из второго ур-ния следует, что ни одна из переменных не равна нулю, ведь иначе бы произведение ху равнялось бы не 7, а нулю. Поэтому можно поделить второе ур-ние на х:

У нас получилось выразить у через х. Подставим полученное выражение в первое ур-ние:

Заменим переменную х 2 на t:

Умножим ур-ние на t. Так как х ≠ 0, то и t≠ 0,поэтому мы можем смело производить подобное умножение:

t 2 – 50t + 49 = 0

Получили квадратное ур-ние. Можно честно решить его, однако мы поступим проще. По теореме Виета, произведение корней ур-ния должно равняться 49 (свободный член ур-ния), а в сумме они должны давать 50 (второй коэффициент ур-ния с противоположным знаком). Под эти условия подходят числа 1 и 49:

На всякий случай подставим их в квадратное ур-ние и убедимся, что они действительно являются его корнями:

1 2 – 50•1 + 49 = 1 – 50 + 49 = 0

49 2 – 50•49 + 49 = 2401 – 2450 + 49 = 0

Итак, имеем два корня: t1 = 1 и t2 = 49.

Теперь произведем обратную замену:

х 2 = 1 или х 2 = 49

Имеем два квадратных ур-ния. Корнями первого являются числа

У ур-ния х 2 = 49 корни – это числа

Получили четыре значения х. Для каждого из них можно вычислить соответствующее значение у по формуле у = 7/х:

при х = –1; у = 7/ – 1 = – 7

при х = 1; у = 7/1 = 7

при х = – 7; у = 7/– 7 = – 1

при х = 7; у = 7/7 = 1

В итоге имеем 4 пары решений: (– 1; – 7), (1; 7), (– 7; – 1) и (7; 1).

Ответ: (– 1; – 7), (1; 7), (– 7; – 1), (7; 1).

Метод сложения

Очевидно, что не всегда в ур-нии можно выразить одну переменную через другую. Такую ситуацию можно, например, наблюдать в сис-ме

Однако здесь в каждом ур-нии есть слагаемое 6у 2 , взятое с разными знаками. За счет этого сис-му можно решить методом сложения, ведь при сложении левых частей ур-ний слагаемые 6у 2 и (– 6у 2 ) сократятся, что позволит исключить переменную у из ур-ния. Для этого надо сложить по отдельности левые и правые части ур-ний и получить новое ур-ние:

(3х 2 – 6у 2 + 3х) + (– 2х 2 + 6у 2 ) = –18 + 22

3х 2 – 6у 2 + 3х – 2х 2 + 6у 2 = 4

Получили ур-ние, не содержащее у. Его можно решить как обычное квадратное ур-ние:

D = b 2 – 4ас = 3 2 – 4•1•(– 4) = 9 + 16 = 25

Нашли два значения х. Подставляя его второе ур-ние, получим

– 2•(– 4) 2 + 6у 2 = 22

Имеем 4 решения сис-мы (– 4; 3), (– 4; – 3), (1; – 2), (1; 2).

Мы рассмотрели простейший случай использования метода сложения уравнений, когда ур-ния сис-мы можно сложить сразу. Однако порою их надо сначала умножить на какие-то числа, и лишь потом складывать.

Пример. Укажите решение для сис-мы:

Решение. Сразу складывать эти ур-ния нет смысла, потому что при этом не исчезнет ни одна переменная. Напомним, что обе части любого ур-ния можно умножить на число, не равное нулю, и в результате получится равносильное ур-ние. Поэтому второе ур-ние умножим на (– 2):– 4х 2 + 2у 2 = – 2

А вот теперь есть смысл сложить его с первым ур-нием, так как у них есть слагаемые 2у 2 с противоположными знаками:

(3х 2 – 2у 2 ) + (– 4х 2 + 2у 2 ) = 1 – 2

Полученные значения х будем подставлять в другое ур-ние, например, в 2х 2 – у 2 = 1 (на самом деле можно выбрать любое другое из ур-ний сис-мы).

Теперь подставим х = 1:

В итоге получаем 4 решения: (– 1; – 1), (– 1; 1), (1; – 1) и (1; 1)

Ответ:(– 1; – 1), (– 1; 1), (1; – 1), (1; 1).

Порою метод сложения и метод подстановки следует использовать одновременно.

Пример. Решите систему методом сложения:

Решение: постараемся избавиться от слагаемых с буквенной частью ху. Для этого умножим второе ур-ние на (– 2):

– 2х – 2у – 2ху = 12

Сложим его с первым ур-нием:

(3х + у + 2ху) + (– 2х – 2у – 2ху) = – 6 + 12

исключить переменную не удалось, однако мы получили линейное ур-ние. Выразим из него у:

Теперь можно подставить это выражение, например, во второе ур-ние системы:

х + (х – 6) + х(х – 6) = – 6

х = 0 или х – 4 = 0

Подставим полученные результаты в выражение у = х – 6

Получили два решения: (0; – 6) и (4; – 2).

Ответ: (0; – 6) и (4; – 2).

Разложение левой части уравнения на множители

Если нельзя использовать ни метод подстановки, ни способ сложения, то могут помочь другие методы. Например, иногда в одном ур-нии справа можно оставить ноль, а слева – разложить многочлен на множители.

Пример. Решите систему:

Решение. В верхнем ур-нии можно выполнить следующие преобразования:

9х 2 – у 2 = 3х – у

(3х – у)(3х + у) = (3х – у)

(3х – у)(3х + у) – (3х – у) = 0

Можно заметить, что в левой части находится разность двух выражений, содержащих множитель (3х – у). Этот множитель можно вынести за скобки, при этом вместо второго выражения останется только единица, ведь его можно переписать как (3х – у)•1 (при умножении на единицу любое выр-ние остается неизменным):

(3х – у)(3х + у) – (3х – у)•1 = 0

(3х – у)(3х + у – 1) = 0

Вспомним, что произведение равно нулю, если один из его сомножителей нулевой. Поэтому

3х – у = 0 или 3х + у – 1 = 0

у = 3х или у = 1 – 3х

Получили два возможных варианта выражения для у. Будем подставлять их во второе ур-ние:

х = 0 или – 2х + 3 = 0

Найдем значение у, учитывая, что у = 3х:

Имеем решения (0; 0) и (1,5; 4,5). Далее рассмотрим второй случай, когда у = 1 – 3х:

х 2 + (1 – 3х) = х(1 – 3х)

х 2 + 1 – 3х = х – 3х 2

Перенося слагаемые влево, получаем квадратное ур-ние:

х 2 + 1 – 3х – х + 3х 2 = 0

D = b 2 – 4ас = (– 4) 2 – 4•4•1 = 0

Получаем, что у квадратного ур-ния есть лишь один корень:

Найдем соответствующее ему значение у:

Получили третье решение: (0,5; – 0,5).

Ответ: (0; 0); (1,5; 4,5);(0,5; – 0,5).

Системы ур-ний часто используются при решении геометрических задач.

Пример. Площадь прямоугольного треугольника равна 150 см 2 . Известно, что один из его катетов больше другого на 5 см. Каков периметр треугольника?

Решение. Традиционно катеты обозначают буквами а и b. Площадь прямоугольного треугольника равна половине произведения катетов:

Отсюда следует ур-ние:

Будем считать, что катет а больше, чем b. Тогда из условия можно записать

Итак, получается система:

Очевидно, что систему можно решить подстановкой а = 5 + b

b 2 + 5b – 300 = 0

Решая это квадратное ур-ние, легко получить два значения b: 20 и (– 15). По смыслу задачи длина катета должна измеряться положительным числом, а потому b = 20. Второй катет на 5 см меньше, то есть он равен 20 – 5 = 15 см. Длину гипотенузы с можно найти по теореме Пифагора:

с 2 = а 2 + b 2 = 20 2 + 15 2 = 625

Периметр треугольника – это сумма его сторон, она равна 25 + 20 + 15 = 60 см.

Линейное неравенство с двумя переменными

Изучение неравенств с двумя переменными начнем с простейших из них – линейных неравенств. Их можно получить из линейных ур-ний, поставив вместо знака «=» один из четырех знаков сравнения.

Приведем примеры линейных неравенств с двумя переменными:

– 18,4x + 45,325y + 54,36 0

Пример. Отметьте на координатной прямой все решения неравенства с двумя переменными

Решение. Рассмотрим ур-ние

Перенеся часть слагаемых вправо, можно получить функцию

Построим ее график. Он представляет собой параболу, которая разбивает плоскость на две области:

Для определения того, выполняется ли нер-во в той или иной области, достаточно рассмотреть по одной точке в каждой из областей. Начнем с внутренней области. К ней относится начало координат, точка (0; 0). Подставив х = 0 и у = 0 в нер-во, мы увидим, что оно выполняется:

Во второй области выполняется обратное нер-во у – х 2 + 5 2 + 5 4 + 2х 2 у + у 2 > 0

Решение. Изучим ур-ние

х 4 + 2х 2 у + у 2 = 0

В левой части стоит квадрат суммы слагаемых х 2 и у:

(х 2 + у) 2 = (х 2 ) 2 + 2х 2 у + у 2 = х 4 + 2х 2 у + у 2

С учетом этого ур-ние можно переписать так:

Построим график и определим, какое нер-во выполняется в полученных областях. В области I возьмем точку (0; – 1). При ее подстановке в исходное нер-во получаем:

0 4 + 2•0 2 (– 1) + (– 1) 2 > 0

Однако и в области II выполняется то же самое нер-во. Это можно увидеть на примере точки (0; 1):

0 4 + 2•0 2 •1 + 1 2 > 0

Получается, что решениями нер-ва являются точки обеих областей. То есть надо заштриховать всю координатную плоскость, кроме самой кривой у = – х 2 , которую мы покажем из-за этого штрихпунктирной линией:

Отдельно отметим, что возможны случаи, когда график ур-ния разбивает плоскость не на две, а на большее кол-во областей. В качестве примера можно привести нер-во

Ему соответствует ур-ние ху – 5 = 0

Из него можно получить функцию у = 5/х, графиком которой является гипербола. Этот график образует 3 области. Будем действовать как и раньше – выберем из каждой области по одной точке и посмотрим, выполняется ли на нем нер-во ух – 5 > 0. Из области I возьмем точку (– 5; – 5):

ху – 5 = (– 5)•(– 5) – 5 = 25 – 5 > 0

Из II области выберем точку (5; 5):

ху – 5 = 5•5 – 5 = 20 > 0

Наконец, из III области возьмем точку (0; 0):

ху – 5 = 0•0 – 5 = 0 – 5 2 + у 2 = 9 является окружность радиусом 3, то решением первого нер-ва является круг:

Нер-во х – у > 0 является линейным. Его решением будет полуплоскость:

Теперь совместим два полученных решения. Решением системы нер-в будет пересечение заштрихованных областей. Ведь именно здесь оба нер-ва системы будут выполняться одновременно. Это пересечение представляет собой полукруг (он заштрихован квадратиками):

Пример. Постройте решение системы нер-в

Решение. Построим графики ур-ний х 2 – у = 2 и у 2 – х = 2. Первый из них будет являться параболой у = х 2 – 2. Второй же будет выглядеть, как парабола, повернутая на 90°. Это будет функция х = у 2 – 2:

В том, что мы выбрали правильную область на плоскости, можно убедиться, просто подставив одну из ее точек, в частности (0; 0), в систему:

источники:

http://spacemath.xyz/sistemy-linejnyh-uravnenij/

http://100urokov.ru/predmety/urok-5-sistemy-uravnenij

Часть 1. УРАВНЕНИЯ

1. Целые рациональные уравнения

2. Уравнения, содержащие переменную
под знаком абсолютной величины (модуля)

3. Дробно-рациональные уравнения

4. Иррациональные уравнения

5. Тригонометрические уравнения

6. Показательные уравнения

7. Логарифмические уравнения

Часть 2. СИСТЕМЫ УРАВНЕНИЙ

1. Системы целых алгебраических уравнений

2. Системы, содержащие
дробно-рациональные уравнения

3. Системы, содержащие
иррациональные уравнения

4. Системы, содержащие
тригонометрические уравнения

5. Системы, содержащие
показательные уравнения

6. Системы, содержащие
логарифмические уравнения

Системы алгебраических уравнений

Систему уравнений можно решать методом подстановки – выражать переменную из одного уравнения и подставлять в другое.

Уравнения в системе можно также складывать друг с другом и вычитать одно из другого. Например, левую часть одного уравнения складываем с левой частью другого, правую – с правой.

Можно умножать и даже делить одно уравнение на другое! Конечно, при этом надо следить, чтобы не умножить или не поделить на ноль.

Обратите внимание – когда мы решаем систему уравнений, она не распадается на «кусочки», на отдельные уравнения. Каждый раз мы переходим от системы уравнений к равносильной ей системе.

1. Решите систему уравнений:

left{begin{matrix}left ( x+4 right )left ( y+90 right )=360\left ( x+5 right )left ( y+45 right )=225end{matrix}right.

Раскроем скобки в каждом уравнении:

left{begin{matrix}xy+90x+4y+360=360\xy+45x+5y+225=225end{matrix}right.

left{begin{matrix}xy+90x+4y=0\xy+45x+5y=0end{matrix}right.

Вычтем из первого уравнения системы второе: 45x=y. И подставим во второе уравнение.

left{begin{matrix}y=45x\xy+45x+5y=0end{matrix}right.

left{begin{matrix}y=45x\45x^{2}+45x+225x=0end{matrix}right.

left{begin{matrix}y=45x\45x^{2}+270x=0end{matrix}right.

left{begin{matrix}y=45x\xleft ( x+6 right )=0end{matrix}right.

left{begin{matrix}y=45x\left[begin{array}{ccc}x=0\x=6end{array}right.end{matrix}right.

left[begin{array}{ccc}!!!!!!!!!!left{begin{matrix}x=0\y=0\end{matrix}right.\left{begin{matrix}x=-6\y=-270end{matrix}right.end{array}right.

Ответ: (0;0), (-6; -270).

2. Решите систему уравнений:
left{begin{matrix}x^{3}+y^{3}=2\xyleft ( x+y right )=2end{matrix}right.

left{begin{matrix}x^{3}+y^{3}=2\xyleft ( x+y right )=2end{matrix}right.Leftrightarrow left{begin{matrix}left ( x+y right )left ( x^{2}-xy+y^{2} right )=2\xyleft ( x+y right )=2end{matrix}right.

Мы разложили левую часть первого уравнения на множители по формуле суммы кубов.

Поделим первое уравнение системы на второе

frac{x^{2}-xy+y^{2}}{xy}=1

x^{2}-xy+y^{2}=xy

x^{2}-2xy+y^{2}=0

left ( x-y right )^{2}=0

x=y

Подставим x=y в уравнение x^{3}+y^{3}=2

2x^{3}=2

x^{3}=1

x=1

y=1

Ответ: (1;1)

3. Решите систему уравнений: left{begin{matrix}x^{2}+y^{4}=20\x^{4}+y^{2}=20end{matrix}right.

Сделаем замену

x^{2}=u,ugeq 0

y^{2}=v,vgeq 0

Дальше – цепочка равносильных переходов.

left{begin{matrix}u+v^{2}=20\u^{2}+v=20end{matrix}right.Leftrightarrowleft{begin{matrix}u+v^{2}=20\u+v^{2}=u^{2}+vend{matrix}right.Leftrightarrowleft{begin{matrix}u+v^{2}=20\u-v=u^{2}-v^{2}end{matrix}right.Leftrightarrowleft{begin{matrix}u+v^{2}=20\u-v=left ( u-v right )left ( u+v right )end{matrix}right.Leftrightarrow

Leftrightarrow left{begin{matrix}u+v^{2}=20\u-v=left ( u-v right )left ( u+v right )end{matrix}right.Leftrightarrowleft{begin{matrix}u+v^{2}=20\left (u-v right )-left ( u-v right )left ( u+v right )=0end{matrix}right.Leftrightarrowleft{begin{matrix}u+v^{2}=20\left ( u-v right )left ( 1-u-v right )=0end{matrix}right.Leftrightarrow

left{begin{matrix}u+v^{2}=20\left[begin{array}{ccc}u=v\u+v=1end{array}right.\end{matrix}right.Leftrightarrowleft[begin{array}{ccc}left{begin{matrix}u+v^{2}=20\u=vend{matrix}right.\left{begin{matrix}u+v^{2}=20\u=1-vend{matrix}right.end{array}right.Leftrightarrowleft[begin{array}{ccc}left{begin{matrix}u=v\v^{2}+v-20=0end{matrix}right.\left{begin{matrix}u=1-v\v^{2}-v-19=0end{matrix}right.end{array}right.

Решения первой системы: left{begin{matrix}v=4\u=4end{matrix}right.

Получим:

left{begin{matrix}x^{2}=4\y^{2}=4end{matrix}right.Leftrightarrowleft[begin{array}{ccc}!!!left{begin{matrix}x=2\y^{2}=4end{matrix}right.\left{begin{matrix}x=-2\y^{2}=4end{matrix}right.end{array}right .Leftrightarrowleft[begin{array}{ccc}!!!left{begin{matrix}x=2\y=2end{matrix}right.\left{begin{matrix}x=2\y=-2end{matrix}right.\left{begin{matrix}x=-2\y=2end{matrix}right.\left{begin{matrix}x=-2\y=-2end{matrix}right.end{array}right .

Вторая система:
left{begin{matrix}u+v=1\v^{2}-v-19=0end{matrix}right.

Решим квадратное уравнение v^{2}-v-19=0. Его корни:
v_{1}=frac{1-sqrt{77}}{2} и v_{2}=frac{1+sqrt{77}}{2}.

v=frac{1-sqrt{77}}{2} < 0, и уравнение v=y^{2} в этом случае решений не имеет. v=frac{1+sqrt{77}}{2} > 1, тогда u < 0 и уравнение u=x^{2} не имеет решений. Значит, у второй системы решений нет.

Ответ: (2; 2), (2; –2), (–2; –2),(–2; –2)

4. Решите систему уравнений:

left{begin{matrix}frac{xy}{x+y}=frac{2}{3}\frac{yz}{y+z}=frac{6}{5}\frac{zx}{x+z}=frac{3}{4}end{matrix}right.

left{begin{matrix}frac{xy}{x+y}=frac{2}{3}\frac{yz}{y+z}=frac{6}{5}\frac{zx}{x+z}=frac{3}{4}end{matrix}right.Leftrightarrowleft{begin{matrix}frac{x+y}{xy}=frac{3}{2}\frac{y+z}{yz}=frac{5}{6}\frac{x+z}{zx}=frac{4}{3}end{matrix}right.Leftrightarrow left{begin{matrix}frac{1}{x}+frac{1}{y}=frac{3}{2}\frac{1}{z}+frac{1}{y}=frac{5}{6}\frac{1}{x}+frac{1}{z}=frac{4}{3}end{matrix}right.

Замена:

frac{1}{x}=a;

frac{1}{y}=b;

frac{1}{z}=c.

left{begin{matrix}a+b=frac{3}{2}\c+b=frac{5}{6}\a+c=frac{4}{3}end{matrix}right.Leftrightarrow left{begin{matrix}a+b=frac{3}{2}\a-c=frac{2}{3}\a+c=frac{4}{3}end{matrix}right.Leftrightarrow left{begin{matrix}a+b=frac{3}{2}\2a=2\2c=frac{2}{3}end{matrix}right.Leftrightarrow left{begin{matrix}a=1\b=frac{1}{2}\c=frac{1}{3}end{matrix}right.Leftrightarrow left{begin{matrix}x=1\y=2\z=3end{matrix}right.

Ответ: 1, 2, 3.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Системы алгебраических уравнений» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Понравилась статья? Поделить с друзьями:
  • Системы тригонометрических уравнений егэ
  • Системы счисления решу егэ информатика
  • Системы счисления информатика егэ вся теория
  • Системы счисления егэ информатика задания
  • Системы счисления егэ информатика 2022